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Abstract

Two algorithms have been constructed for finding the minimum-norm fixed point of a λ-strict pseudo-
contraction T in Hilbert space. It is shown that the proposed algorithms strongly converge to the
minimum-norm fixed point of T .
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1. Introduction

Let C be a nonempty closed convex subset of a real Hilbert space H. Recall that a
mapping T : C→C is said to be strictly pseudo-contractive if there exists a constant
0 ≤ λ < 1 such that

‖T x − Ty‖2 ≤ ‖x − y‖2 + λ‖(I − T )x − (I − T )y‖2, ∀x, y ∈C. (1.1)

In such a case we also say that T is a λ-strictly pseudo-contractive mapping. It is clear
that, in a real Hilbert space H, (1.1) is equivalent to

〈T x − Ty, x − y〉 ≤ ‖x − y‖2 −
1 − λ

2
‖(I − T )x − (I − T )y‖2, ∀x, y ∈C. (1.2)

We use Fix(T ) to denote the set of fixed points of T .
It is clear that the class of strictly pseudo-contractive mappings strictly includes the

class of nonexpansive mappings, which are mappings T on C such that

‖T x − Ty‖ ≤ ‖x − y‖, ∀x, y ∈C.

Iterative methods for nonexpansive mappings have been extensively investigated in
the literature; see [1, 8, 9, 16, 19, 23, 25, 33, 35, 37] and the references therein. Related
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work can be found in [2–7, 10–15, 17, 18, 20–22, 24, 26–32, 34, 36]. However,
iterative methods for strictly pseudo-contractive mappings are far less developed than
those for nonexpansive mappings, although Browder and Petryshyn [2] initiated their
work in 1967. Strictly pseudo-contractive mappings have more powerful applications
than nonexpansive mappings in solving inverse problems (see Scherzer [21]), so it is
of interest to develop algorithms for strictly pseudo-contractive mappings.

On the other hand, in many problems, it is required to find a solution with minimum
norm. In an abstract way, we may formulate such problems as finding a point x† with
the property

x† ∈C and ‖x†‖2 =min
x∈C
‖x‖2,

where C is a nonempty closed convex subset of a real Hilbert space H. In other words,
x† is the (nearest point or metric) projection of the origin onto C,

x† = PC(0),

where PC is the metric (or nearest point) projection from H onto C. A typical example
is the least-squares solution to the constrained linear inverse problem{

Ax = b,
x ∈C,

where A is a bounded linear operator from H to another real Hilbert space H1 and b
is a given point in H1. Related work for finding the minimum-norm solution (or fixed
point) has been considered by some authors; see [7, 11, 30–32, 34].

In the present paper, two algorithms have been constructed for finding the
minimum-norm fixed point of a λ-strict pseudo-contraction T in Hilbert space. It
is shown that the proposed algorithms strongly converge to the minimum-norm fixed
point of T .

2. Preliminaries

Let C be a nonempty closed convex subset of H. For every point x ∈ H, there exists
a unique nearest point in C, denoted by PC x, such that

‖x − PC x‖ ≤ ‖x − y‖, ∀y ∈C.

The mapping PC is called the metric projection of H onto C. It is well known that PC

is a nonexpansive mapping and is characterised by the following property:

〈x − PC x, y − PC x〉 ≤ 0, ∀x ∈ H, y ∈C. (2.1)

In order to prove our main results, we need the following well-known lemmas.

L 2.1. Let C be a nonempty, closed and convex subset of a real Hilbert space H.
Let T : C→C be a λ-strictly pseudo-contractive mapping. Then I − T is demi-closed
at 0, that is, if xn ⇀ x ∈C and xn − T xn→ 0, then x = T x.
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L 2.2. Assume that {an} is a sequence of nonnegative real numbers such that
an+1 ≤ (1 − γn)an + γnδn, n ≥ 0, where {γn} is a sequence in (0, 1) and {δn} is a
sequence in R such that:

(i)
∑∞

n=0 γn =∞;
(ii) lim supn→∞ δn ≤ 0 or

∑∞
n=0 |δnγn| <∞.

Then limn→∞ an = 0.

