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THE SYNTACTIC NEAR-RING OF A LINEAR
SEQUENTIAL MACHINE
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(Received 5th March'1981)

1. Linear sequential machines

Let R be a ring, a linear sequential machine over R is a quintuple .# =(Q, A4, B, F, G)
where

Q, A, B are R-modules,
F:Qx A-»Q and G:Q x A— B are R-homomorphisms.
We call Q the set of states, 4 the input alphabet and B the output alphabet. Let 4*, B*

be the free monoids generated by the sets A4, B respectively. The empty word A will be
regarded as a member of both A* and B*. Let xe A* we define a function F,:Q—Q by

qFr=¢q
qF 4 =F(gF.a)  for xeA* aecA (1.1)

The function F, will be called the next state function induced by x.
Now let ge @, we define a function

fiA*—>B* by
JdN)=A
fdxa)y=f(x)fr (@) for xeA*, acA. (1.2)

The function f, is the sequential function defined by q. (When q¢=0 we have the result,
Jo=fu, of the machine as in Eilenberg [1]).
Now let a€ A4, then for ge Q
F(g,a)=F(q,0)+ F(0, a)
=qF,+0F,. (1.3)

The function F;:Q—Q is an R-endomorphism of Q and we will write OF, as ¢,€ Q.
15
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Each state function F,:Q—Q can thus be regarded as a sum of an R-endorphism F,
and a constant function ¢,:Q—{q,}. The function F, is thus an affine function of Q. Now
let a,a’ € A then

qFaa'=qFaFa'=(qF0+qa)Fa'
=(qFo+4.)Fo+ 4.
=qFoFo+q.Fo+4q,

which again is an affine function. Generally for xe A* the function F, is an affine
function of Q.

The set of all affine functions of Q, denoted by M,(Q), is a near-ring under the
operation of addition and composition of functions (see Pilz [2]). It is natural to
consider the syntactic monoid of .#, which is essentially the distinct state functions
F.(xe A*), as a submonoid of M,{Q). This submonoid then generates, additively, a
subnear-ring of M,{Q) and this will be called the syntactic near-ring of M.

Before we proceed with our investigations we will consider some general properties of
this type of near-ring.

2. Affinely generated near-rings

Let (I, +) be any additive group and denote by EndI" the semigroup of all
endomorphisms of I'. Let M(I") denote the set of all functions f:I'->I, and note that
M(I') is a near-ring under the operations of mapping addition and composition. We
may generate a near-ring E(I') which is the subnear-ring of M(I') generated by End (I')
and it is seen that a typical element of E(I') is of the form )7_, o;e; where e;e End(I)
and o;,= + 1. Such a near-ring, E(I') is called a distributively generated near-ring since
the elements e;e End(I') are distributive elements of M(I') that generate E(I'). This
construction can be generalised by replacing End(I") by any subsemigroup of End ().

Another subset of M[I'] is the set Con(I') of all constant functions f:I'>T, these are
functions that satisfy yf =y, for all yeI, where y, is a fixed element of I'. The set
Con(I) is also a semigroup (under composition) in fact it is a near-ring. Furthermore,
the following facts are immediate.

M({I)-ConI'=ConI'=ConI"- M(I'). 2.1)
EndI'+ ConTI is a subsemigroup of M(I'). (2.2)

Now we consider forming the near-ring generated by the semigroup End '+ ConT. It is
fairly clear that a typical element of this near-ring, EC(I'), is of the form

s

ofe;+c;) where o,=+1, e;eEndI’, c¢;eConI.

i=1

Furthermore in the case of I an abelian group M,«(I)=EC(I'). We will call EC(I') the
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affinely generated near-ring generated by EndI'+ConI'. We can generalise this
construction to a certain extent, e.g. by considering a subsemigroup of EndI' + ConT, or
by looking at the situation in general near-rings.

Let N be a near-ring, define

No={neN|0n=0} (2.3)
N.={neN|On=n} (2.4)
Ny={neN|(n,+n)n=nn+n,nVn,n,eN}. (2.5)

Then immediately N.={n|n,n=nVn, € N} since
On=n=nn=n,0n=0n=n for n;eN.

