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The prototypical diffuse-interface model for incompressible fluid mixtures is the
Navier–Stokes Cahn–Hilliard (Allen–Cahn) model. Despite its foundation in continuum
mixture theory, it is not fully compatible with this theory due to the diffusive
flux approximation. This paper introduces a class of thermodynamically consistent
diffuse-interface incompressible fluid mixture models that is fully compatible with
the continuum theory of mixtures. The proposed models can be formulated in either
constituent or mixture quantities, enabling a direct comparison with the Navier–Stokes
Cahn–Hilliard (Allen–Cahn) model with non-matching densities. This comparison reveals
the key modelling simplifications employed in the latter.
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1. Introduction

1.1. Background
The description of diffuse-interface multi-constituent flows in which the interface has a
positive thickness may be traced back to Rayleigh (1892) and Van der Waals (1894). Based
on these works, the pioneering work of Korteweg (1901) and others, diffuse-interface
models governing the motion of multiple constituents (fluids) or phases have been
developed (Anderson, McFadden & Wheeler 1998; Oden, Hawkins & Prudhomme 2010)
and applied in computations (Yue et al. 2004; Liu et al. 2013; Gomez & van der Zee 2018;
ten Eikelder & Akkerman 2021). The mixture theory of rational mechanics provides the
theoretical framework of the dynamics of multi-constituent flows. The first contributions
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on simple mixtures are the works of Fick (1855) and Darcy (1856). Since then, the topic
has become more mature with the important contributions of Truesdell (1957, 1962) and
Truesdell & Toupin (1960). More complete overviews of rational mixture theory are
provided by Green & Naghdi (1967), Müller (1975), Müller & Ruggeri (2013), Bowen
(1980, 1982), Truesdell (1984), Morro (2016), Rajagopal & Tao (1995) and others.

The study of incompressible diffuse-interface multi-fluid models seems only weakly
connected with continuum mixture theory. Indeed, the study of diffuse-interface
multi-fluid models was initiated in 1977 independent of the continuum theory of mixtures.
In that year Hohenberg & Halperin (1977) proposed a model, known as model H, for
the coupling of viscous fluid incompressible flow and spinoidal decomposition. This
diffuse-interface model is now recognized as the first Navier–Stokes Cahn–Hilliard
(NSCH) model. As the name suggests, the model is presented as the coupling between
the incompressible (isothermal) Navier–Stokes equations and (an extension of) the
Cahn–Hilliard equation. The capillary forces are modelled through the introduction of
an additional Korteweg-type contribution to the stress tensor. Model H was initially
established via phenomenological arguments, and a continuum mechanics derivation was
presented by Gurtin, Polignone & Vinals (1996). This derivation and the resulting model
are not compatible with the continuum theory of mixtures.

The major assumption in model H is the constant density of the mixture as well as
of the individual constituents (making it not applicable to problems with large density
ratios). This limitation initiated the generalization of model H to NSCH models with
non-matching densities. Noteworthy contributions include the models of Lowengrub &
Truskinovsky (1998), Boyer (2002), Ding, Spelt & Shu (2007), Abels, Garcke & Grün
(2012), Shen, Yang & Wang (2013), Aki et al. (2014) and Shokrpour Roudbari et al.
(2018). The introduction of non-matching density models opened the door to practically
relevant computations, such as the one in figure 1. Computations with NSCH models are
non-trivial and require addressing issues such as bound preservation, interface accuracy
and stability; for more details, see, e.g. Boyer et al. (2010), Minjeaud (2013), Chen &
Shen (2016), Khanwale et al. (2023). The above models all aim to describe the same
physical phenomena (the evolution of isothermal incompressible mixtures), yet they are
(seemingly) distinct from one another.

