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ON THE UNICITY CONJECTURE FOR 
MARKOFF NUMBERS 

ARTHUR BARAGAR 

ABSTRACT. In 1913 Frobenius conjectured that for any positive integer m, there 
exists at most one pair of integers (JC, y) with 0 < x < y < m such that (JC, y, m) is a 
solution to the Markoff equation: x2 + )? + m2 = 3xym. We show this is true if either 
m, 3m — 2 or 3m + 2 is prime, twice a prime or four times a prime. 

0. Introduction. Markoff (1879) [M] studied the equation 

(0.1) x2+y2+z2 = 3xyz, 

and showed its set of integral solutions is the orbit of the fundamental solution (1,1,1) 
under the action of the group of automorphisms Ç generated by the permutations «S3 on 
{JC, y, z}, the sign change 

p:(x,y,z)->(-x, -y,z), 

and 
</>3 : (x, y, z) —• (x, y, 3xy - z). 

Further, the positive ordered integral solutions (the Markoff triples) all lie in the tree 
rooted at (1, 1,1) with branching operations 

(f>2: (x, y9 z) —> (x, z, 3xz -y) 

<j>x : (x, y, z) —> (y, z, 3yz - x). 

This tree has appeared frequently in the literature (see [C], [Z].) 
Frobenius (1913) [F] conjectured that any Markoff number m appears uniquely as the 

maximal element of a Markoff triple, i.e., if(x\,y\, m) and (X2,y2, m) are both integral 
solutions to (0.1), and 0 < JC, < yt < m, then JCI = X2 and71 = y2. 

In this paper, we prove a weaker result: 

THEOREM 0.1. If either m, 3m — 2 or 3m + 2 is a prime, twice a prime or four times 
a prime, then there exists at most one integer pair (x, y) so that (JC, y, m) is a Markoff 
triple. 

This result was independently proved by Zagier a number of years ago, though his 
results were never published. The general approacri—to look at the factorization of ideals 
in orders—was also known to Harvey Cohn, and may be 'well known', but only recently 
appeared in print [B]. 
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1. A Reformulation. Our approach is to fix a Markoff number m, and consider the 
resulting quadratic equation as a norm equation in a real quadratic field. We identify an 
integer solution to the Markoff equation with a solution to the norm equation that lies 
in a certain order. The details are easiest to check if the order in question is the ring of 
integers, but the theory works with orders too, though we must consider the problem in 
two parts— the case with m odd, and the case with m even. 

We first fix m odd, and consider the equation 

(1.1) x2 +y2 - 3mxy = -m 2 . 

We can rewrite (1.1) as 

NK/Q(x + uy) = -m2 

where K = Q(UJ) and u is the larger number that satisfies u? + 3muj + 1 = 0 . Hence there 
is a one-to-one correspondence between integer solutions (x, y) of (1.1) and elements (3 
in the order R = Z + uZ that satisfy 

(1.2) NK/Q(0) = -m2. 

There is a natural subgroup H of Q that acts on ( 1.1 ), holding m fixed. This is the group 
generated by 

a: (x, y, m) i—> (y, x, m) 

p: (x, y, m) •—• (-x, -y,m) 

<j>: (x, y, m) H-> (y, 3ym — x, m). 

We would like to describe this as the subgroup that fixes m, but that is precisely the 
unicity conjecture. 

These automorphisms have natural interpretations in R. The sign change p is multi­
plication by — 1 ; <f> is multiplication by the unit —u; and the permutation a is conjugation 
followed by multiplication by u. Furthermore, if m ^ 1, then UJ is a fundamental unit. 
Hence, there is a one-to-one correspondence between orbits of integral solutions to (1.1) 
and pairs of principal ideals {/3R, (3R} generated by a (3 G R that satisfies (1.2). 

Thus we may reformulate the unicity conjecture: 

THEOREM 1.1. If m is an odd Markoff number, then m is the maximal element of a 
unique Markoff triple if and only if there exists exactly one pair of principal ideals {(3R, 
fiR} in R such that (3 satisfies (1.2). 

In the following, we consider the prime factorization of the ideal (3R in R. Since its 
norm N(/3^) = m2 is relatively prime to the discriminant A = disc(Z?) = 9m2 — 4, and 
is therefore coprime to the conductor, which divides A, we know this factorization is 
unique. 

Note also that if (x, y, m) is a Markoff triple, then gcd(x, y) = 1, so (3R is a primitive 
ideal (i.e., it has no Z factors.) 
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COROLLARY 1.2. If m is an odd prime Markoff number, then m is the maximal ele­
ment of a unique Markoff triple. 