Both N, and N, are near-rings and N, is a semigroup. Also N-N.=N_.=N,-N. The
set Ny+ N, is a semigroup. Suppose that S is a subsemigroup of N;+ N . Define the set

Ns={§:1 aisi|ai= + 1,s,-eS},

if 0€S, we show that Ng is a near-ring which clearly contains the semigroup S. Let
Yi_10i, ) =y 6)s;€ Ng then clearly

n m
Y ais— Y ois;eNs
i=1 i

Jj=1

(.';1 o,»s.-) . (,-;1 a}s}) =j;1 (:;1 ais,.) 0s;€ Nj.

Thus Ny is the near-ring generated by S and we call it the affinely generated (a.g.) near-
ring generated by S. N is also a near-ring under other conditions on S.

Using a semigroup SSN, we see that the a.g. near-ring generated by S is the d.g.
near-ring generated by S and so a.g. near-rings are generalisations of d.g. near-rings. We
state some elementary consequences of the definition.

and

Proposition 1. Let N be an a.g. near-ring generated by S where S is a subsemigroup of
Ny;+N..

(i) Each element of N can be expressed in the form

n
Y (oe;+0ic) where o,0i=+1, eeN, ceN.,.
i=1

(i) If KN and KN<K then K(SNN)+(SNNJ)EK, thus SNnN.cK.
(i) A normal subgroup K <N is a right ideal if KN< K.
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3. The syntactic near-ring

Returning to the linear sequential machine .# =(Q, A4, B, F, G) defined with respect to
the ring R, we notice that the presence of an abelian group as the set Q of states means
that M,{(Q) is an a.g. near-ring. The syntactic near-ring generated by the syntactic
monoid of .# in the near-ring M, (Q) is an a.g. near-ring. Writing this as N(.#) we have
N(A)= Ng where S is the syntactic monoid of M.

If we consider some of the properties of the transformation monoid (@, S) defined by
the machine .# we will obtain some indications about the kind of constructions that
will be natural to consider for a.g. near-rings. The interplay between .# and N(.#) may
also be interesting. For example, Q is naturally an N(.#)-module since Q is an abelian
group and we may define

q- Z 08 = Z odgs)eQ, g;=*1, s;€S. (3.1)

i=1 i=1

Furthermore for x=a, ...a,€ A* we have
k . k -
oF=arb+ 3 ot i=a(Fi+ 5 aFE) 62
i=1 i=1

Let Z denote the ring of integers and let 0,={q,|ac 4} then @, is a subsemigroup of
M, «(Q).

Recall that A4 is an abelian group and for 4, a’€ A we have

q—a+q_a'=q_a+a" (33)

It can be easily established that O, is a near-ring.
Each F, corresponds to a type of polynomial and the syntactic near-ring N, may be
considered to be the set of all polynomials of the form:

f(x)+g(x) where f(x)eZ(x), g(x)e(x).
The correspondence is defined by noting that
k . k .
F,=F§+ ) q,Fy ox+ Y g X1 (3.4
i=1 i=1

The near-ring N(.#) can thus be described as
N(A)=Z(x) + 0 4(x).
Multiplication in Z(x)+ Q 4(x) is given by

(f(®) +g(x)- (S )+ N =f(x) S (X) +&(x) [(x)+&(x) (3.5)
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where f(x)- f'(x) is the usual product in Z(x) and

-

gx)- f'(x)= 3

k
i=0j

nrx’*' where g(x)= Zk: nxieQ (x),
[\] i=0
. (3.6)
f(x)= Z,O rxleZ(x), f(x)eZ(x), g'(x)eQ4x)

Polynomials in N(.) will be called syntactic polynomials. They are examples of more
general polynomial constructions. For example let R be a ring with identity, N an
abelian near-ring which is also an R-module.

If R(x) is the usual polynomial ring and N(x) is the near-ring of polynomials in x over
N under the multiplication

gx)g(x)=g'(x) for g(x), g'(x)eN(x).
The set R(x)+ N(x) is a near-ring under the operations
S(x)+g(x)+ ['(x) +8'(x) = f(x)+ ['(x) +g(x) +£'(x)
(f(x)+g(x) (S () +(x)=f(x)" [ (x)+&(x)" f'(x)+&'(x)

with g(x)- f'(x) defined as in (3.6).
Let us denote this near-ring by [R, N](x) and note that

([R, N](x)s=R(x)
and

(LR, N](x)).= N(x).