In ten Eikelder et al. (2023) we have proposed a unified framework of existing
Navier–Stokes Cahn–Hilliard Allen–Cahn (NSCHAC) models with non-matching
densities. (This paper proposes a unified framework for NSCH models with non-zero mass
fluxes. These mass fluxes follow the Allen–Cahn form, consequently, the framework can
be referred to as a unified framework for NSCHAC models.) This framework leads to a
single consistent NSCHAC system of balance laws, and shows that many alternate forms
of the same model are connected via variable transformations. The term consistent conveys
that this model is established in a consistent manner through continuum mixture theory.
A particular formulation of the consistent NSCHAC model reads:

∂t(ρv)+ div(ρv ⊗ v)+ ∇p + div
(

∇φ ⊗ ∂Ψ̄

∂∇φ + (μ̄φ − Ψ̄ )I
)

− div(ν(2D + λ(div v)I))− ρb = 0, (1.1a)

∂tρ + div(ρv) = 0, (1.1b)

∂tφ + div(φv)− div(M̄∇(μ̄+ ωp))+ ζ m̄(μ̄+ ωp) = 0, (1.1c)

μ̄− ∂Ψ̄

∂φ
+ div

(
∂Ψ̄

∂∇φ
)

= 0. (1.1d)
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Diffuse-interface mixture models of multicomponent fluids

Figure 1. A representative bubble rising problem with large deformations with respect to the original bubble
shape, computed with the NSCH model; see ten Eikelder & Schillinger (2024) for details.

Here ρ is the mass-averaged mixture density, v the mixture velocity, p the pressure,
φ an order parameter and μ̄ a chemical potential quantity. Furthermore, M̄ =
M̄(φ,∇φ, μ̄,∇μ̄, p) and m̄ = m̄(φ, μ̄, p) are degenerate mobilities, ν the dynamic
viscosity of the mixture, g the gravitational acceleration, ρ1 and ρ2 constant specific
densities of the constituents, ω = (ρ2 − ρ1)/(ρ1 + ρ2) and ζ = (ρ1 + ρ2)/(2ρ1ρ2). We
provide precise definitions in § 5 and refer the reader to ten Eikelder et al. (2023) for
details.

1.2. Objective and main results
The unified framework presented in ten Eikelder et al. (2023) completes the fundamental
exploration of alternate non-matching density NSCHAC models. However, the NSCHAC
model is not compatible with mixture theory of rational mechanics. Namely, in the
construction of the NSCHAC model, the evolution equation of the diffusive flux that
results from mixture theory is replaced by a constitutive model. Therefore, the NSCHAC
model may be classified as a reduced mixture model. (The NSCHAC model may be
classified as a class-I model; see Bothe (2022) for details on this terminology.) This
observation bring us to the main objective of this paper: to derive a thermodynamically
consistent diffuse-interface incompressible mixture model compatible with continuum
mixture theory. We restrict to isothermal constituents. The thermodynamically consistent
property of the mixture model refers to the compatibility with the second law of
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thermodynamics. In particular, we derive the mixture model

∂tρ̃α + div(ρ̃αvα)+
∑
β

mαβ(gα − gβ) = 0, (1.2a)

∂t(ρ̃αvα)+ div(ρ̃αvα ⊗ vα)+ φα∇( p + μα)

− div(ν̃α(2Dα + λα div vα))− ρ̃αb

+
∑
β

Rαβ(vα − vβ)+ 1
2

∑
β

mαβ(gα − gβ)(vα + vβ) = 0, (1.2b)

for constituents α = 1, . . . ,N. Here ρ̃α is the partial mass density of constituent α,
vα the constituent velocity, φα the constituent volume fraction and μα a constituent
chemical potential. Furthermore, p is the mechanical pressure,μα the constituent chemical
potential, gα the constituent Gibbs free energy, ν̃α the constituent dynamical viscosity,
λαν̃α the constituent second viscosity coefficient, Dα the constituent symmetric velocity
gradient, and mαβ and Rαβ are symmetric matrices. We provide precise definitions in §§ 3
and 4.

The distinguishing feature of the model lies in the occurrence of both a mass and a
momentum balance equation per constituent. Reduced models of NSCHAC type contain
a phase equation per constituent but a single momentum equation for the mixture. This
decrease in complexity comes at the cost of violating mixture theory of rational mechanics.
Another interesting aspect is that the model has no Cahn–Hilliard-type equation; however,
the equilibrium profile coincides with that of the NSCHAC model (for the standard
Ginzburg–Landau free energy). On the other hand, the mass transfer terms match that of
the Allen–Cahn equation, i.e. the model is of Allen–Cahn type. Another important feature
of the model contains a single mixture mechanical pressure p (the Lagrange multiplier of
the mixture incompressibility constraint) and a constituent chemical potential μα .