PROOF. Since m is prime, mR either remains prime in K or has two prime factors: 
mR = pp. Since f3R is primitive, f3R ^ mR, so we must have mR = pp and either 
(3R = p2 or f3R = p2. Thus, by Theorem 1.1, m is the maximal element of a unique 
Markoff triple. 

Now, suppose there are two elements /3 and 7 in R that satisfy (1.2) but generate 
different pairs of ideals. Then we can factor the ideals (3R and lR into prime ideals, some 
of which are common to both, the rest of which must be conjugates, since (3R and lR 
have the same norm. Thus 

[5R = a\a2 

lR = aiâ2, 

where neither Oi nor a2 is all of R. Multiplying these together, we get 

filR = a]a2â2, 

so 
a\~R 

where ~ is narrow class equivalence. Similarly, by multiplying (3R and JR together, we 
get a2 ~R. One of these two ideals satisfies N(a,-) < m < ^\/Â. 

For any fixed value of m, it is possible to classify all 'small', primitive ideals / whose 
square is equivalent to R. Our main tool is the theory of continued fractions, which can 
be thought of as a means of finding good rational approximations. This is the subject of 
the next section. 

2. A Classification of Certain Ideals. In this section, we describe a procedure to 
find all ideals I'mK which are primitive, have norm N(0 < jVà, and satisfy I~l {i.e., 
I2 ~ R.) In particular, we show that if either 3 m — 2 or 3m + 2 is prime, then N(/) divides 
A. Thus, in these two cases, the ideal a,- cannot exist. 

We begin with a couple of useful results which are easy enough to prove: 

LEMMA 2.1. If I is primitive, then there exists a basis over Z of I of the form {r + w, 
N(I)}for some r E Z. Furthermore, we may choose r so that 

(2.1) V /Â-N(/)<r + o;<v/Â, 

since this interval has length N(/). 

COROLLARY 2.2. If J is a primitive ideal and J — J, then N(-0 divides A. 

LEMMA 2.3. Suppose I~I. Then there exists an ideal J in R such that J is primitive, 
N(-0 divides A, and I ~ J where ~ is class equivalence. 

PROOF. Since / ~ /, there exist elements oc\, a2 eR such that N(«i ), N(«2) > 0 and 

OL\I = a2I. 
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Thus, N(fL) = 1 and by Hilbert's Theorem 90, there exists a cr GK such that 

a2 

a 
à 

Furthermore, by multiplying by an appropriate integer, we can insure that a G R. Then 
we get 

al = âl 

Let n be the largest factor of al in Z, and let nJ = al. Then J is primitive, and J — J, so 
by Corollary 2.2, N(J) divides A. 

Since nJ = al, there exists an integer matrix A with det^f = ±1 such that 

n(s + UJ) 

wN(J) J 
a(r + a;) 

L *N(J) 

±1 0 
0 1 

where J = (s + u)Z x N(/)Z. Choose £ 

can think of ̂ 4 as a fractional linear transformation, and 

r + uj 

so that i = EAe S12(Z). Then we 

i (J + f a^ / 5 + o;\ 

Let us set 
xi = 

r + uj 
and 

N(7) 

^y 
.y + o; 

N(7) N(J) 

We now use some results from the theory of continued fractions [N-Z, Ch. 7]. If two 
real quadratic numbers differ by a fractional linear transformation, then they have the 
same repeating part. Furthermore, if a real quadratic number JC > 1 satisfies — 1 < x < 0, 
then JC has a periodic continued fraction. That is to say, 

x = (a09...,a„). 

LEMMA 2.4. Suppose a primitive ideal I satisfies NCO < \ >/Â. Then x/ has a peri­
odic continued fraction expansion. 

PROOF. Since N(7) < \ A/A, we get from (2.1) that 

and since UJ — UJ = A/A, 

K* / ; 

r + ûj r + uj — vÂ 

N(/) N(/) 

Thus, we can find all such ideals I by finding the periodic part of the continued fraction 
expansion of xj for all J whose norm divides A. For a fixed m, this is of course possible, 
but for arbitrary m, this approach may be of little use. There are however a couple of 
exceptions. 
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LEMMA 2.5. Suppose N(J) = / and tu = 3m — 2 with M G Z . That is, suppose N(/) 
divides 3m — 2. Then N(/) = toru. 

PROOF. Note that 

ftu + \/Â\^ ^ (tu —3m • \_, 

J={—Y~ ) I + tI=z{—^— + ^)z + 'z 

and 
tu + y/Â . . 

so N(7) = t or u. 
This also shows that if N(J) = 3m — 2, then J ~ R, since u — 1. That is, J is principal. 

LEMMA 2.6. Suppose N(/) = * and tu = 3m + 2 wzY/i « G Z awJ m > 3. 77*e« 
N(/) = forM. 