3. Main results

Let C be a nonempty closed convex subset of a real Hilbert space H. Let T : C→C
be a λ-strict pseudo-contraction. Let k ∈ (0, 1 − λ) be a constant. For each t ∈ (0, 1),
we consider the mapping Tt given by

Tt x = PC((1 − k − t)x + kT x), ∀x ∈C.

It is easy to check that Tt : C→C is a contraction for a small enough t. As a matter of
fact, from (1.1) and (1.2),

‖Tt x − Tty‖2 = ‖PC((1 − k − t)x + kT x) − PC((1 − k − t)y + kTy)‖2

≤ ‖(1 − k − t)(x − y) + k(T x − Ty)‖2

= (1 − k − t)2‖x − y‖2 + k2‖T x − Ty‖2

+ 2(1 − k − t)k〈T x − Ty, x − y〉

≤ (1 − k − t)2‖x − y‖2 + k2(‖x − y‖2 + λ‖(I − T )x − (I − T )y‖2)

+ 2(1 − k − t)k
(
‖x − y‖2 −

1 − λ
2
‖(I − T )x − (I − T )y‖2

)
= (λk2 − (1 − λ)(1 − k − t)k)‖(I − T )x − (I − T )y‖2 + (1 − t)2‖x − y‖2

= k(k − (1 − t)(1 − λ))‖(I − T )x − (I − T )y‖2 + (1 − t)2‖x − y‖2.

(3.1)

We can choose a small enough t such that k ≤ (1 − t)(1 − λ). Then, from (3.1),

‖Tt x − Tty‖ ≤ (1 − t)‖x − y‖, ∀x, y ∈C, (3.2)

which implies that Tt is a contraction. Using the Banach contraction principle, there
exists a unique fixed point xt of Tt in C, that is,

xt = PC((1 − k − t)xt + kT xt). (3.3)

T 3.1. Suppose that Fix(T ) , ∅. Then, as t→ 0, the net {xt} generated by (3.3)
converges strongly to the minimum-norm fixed point of T .

https://doi.org/10.1017/S000497271100311X Published online by Cambridge University Press

https://doi.org/10.1017/S000497271100311X


[4] Strong convergence of some algorithms for λ-strict pseudo-contractions in Hilbert space 235

P. First, we prove that {xt} is bounded. Take u ∈ Fix(T ). From (3.3) and (3.2),

‖xt − u‖ = ‖PC((1 − k − t)xt + kT xt) − PCu‖

≤ ‖(1 − k − t)(xt − u) + k(T xt − u) − tu‖

≤ (1 − t)‖xt − u‖ + t‖u‖,

that is, ‖xt − u‖ ≤ ‖u‖, which implies that {xt} is bounded and so is {T xt}.
From (3.3),

‖xt − T xt‖ = ‖PC((1 − k − t)xt + kT xt) − PCT xt‖

≤ ‖(1 − k)(xt − T xt) − txt‖

≤ (1 − k)‖xt − T xt‖ + t‖xt‖.

It follows that
‖xt − T xt‖ ≤

t
k
‖xt‖ → 0. (3.4)

Next we show that {xt} is relatively norm-compact as t→ 0. Assume that {tn} ⊂ (0, 1)
is such that tn→ 0 as n→∞. Put xn := xtn . From (3.4),

‖xn − T xn‖ → 0. (3.5)

Setting yt = (1 − k − t)xt + kT xt, we then have xt = PCyt, and, for any u ∈ Fix(T ),

xt − u = xt − yt + yt − u

= xt − yt + (1 − k − t)(xt − u) + k(T xt − u) − tu. (3.6)

Using the property (2.1) of the metric projection,

〈xt − yt, xt − u〉 ≤ 0. (3.7)

Combining (3.6) and (3.7),

‖xt − u‖2 = 〈xt − yt, xt − u〉 + 〈(1 − k − t)(xt − u) + k(T xt − u), xt − u〉 − t〈u, xt − u〉

≤ ‖(1 − k − t)(xt − u) + k(T xt − u)‖ ‖xt − u‖ − t〈u, xt − u〉

≤ (1 − t)‖xt − u‖2 − t〈u, xt − u〉.

