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Abstract

Two algorithms have been constructed for finding the minimum-norm fixed point of a A-strict pseudo-
contraction 7 in Hilbert space. It is shown that the proposed algorithms strongly converge to the
minimum-norm fixed point of 7.
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1. Introduction

Let C be a nonempty closed convex subset of a real Hilbert space H. Recall that a
mapping 7 : C — C is said to be strictly pseudo-contractive if there exists a constant
0 <A< 1 such that

ITx = TylIP <llx=yIP + A = T)x = =THI?, VYx,yeC. (1.1)

In such a case we also say that T is a A-strictly pseudo-contractive mapping. It is clear
that, in a real Hilbert space H, (1.1) is equivalent to

1-24
(Tx =Ty, x=y)<lx =)l - — I =Dx -~ TylP, VYxyeC.  (1.2)

We use Fix(T') to denote the set of fixed points of 7.
It is clear that the class of strictly pseudo-contractive mappings strictly includes the
class of nonexpansive mappings, which are mappings 7" on C such that

ITx =Tyl <llx=yll, VYx,yeC.

Iterative methods for nonexpansive mappings have been extensively investigated in
the literature; see [1, 8, 9, 16, 19, 23, 25, 33, 35, 37] and the references therein. Related
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work can be found in [2-7, 10-15, 17, 18, 20-22, 24, 26-32, 34, 36]. However,
iterative methods for strictly pseudo-contractive mappings are far less developed than
those for nonexpansive mappings, although Browder and Petryshyn [2] initiated their
work in 1967. Strictly pseudo-contractive mappings have more powerful applications
than nonexpansive mappings in solving inverse problems (see Scherzer [21]), so it is
of interest to develop algorithms for strictly pseudo-contractive mappings.

On the other hand, in many problems, it is required to find a solution with minimum
norm. In an abstract way, we may formulate such problems as finding a point x" with
the property

x'eC and |x"|* = min ||x,
xeC

where C is a nonempty closed convex subset of a real Hilbert space H. In other words,
x" is the (nearest point or metric) projection of the origin onto C,

x' = Pc(0),

where P is the metric (or nearest point) projection from H onto C. A typical example
is the least-squares solution to the constrained linear inverse problem

Ax=0b,
{x eC,
where A is a bounded linear operator from H to another real Hilbert space H; and b
is a given point in H;. Related work for finding the minimum-norm solution (or fixed
point) has been considered by some authors; see [7, 11, 30-32, 34].
In the present paper, two algorithms have been constructed for finding the
minimum-norm fixed point of a A-strict pseudo-contraction 7' in Hilbert space. It

is shown that the proposed algorithms strongly converge to the minimum-norm fixed
point of T'.

2. Preliminaries

Let C be a nonempty closed convex subset of H. For every point x € H, there exists
a unique nearest point in C, denoted by Pcx, such that

llx = Pexll < llx—yll.  VyeC.

The mapping P is called the metric projection of H onto C. It is well known that P¢
is a nonexpansive mapping and is characterised by the following property:

(x—Pcx,y—Pcx)<0, VxeH, yeC. 2.1

In order to prove our main results, we need the following well-known lemmas.

Lemma 2.1. Let C be a nonempty, closed and convex subset of a real Hilbert space H.
Let T : C — C be a A-strictly pseudo-contractive mapping. Then [ — T is demi-closed
at 0, that is, if x, =~ x€ C and x, — Tx, —> 0, then x =Tx.
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Lemma 2.2. Assume that {a,} is a sequence of nonnegative real numbers such that
ane1 < (1 =y)a, + v,6,, n=0, where {y,} is a sequence in (0,1) and {6,} is a
sequence in R such that:

(1) Z;O:O Vn = ;
(ii) limsup,_,., 6, <0 0r 377 |0nYnl < 0.

Then lim,_,« a, = 0.

3. Main results

Let C be a nonempty closed convex subset of a real Hilbert space H. LetT : C — C
be a A-strict pseudo-contraction. Let k € (0, 1 — 1) be a constant. For each ¢ € (0, 1),
we consider the mapping 7, given by

Tix=Pc(1—-k-0x+kTx), VYxeC.

It is easy to check that T, : C — C is a contraction for a small enough #. As a matter of
fact, from (1.1) and (1.2),

ITx = TP = IPe((1 = k = )x + KTx) = Pe((1 = k = 1)y + kTP
<1k = )(x = y) + k(Tx = TP
= (1= k=12l = yI? + RITx - Tyl
+2(1 =k = OK(Tx = Ty, x — y)
<(1—k=Dlx =P+ R = yI2 + A - Dx = =Ty~ GV
#2001~ k= k{lbe = = 520 = Ty~ (4 = TP

= (U = (1= DA =k =DRII = T)x = I =THylP + (1 = 0?|lx = yIP
= k(k= (1 =n)(1 = DI = T)x = I = Tyl + (1 = 0|l = ylI*.