PROOF. Note that 
(tu-2t+y/~K 

J ~ \ 2 
and if t and « are greater than 2, then 

fw-2f + \/Â 

)z + *z 

2t (u-29l,t-2,l), 

so N(/) = t, u or tu — t — u. The last is in fact not possible: Since t and u are odd, and 
not 1, we have t,u>3, so 

„ „ 3m+ 2 2 / - 5 1 / 7 
/ w - f - w > 3 m + 2 - 3 — > - V A - - > -VA. 

The last inequality follows for m > 3. Finally, if t — 1 we use Lemma 2.5, and if 
t = 3m + 2, then 

2^
V = ( - 1 , 1 , 3m - 1 , 1 , 3 m - 2 ) , 

so again N(/) = 1 or t. Further, if N(/) = 3m + 2, then J is principal. 
The restriction m > 3 is not stringent at all, since m is odd, 3 is not a Markoff number, 

and it is clear there is only one Markoff triple with maximal element equal to 1. 

COROLLARY 2.7. Suppose p = 3m — 2or3m + 2 is prime, andp divides N(/). Then 
there exists a J' so that J ~ J' and N(/') divides A /p. 

PROOF. There exists an ideal p = (^y^)Z x pZ with norm/?. By Lemmas 2.5 and 
2.6, p is principal. Thus 

J~Jp. 

But N(Jp) does not divide A, since/?2 cannot divide A, so Jp is not primitive. Further­
more, p must divide the largest factor n of Jp in Z. Let J' be the ideal such that nJ' = Jp. 
Then J' ~ J and N(./') divides Ap/p2 = A//?. 

Thus, if either 3m — 2 or 3m + 2 is prime, then N(/) divides A. 
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3. The Even Case. Finally, we address the possibility that m is even. The argument 
is almost identical, so we only draw attention to the differences. 

Modulo four, the MarkofF tree collapses to 

(3.1) (1,1,1) (1,1,2), 

so m is never 0 modulo 4, and neither 3m — 2 nor 3m + 2 is ever 2 modulo 4. Thus part 
of the statement of Theorem 0.1 is vacuous. 

We also have from (3.1) that when m is even, both x and y are odd, and we can write 
m = 2r with r odd. Hence, we can rewrite (1.1) as 

(x - 3ry)2 - (9? - \)y2 = -4r*, 

where now x — 3ry is even and 9 / ^ — 1 = 0 (mod 4), so we can divide through by four 
to get 

v 2 - c r 2 ^ = - ^ , 

where v = x-^ G Z, a1 = 2dpi, R = Z + aZ, and A = disc 7? = 9? - 1. We proceed 
as before, and discover u = —3r + \f9r2 — 1 . Again, gcd(r, A) = 1, so we have unique 
factorization of the ideals that divide i^R. Assuming the existence of j3 and 7, we find 
the ideal a, with N(«/) < r, and investigate the possible ideals /with N(/) < r < \yf&. 

When N(J) = t and tu = ^f1, we find 

J=(tu + a)T + tL 

and 
tu + a 

(2M, It) 

so N(/) = torn. Again we note that if N(J) = — ^ then w = 1 and we find J is principal. 
When N(J) = t and fw = ^y1, with t9u>2, we find 

J = (to - / + a)T + f Z 

and 
tu — t + a 

t 

so N(0 = t, u or 2ta — t — u. This time, we get 

= ( 2 « - 2 , l , 2 f - 2 , l ) , 

2 / w - * - M > ( 3 r + l ) - 2 
3 r + l 3 ^ 5 1 r-
— — > -VA - - > -VA, 

so again, we get that N(0 must divide A. 
Jr+J 

2 lft= 2£i,then 

- = (0,1,2, 3 r - l ) , 
t x ' 

and again we have J principal. 
Thus, if either 3m — 2 or 3m+2 is four times a prime, then N(/) divides A, so a \ cannot 

exist. 
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4. An Experiment. If m is a Markoff number, then m is never four times a prime, 
and neither 3m — 2 nor 3m + 2 is ever twice a prime. Thus, one might wonder whether 
Theorem 0.1 ever has substance. The number of Markoff numbers below 10140 is 18906. 
Of them, 1197 (or roughly 6%) satisfy the conditions of Theorem 0.1. This was found 
using Maple's probabilistic primality test, and about ten hours of computing time. This 
ratio decreases as the bound increases, and empirical evidence suggests it decreases like 
a constant over the log of the bound, but the data is not very convincing. Heuristic argu­
ments suggest it should not decrease so quickly, since every factor of a Markoff number 
is equivalent to 1 or 2 modulo 4, and thus the ratio is expected to decrease like a constant 
over the square root of the log of the bound. 

We also note that there are no contradictions to the unicity conjecture among all 
Markoff triples whose maximal element is less than 10140. 
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