1.3. Plan of the paper
The remainder of the paper is structured as follows. In § 2 we present the general
continuum theory of incompressible fluid mixtures. Here we present identities that relate
constituent and mixture quantities. We exclude thermal effects. Next, in § 3 we perform
constitutive modelling via the Coleman–Noll procedure. Then, in § 4 we present particular
diffuse-interface models. We compare the resulting models with the NSCHAC model in
§ 5. Finally, in § 6 we conclude and outline avenues for future research.

2. Continuum theory of mixtures

The purpose of this section is to lay down the continuum theory of mixtures composed
of incompressible isothermal constituents. The theory is based on three general principles
proposed in the groundbreaking work of Truesdell & Toupin (1960).

(i) All properties of the mixture must be mathematical consequences of properties of
the constituents.

(ii) So as to describe the motion of a constituent, we may in imagination isolate it from
the rest of the mixture, provided we allow properly for the actions of the other
constituents upon it.

(iii) The motion of the mixture is governed by the same equations as is a single body.
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The first principle states that the mixture is composed of its constituent parts. The
second principle asserts the physics model be banded together via interaction fluxes,
forces or energies. Finally, the third principle ensures that the motion of a mixture is
indistinguishable from that of a single fluid.

In § 2.1 we introduce the fundamentals of the continuum theory of mixtures and the
necessary kinematics. Then, in § 2.2 we provide balance laws of individual constituents
and associated mixtures.

2.1. Preliminaries and kinematics
The core idea of the continuum theory of mixtures is that the material body B is composed
of N constituent bodies Bα , with α = 1, . . . ,N. Following Truesdell (1984), the bodies
Bα are allowed to occupy, simultaneously, a common region in space. Denote with Xα

the spatial position of a particle of Bα in the Lagrangian (reference) configuration. The
motion of body Bα is given by the (invertible) deformation map

x := χα(Xα, t). (2.1)

Consider from now on positions x that are taken by one particle from each of the N
constituent bodies Bα . Around this spatial position x we consider an arbitrary mixture
control volume V ⊂ Ω with measure |V|. Furthermore, we introduce volume Vα ⊂ V ,
with measure |Vα|, as the control volume of constituent α. The constituents masses denote
Mα = Mα(V) and the total mass in V is M = M(V) = ∑

α Mα(V). The constituent partial
mass density ρ̃α and specific mass density ρα > 0 are respectively defined as

ρ̃α(x, t) := lim
|V|→0

Mα(V)
|V| , (2.2a)

ρα(x, t) := lim
|Vα |→0

Mα(V)
|Vα| . (2.2b)

The quantities represent the mass of the associated constituent α per unit volume of
the mixture V , and constituent volume Vα , respectively. In this paper we work with
incompressible isothermal constituents of which the specific mass densities ρα are
constants. The density of the mixture is the sum of the partial mass densities of the
constituents:

ρ(x, t) :=
∑
α

ρ̃α(x, t). (2.3)

The volume fraction of constituent α is defined as

φα(x, t) := lim
|V|→0

|Vα|
|V| . (2.4)

We preclude the existence of void spaces by assuming that

∑
α

φα = 1. (2.5)
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The above definitions (2.2), (2.3) and (2.4) imply the relation

ρ̃α(x, t) = ραφα(x, t). (2.6)

The constituent velocity is given by

vα(x, t) = ∂tχα(Xα, t)|Xα , (2.7)

where the position Xα is fixed. Next, we denote the momentum of constituent α as

mα(x, t) = ρ̃α(x, t)vα(x, t). (2.8)

By taking the sum of the momenta of the constituent we get the momentum of the mixture:

m(x, t) :=
∑
α

mα(x, t). (2.9)

From the momentum of the mixture, we identify the mixture velocity v (also called
mass-averaged velocity or barycentric velocity):

m(x, t) = ρ(x, t)v(x, t). (2.10)

Another important velocity is the peculiar velocity (also known as diffusion velocity) of
constituent α, i.e.

wα(x, t) := vα(x, t)− v(x, t), (2.11)

which describes the constituent velocity relative to the gross motion of the mixture. The
peculiar velocity satisfies the property

∑
α

Jα =
∑
α

ραhα = 0, (2.12)

where the so-called diffusive fluxes are defined as

hα := φαwα, (2.13a)

Jα := ρ̃αwα. (2.13b)