We can choose a small enough ¢ such that £ < (1 — £)(1 — 2). Then, from (3.1),
ITox — Tyl <A =-Dllx—yll, Vx,yeC, (3.2)

which implies that T is a contraction. Using the Banach contraction principle, there
exists a unique fixed point x, of 7, in C, that is,

X = Pc((1 =k —t)x; + kT x,). (3.3)

TueoreM 3.1. Suppose that Fix(T) # 0. Then, as t — 0, the net {x;} generated by (3.3)
converges strongly to the minimum-norm fixed point of T.
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Proor. First, we prove that {x;} is bounded. Take u € Fix(T"). From (3.3) and (3.2),

llox; — ull = |Pc((1 =k — 0)x; + kT x;) — Pcull
< |1 —k—1t)(x, —u) + k(Tx; — u) — tul|
< (1 =Dllx; = ull + 1zl

that is, ||x; — u|| < ||u||, which implies that {x,} is bounded and so is {7 x,}.
From (3.3),

1 = Txfll = IPc((1 — k = )x; + kT x;) — PcT x|
< (L= K)(x — Txy) — tx]|
< (A =Bllx: = Txill + 2l

It follows that ;
Il = Txel| < Ellxtll - 0. (3.4)

Next we show that {x,} is relatively norm-compact as ¢t — 0. Assume that {z,} c (0, 1)
is such that #, —» 0 as n — oco. Put x,, := x, . From (3.4),

[Ix, — Tx,|| — 0. 3.5
Setting y, = (1 — k — t)x; + kT x;, we then have x; = P¢y;, and, for any u € Fix(T),

Xt—U=X =Yty —Uu
=x -y + {0 =-k—-0)(x —u)+k(Tx, — u) — tu. 3.6)

Using the property (2.1) of the metric projection,
(X =y, xr —uy <0. (3.7)
Combining (3.6) and (3.7),

Ilx, — “”2 ==y x—uy+{(1 =k —=10)(x; —u) + k(Tx; — u), xy — u) — Ku, x; — u)
<1 =k = 0)(x; — ) + k(T x, — wl l|x; — ull = e, x; — u)
< (1 =Dllx, — ull® = Ku, x, — u).

Hence, ||x; — ul[> < (u, u — x;). In particular,
X, — ull® < (u, u — x5, u€Fix(T). (3.8)

Since {x,} is bounded we may assume, without loss of generality, that {x,} converges
weakly to a point x* € C. Noting (3.5), we can use Lemma 2.1 to get x* € Fix(T).
Therefore we can substitute x* for u in (3.8) to get

I, = XIP < (¢, X = ).
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Consequently, the weak convergence of {x,} to x* actually implies that x, — x*
strongly. This proves the relative norm-compactness of the net {x,} as t — 0.

To show that the entire net {x;} converges to x*, assume that x;, — X% € Fix(T"), where
s, — 0. In (3.8), we take u = X to get

[lx* = %* < (X, % - x%). (3.9)
Interchange x* and X to obtain

1% = x*|* < (a7, x* = ). (3.10)
Adding (3.9) and (3.10) yields

2" - #P < Ilx* - &P,

which implies that ¥ = x*.
Finally, we return to (3.8) and take the limit as n — oo to get
I = ul® < (u,u—x*), ueFix(T).
Equivalently,
1| < (x*, u), ueFix(T).

This clearly implies that
oIl < Mleell, e € Fix(T).

Therefore, x* is a minimum-norm fixed point of 7. This completes the proof. O

CoroLLARY 3.2. Suppose that Fix(T) # 0 and the origin O belongs to C. Then, as
t — 0+, the net {x,} generated by the algorithm

x,=(1 —k—t)x,+ka,

converges strongly to the minimum-norm fixed point of T.

Now we propose the following iterative algorithm which is the discretisation of the
implicit method (3.3). For given xy € C, chosen arbitrarily, let the sequence {x,} be
generated iteratively by

Xps1 = Pc((l =k —ay)x, + kTx,), n=>0, 3.11)

where {«,} is a real sequence in (0, 1).

Tueorem 3.3. Suppose that Fix(T) # 0 and the following conditions are satisfied:
(1) im0 @, =0and ), @, =0o;
()  lim,seo(@n/apsr) = 1.