Hence, ‖xt − u‖2 ≤ 〈u, u − xt〉. In particular,

‖xn − u‖2 ≤ 〈u, u − xn〉, u ∈ Fix(T ). (3.8)

Since {xn} is bounded we may assume, without loss of generality, that {xn} converges
weakly to a point x∗ ∈C. Noting (3.5), we can use Lemma 2.1 to get x∗ ∈ Fix(T ).
Therefore we can substitute x∗ for u in (3.8) to get

‖xn − x∗‖2 ≤ 〈x∗, x∗ − xn〉.
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Consequently, the weak convergence of {xn} to x∗ actually implies that xn→ x∗

strongly. This proves the relative norm-compactness of the net {xt} as t→ 0.
To show that the entire net {xt} converges to x∗, assume that xsn → x̃ ∈ Fix(T ), where

sn→ 0. In (3.8), we take u = x̃ to get

‖x∗ − x̃‖2 ≤ 〈x̃, x̃ − x∗〉. (3.9)

Interchange x∗ and x̃ to obtain

‖x̃ − x∗‖2 ≤ 〈x∗, x∗ − x̃〉. (3.10)

Adding (3.9) and (3.10) yields

2‖x∗ − x̃‖2 ≤ ‖x∗ − x̃‖2,

which implies that x̃ = x∗.
Finally, we return to (3.8) and take the limit as n→∞ to get

‖x∗ − u‖2 ≤ 〈u, u − x∗〉, u ∈ Fix(T ).

Equivalently,
‖x∗‖2 ≤ 〈x∗, u〉, u ∈ Fix(T ).

This clearly implies that
‖x∗‖ ≤ ‖u‖, u ∈ Fix(T ).

Therefore, x∗ is a minimum-norm fixed point of T . This completes the proof. �

C 3.2. Suppose that Fix(T ) , ∅ and the origin 0 belongs to C. Then, as
t→ 0+, the net {xt} generated by the algorithm

xt = (1 − k − t)xt + kT xt

converges strongly to the minimum-norm fixed point of T .

Now we propose the following iterative algorithm which is the discretisation of the
implicit method (3.3). For given x0 ∈C, chosen arbitrarily, let the sequence {xn} be
generated iteratively by

xn+1 = PC((1 − k − αn)xn + kT xn), n ≥ 0, (3.11)

where {αn} is a real sequence in (0, 1).

T 3.3. Suppose that Fix(T ) , ∅ and the following conditions are satisfied:

(i) limn→∞ αn = 0 and
∑∞

n=0 αn =∞;
(ii) limn→∞(αn/αn+1) = 1.

Then the sequence {xn} generated by (3.11) strongly converges to the minimum-norm
fixed point x∗ of T .
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P. First, we prove that the sequence {xn} is bounded. Take x∗ ∈ Fix(T ).
From (3.11),

‖xn+1 − x∗‖ = ‖PC((1 − k − αn)xn + kT xn) − x∗‖

≤ ‖(1 − k − αn)(xn − x∗) + k(T xn − x∗)‖ + αn‖x∗‖.
(3.12)

From (3.2), we note that

‖(1 − k − αn)(xn − x∗) + k(T xn − x∗)‖ ≤ (1 − αn)‖xn − x∗‖. (3.13)

It follows from (3.12) and (3.13) that

‖xn+1 − x∗‖ ≤ (1 − αn)‖xn − x∗‖ + αn‖x
∗‖

≤ max{‖xn − x∗‖, ‖x∗‖}

≤ max{‖x0 − x∗‖, ‖x∗‖}.

Hence, {xn} is bounded and so is {T xn}.
We now estimate ‖xn+1 − xn‖. From (3.11),

‖xn+1 − xn‖ = ‖PC((1 − k − αn)xn + kT xn)

− PC((1 − k − αn−1)xn−1 + kT xn−1)‖

≤ ‖(1 − k − αn)(xn − xn−1) + k(T xn − T xn−1)

+ (αn−1 − αn)xn−1‖

≤ ‖(1 − k − αn)(xn − xn−1) + k(T xn − T xn−1)‖

+ |αn−1 − αn|‖xn−1‖

≤ (1 − αn)‖xn − xn−1‖ + |αn−1 − αn|M,

(3.14)

where M > 0 is a constant such that supn{‖xn‖} ≤ M. Using Lemma 2.2 with (3.14),
we conclude that

lim
n→∞
‖xn+1 − xn‖ = 0.