Then [R, N](x) is an a.g. near-ring.
Now we examine the output function G:Q x A— B. As before we have

J{a)=4G,=G(q,a)=qG, +0G, (3.7)
and
-f;l(aa,) = an : qFaGa'
=(9Go+0G,)(qFoGo+4.Go +0G,) (3.8)
and so

flad)=f{a)" fi (@)
=0+ fo(9) - (f3r,(0) + £, (0) + fola) )

= @) (qFoGo +4.Go +0G,) (3.9)
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and generally for x=a, ... q, € 4%,
k
Joxa)=fi(x) <qF’(‘,Go + ; 4aF* "Gy + OG,,).

4. Interrelations between N(.#) and .#

Let #=(Q, A, B, F, G) and #'=(Q’, A, B, F', G’) be linear sequential machines and
consider a state function ¢:Q—Q’ satisfying

¢ is an R-module homomorphism, “4.1)

and for geQ, ac A,
¢(aF )= (@F,, (4.2)
¢(9)G,= 4G, (4.3)

Theorem 4.2. If ¢ is a surjective state mapping then a near-ring homomorphism
B N(AM)—> N(M') exists such that, for g€ Q, ne N(#)

P(gn)=(q)B(n)- (44)

Furthermore for ge Q, xe A*, f,(x)= f4q(x).

Proof. Let S and §' be the syntactic semigroups of .# and .#' respectively. By a
standard result in automata theory there exists a semigroup homomorphism y:S—S’
such that ¢(gs)= p(q)y(s) for ge Q, se§. Define f:N(.4)— N(A') by

k n
ﬂ(Z O'isi>= Y opls), =21, se€S,
=1

i=1
then clearly B is a near-ring homomorphism. For ge Q, n=)%_, o;5,€ N(.#) we have

k

k k
Plgn)=¢ ( Zl os(qsi)> = .; ap(gs) =Y. o:p(@)y(s;)

= _Z’:l P(q)ov(s) = ¢(q) ,; (s = q)B(n).

Now we show that ¢:Q— Q' satisfies the condition

So@=/1, for gqeQ.

Since, for ae A, f(a)=qG,=¢(q)G,=f4,(@) by (4.3) we can easily check that an
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inductive argument yields
Joxa)=f(x)" for ()
= f4@®) [ 4ar (@)
= fo0(*)" fs@F(d) by a generalisation of (4.2)

= f o(g(xa) where xe A*, acA.

Thus fi(x)=f4q(x) for all xe 4*. O

Now we examine what happens when we consider the problem of minimising a
machine .

Let #=(Q, A, B, F, G) be a linear sequential machine, we choose the zero of Q as an
initial state, and we are principally interested in realising the sequential function
Jfo:A* > B*,

Define the relation ~ on Q by

q~q it fi=f, (3.9€Q) (4.5)

Theorem 4.3 For q,q'€Q

g~q iff qF{Go=qF3G, forall nz=0.

Proof. If g~q then f (x)=f (x) for all xe A*. Let ae A then f (a)=¢G,=qG,+0G,=
q'Gy+0G, and so q'Gy=4G,.
Now assume that for words x € A* of length less than n

J{0)=fo(x)=>qFGo=q'F5Go,  0=k<n.

Then

fdxa)=fo(xa)=f,r (@)=[yr(a)

and so qF,G,=q'F,G,. Now
qFG,= (qF o+ Y 4o F ’6") G,
i=1

=(qF;',+ Y qa,.F""> Go+0G,=qF3Go+ Y. 4,F5 'Gy+0G,
i=1 i=1
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qF.G,= <q'F o+ 2 daFo i) Go+0G,
i=1

n
=q'F3Go+ Y, 4.,F5'Go+0G,
=1

where x=a, ...aq,. )
Thus gF3Go=q'F3G, and so we have established the first part of the theorem.
The converse is proved similarly. [J

Theorem 4.4. Let R={qeQ|q~0} then R is an N-submodule of Q.