Then the sequence {x,} generated by (3.11) strongly converges to the minimum-norm
fixed point x* of T.
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Proor. First, we prove that the sequence {x,} is bounded. Take x* e Fix(T).
From (3.11),

X1 = X7 = IPc((1 = k = @n)xn + kT xy) — X7||

(3.12)
<A =k = an)(xn — x°) + k(T x, — x5)|| + anllx|.
From (3.2), we note that
(1 =k = ap)(xn = X7) + k(Tx, = x| < (1 = a)llx, — x7|. (3.13)
It follows from (3.12) and (3.13) that
X1 = X1 < (1 = ap)llx, — X" + a7l
< max{|lx, — x|, [lx*[I}
< max{llxo — x|, [|x"[|}.
Hence, {x,} is bounded and so is {T x,,}.
We now estimate ||x,4+1 — X,||. From (3.11),
1241 = Xull = [1Pc((1 = k — @y)x,, + kT xy,)
= Pc((1 =k —ap-1)x,-1 + kT x,-1)||
< ”(1 -k - a’n)(xn - xn—l) + k(Txn - Txn—l)
+ (a'n—l - a’n)xn—ln (314)
<A =k = @) (xn = x0-1) + k(T x, = Ty )|
+ |a'nfl - a'nl”-xnle

< (1 - a'n)”xn - xn—l” + |a'n—1 - a’n|M9

where M > 0 is a constant such that sup,{||x,||]} < M. Using Lemma 2.2 with (3.14),
we conclude that

lim [[x,11 — X,/ = 0.
n—oo
We observe that

”xn - Txn” < ”xn - xn+1|| + ||xn+1 - Tan

< ”xn - xn+l|| + (1 - k)”xn - T-xn” + CZ,,H)Cnn,

that is,

1
”xn - Txn” < z{”xrﬁl - xn” + anM} - 0.

Let the net {x;} be defined by (3.3). By Theorem 3.1, x, — x* as t — 0. Next we prove
that lim sup,_, .. (x*, x* — x,,) < 0.
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Sety; = (1 —k — t)x; + kT x,. It follows that

[l — xn”z =X = Voo Xp = Xp) + Ve = Xn» Xp — X))
< = X, Xy — Xn)
= (I =k =0)(x; — x,) + k(T x; = TXn), X — X)
+ k(T x,, — Xp, Xy — Xy — KX, Xt — X))
< (1= Dllxe = 24l + KT x0 = 2]l 112 = 4]
= K(Xn = X Xp = Xp) — KXg, Xp — Xp)
=[x = Xall* + KN T X0 = Xall 112 = 20l = 2x2, X, = x),
and hence that r
(Xps Xp = Xp) < ;IITxn = Xall llx = Xl

Therefore,
lim sup lim sup{x;, x; — x,,) < 0. (3.15)

t—0 n—oo
Note that the two limits lim sup,_,, and lim sup,,_,, are interchangeable. In fact,
(X, X7 = x) = (X7, X7 = X)X = X X — X)) + (X X — X)
<X = X)X = xll e = xall + e X0 = x0)
SO X = x) + X = XM+ (g, X = x).
This, together with x; — x* and (3.15), implies that

lim sup{x”*, x* — x,) < 0.

oo
Finally, we show that x, —» x*. Set y,=( —-k—-a,)x, +kTx, for all n>O0.
From (3.11),
121 = 217 = st = Vs Xt = XY + O — X7, Xyt — X°)
< (n = X7, Xy — X)
=((I =k = an)(xy — x7) + k(Tx, = X°), Xpe1 = X7)
+ (X", X" = Xpi1)
<A =k = @), = X7 + k(T xy — X5 X401 — X7

+ an(-x*s X* - -xn+1>

IN

(I = allxy = X xXne1 = X7 + @ {X", X = Xp41)

1 —ap x112 %112 * *
< 5 (lxn = X717 + a1 = X7 + @ufx™, X7 = Xpg1)-
It follows that
2,
2 2 n
X0t = X717 < (1 = an)llx, — X717 + (X", X" = Xpa1)-
1+ a,

We can check that all assumptions of Lemma 2.2 are satisfied. Therefore, x, — x*.
This completes the proof. O

https://doi.org/10.1017/5S000497271100311X Published online by Cambridge University Press


https://doi.org/10.1017/S000497271100311X

(8]

N
[9¥]
el

Strong convergence of some algorithms for A-strict pseudo-contractions in Hilbert space

CoroLLARY 3.4. Suppose that Fix(T) # 0 and the origin O belongs to C. Assume that
the following conditions are satisfied:

®
(i)

lim, 0 @, =0and ), , a, = co;
lim,, oo (@ /@pi1) = 1.

Then the sequence {x,} generated by the algorithm

Xpe1 = (1 =k —ap)x, + kT x,, n>0,

converges strongly to the minimum-norm fixed point x* of T.
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