We observe that

‖xn − T xn‖ ≤ ‖xn − xn+1‖ + ‖xn+1 − T xn‖

≤ ‖xn − xn+1‖ + (1 − k)‖xn − T xn‖ + αn‖xn‖,

that is,

‖xn − T xn‖ ≤
1
k
{‖xn+1 − xn‖ + αnM} → 0.

Let the net {xt} be defined by (3.3). By Theorem 3.1, xt→ x∗ as t→ 0. Next we prove
that lim supn→∞〈x

∗, x∗ − xn〉 ≤ 0.
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Set yt = (1 − k − t)xt + kT xt. It follows that

‖xt − xn‖
2 = 〈xt − yt, xt − xn〉 + 〈yt − xn, xt − xn〉

≤ 〈yt − xn, xt − xn〉

= 〈(1 − k − t)(xt − xn) + k(T xt − T xn), xt − xn〉

+ k〈T xn − xn, xt − xn〉 − t〈xn, xt − xn〉

≤ (1 − t)‖xt − xn‖
2 + k‖T xn − xn‖ ‖xt − xn‖

− t〈xn − xt, xt − xn〉 − t〈xt, xt − xn〉

= ‖xt − xn‖
2 + k‖T xn − xn‖ ‖xt − xn‖ − t〈xt, xt − xn〉,

and hence that

〈xt, xt − xn〉 ≤
k
t
‖T xn − xn‖ ‖xt − xn‖.

Therefore,
lim sup

t→0
lim sup

n→∞
〈xt, xt − xn〉 ≤ 0. (3.15)

Note that the two limits lim supt→0 and lim supn→∞ are interchangeable. In fact,

〈x∗, x∗ − xn〉 = 〈x
∗, x∗ − xt〉 + 〈x

∗ − xt, xt − xn〉 + 〈xt, xt − xn〉

≤ 〈x∗, x∗ − xt〉 + ‖x
∗ − xt‖ ‖xt − xn‖ + 〈xt, xt − xn〉

≤ 〈x∗, x∗ − xt〉 + ‖x
∗ − xt‖M + 〈xt, xt − xn〉.

This, together with xt→ x∗ and (3.15), implies that

lim sup
n→∞

〈x∗, x∗ − xn〉 ≤ 0.

Finally, we show that xn→ x∗. Set yn = (1 − k − αn)xn + kT xn for all n ≥ 0.
From (3.11),

‖xn+1 − x∗‖2 = 〈xn+1 − yn, xn+1 − x∗〉 + 〈yn − x∗, xn+1 − x∗〉

≤ 〈yn − x∗, xn+1 − x∗〉

= 〈(1 − k − αn)(xn − x∗) + k(T xn − x∗), xn+1 − x∗〉

+ αn〈x
∗, x∗ − xn+1〉

≤ ‖(1 − k − αn)(xn − x∗) + k(T xn − x∗)‖ ‖xn+1 − x∗‖

+ αn〈x
∗, x∗ − xn+1〉

≤ (1 − αn)‖xn − x∗‖ ‖xn+1 − x∗‖ + αn〈x
∗, x∗ − xn+1〉

≤
1 − αn

2
(‖xn − x∗‖2 + ‖xn+1 − x∗‖2) + αn〈x

∗, x∗ − xn+1〉.

It follows that

‖xn+1 − x∗‖2 ≤ (1 − αn)‖xn − x∗‖2 +
2αn

1 + αn
〈x∗, x∗ − xn+1〉.

We can check that all assumptions of Lemma 2.2 are satisfied. Therefore, xn→ x∗.
This completes the proof. �
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C 3.4. Suppose that Fix(T ) , ∅ and the origin 0 belongs to C. Assume that
the following conditions are satisfied:

(i) limn→∞ αn = 0 and
∑∞

n=0 αn =∞;
(ii) limn→∞(αn/αn+1) = 1.

Then the sequence {xn} generated by the algorithm

xn+1 = (1 − k − αn)xn + kT xn, n ≥ 0,

converges strongly to the minimum-norm fixed point x∗ of T .
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