Proof. Clearly ~ is an equivalence relation. Now let g~¢’, g,~q; and consider
fyq—q, and Jq —q,- then for ae A4,

.f;;—ql(a) = (q _ql)Ga =(q _ql)GO +0Ga

=4Go—q,Go+0G,=4'Gy—q1G,+0G,

=fo-4,(@.
Assume that f,_, (x)=f, . (x) for all xeA* of length less than or equal to n and
consider
fa-q,(xa) where xa is of length n+1.
Then
Jao-a,(x0) =114, (%) fig-apr (@) =S -a,(X) fg-gr (0.
Now

Ja-apr@=(q—-4,)F,G,
=(q—q1>( b+ q,,,.Fs"> Go+0G,
=<qu ~aFy+ Y, qaiFs"‘) Go+0G,
=4F3Go—0:FiGo+ 3. 4% *Go+0G,

=q'F3Go—q F3Go+ .Zl 9.F37'Go+0G,
= f -qpr (@), where x=a, ...a, by Theorem 4.3.

Thus g—¢, ~4'—4q; and so R is a subgroup of Q.
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Finally for ne N we have n=)}_, 5, 6,=+1, 5;€S. Then if g~¢' we have gn=
Yt i0gs, gn=Yf_,04's; and we now show that gn~g'n. For this we note that if
gs;~q's; then gn~ g'n. So we must establish that xe A*, gF,~q'F,. For ae A4,

Joxa)= f(X) for (@)= [ (X) S £ (@) = Jo(x) S (0)

and so
qu,(a) = fq'F,(a)-

Now let f,r (y)=f,r (y) for all words ye A* of length n or less. Let y be of length n, and
consider

Jor 00 = for o (@) = Jor (D) for(a)
= fq'r,‘(,\’)ﬁ;'t‘,y(a) = fq'F,(y a).

Hence gF .~q'F . This completes the proof (because of Proposition 1(iii)). O

A linear sequential machine .# =(Q, A, B, F, G) is called accessible if given any qeQ
there exists x € A* such that 0F .=g4. This clearly means that any state is reachable from
the initial state 0. As far as the N-module @ goes this means that 0 is a generator, that
is

0-N20-S=Q andso @=0-N=0-N_

A machine # is called reduced if the relation defined in (4.5) is trivial, that is g ~g'=
q=q for all q,q' € Q.

An accessible, reduced linear machine .# is called minimal. Given a general linear
machine .# =(Q, A, B, F, G) we can obtain a minimal machine with the same behaviour
by forming the accessible part of .#, this is the machine .#“° with state set Q'=0Q"S
replacing the set Q and the induced state and output maps. The accessible machine .#°
is reduced by forming the quotient machine .#“/~ in the usual way. Since Q' is an R-
module it is clear that Q=0 N. The minimal machines of .# are essentially unique, up
to isomorphism. (Eilenberg [1] Chapter XVIL)

We now prove

Theorem 6.5. Let # =(Q, A, B, F, G) be a reduced machine. Then Q has no proper
non-zero N-submodules K satisfying KG,={0}.

Proof. Let K<Q be an N-subgroup, then K is a subgroup of Q and K-Nc K. Let
~ x be a relation defined on @ by

g~xqd<=q—-qekK, (9.4€Q)
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Choose g, ¢’ such that g~ xq' then there exists a ke K with ¢’ =qg+k.
Now, for ae A,

f@=f,11(@)=qGo+kGo +0G,=qGo +0G, = £,(a).

Let x€ A* and suppose that f,(x)= f(x) for all x of length less than or equal to n. Now
let xae A* be of length n+1, then

Jexa)=f () for (@)= fi(X) fig+0r ().
Now (q+k)F,—qF.e K and so (q+k)F,=qF . +k for some k'€ K. Then’
So(xa)= [ (x)qF .Gy +k'Gy+0G,)
= f{x)gF .G, +0G,)
= fe(X) or (@)= fi(xa).
Hence We have g=¢ since M is reduced and K={0}. [

Finally we combine this last result with the accessibility condition to obtain:

Theorem 4.6. Let # =(Q, A, B, F, G) be a minimal linear sequential machine. Then the
N-module Q satisfies:

(1) Q possesses no proper non-zero N-submodules K such that KG,={0}
(ii) Q is generated by 0.

Further properties of the syntactic near-ring of a linear sequential machine will be
examined in a forthcoming paper.
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