We introduce the time derivative ψ̀α of the (component) differentiable function ψα of x
and t, and the time derivative of a quantity ψ that follows the mean motion. In the Eulerian
frame, these material derivatives are given by

ψ̀α = ∂tψα + vα · ∇ψα, (2.14a)

ψ̇ = ∂tψ + v · ∇ψ. (2.14b)

2.2. Balance laws
According to the second general principle of the continuum theory of mixtures, the motion
of each of the constituents is governed by an individual set of balance laws. These laws
contain interaction terms that model the interplay of the different constituents. Following,
e.g. Truesdell (1984), each of the constituent α = 1, . . . ,N must satisfy the following set

990 A8-6

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

50
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.502


Diffuse-interface mixture models of multicomponent fluids

of local balance laws for all x ∈ Ω and t ∈ (0, T):

∂tρ̃α + div(ρ̃αvα) = γα, (2.15a)

∂tmα + div(mα ⊗ vα)− div Tα − ρ̃αbα = πα, (2.15b)

Tα − T T
α = Nα, (2.15c)

∂t(ρ̃α(εα + ‖vα‖2/2))+ div(ρ̃α(εα + ‖vα‖2/2)vα)

− div(Tαvα)− ρ̃αbα · vα + div qα − ρ̃αrα = eα. (2.15d)

Equation (2.15a) represents the local constituent mass balance law, where the interaction
term γα is the mass supply of constituent α due to chemical reactions with the other
constituents. Next, (2.15b) is the local constituent linear momentum balance law. Here
Tα is the Cauchy stress tensor of constituent α, bα the constituent external body force
and πα is the momentum exchange rate of constituent α with the other constituents. In the
remainder of the paper we assume equal body forces (bα = b for α = 1, . . . ,N). Moreover,
we restrict to body forces of a gravitational type: b = −bj = −b∇y, with y the vertical
coordinate, j the vertical unit vector and b a constant. Next, (2.15c) is the local constituent
angular momentum balance with Nα the intrinsic moment of momentum. Finally, (2.15d)
is the local constituent energy balance. Here εα is the specific internal energy of constituent
α, ‖vα‖ = √

vα · vα is the Euclidean norm of the velocity vα , qα is the heat flux, rα is the
external heat supply and eα represents the energy exchange with the other constituents.

We denote the kinetic and gravitational energies of the constituents, respectively, as

Kα = ρ̃α‖vα‖2/2, (2.16a)

Gα = ρ̃αby. (2.16b)

On the account of the mass balance (2.15a) and the linear momentum balance (2.15b), we
deduce the evolution of the constituent kinetic energy:

∂tKα + div(Kαvα)− vα · div Tα − ρ̃αbα · vα = πα · vα − 1
2‖vα‖2γα. (2.17)

Next, the evolution of the gravitational energy follows from the constituent mass equation
(2.15a):

∂tGα + div(Gαvα)+ ρ̃αvα · b − γαby = 0. (2.18)

Taking the difference of (2.15d) and (2.17) we obtain the evolution of the constituent
internal energy:

∂t(ρ̃αεα)+ div(ρ̃αεαvα)− Tα : ∇vα + div qα − ρ̃αrα

= −πα · vα + 1
2‖vα‖2γα + eα. (2.19)

The convective forms of the constituent evolution equations read

`̃ρα + ρ̃α div vα = γα, (2.20a)

ρ̃α v̀α − div Tα − ρ̃αbα = pα, (2.20b)

ρ̃αὲα − Tα : ∇vα + div qα − ρ̃αrα = ĕα, (2.20c)

where the interaction terms are

pα = πα − γαvα, (2.21a)

ĕα = eα − πα · vα − γα(εα − ‖vα‖2/2). (2.21b)
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By invoking the constant specific densities ρα , we obtain the evolution equation of the
volume fraction:

∂tφα + div(φαvα) = γα

ρα
. (2.22)

Next, we turn to the continuum balance laws of the mixtures. Summing the balance laws
(2.15) over the constituents gives

∂tρ + div(ρv) = 0, (2.23a)

∂tm + div(m ⊗ v)− div T − ρb = 0, (2.23b)

T − T T = 0, (2.23c)

∂t(ρ(ε + ‖v‖2/2))+ div(ρ(ε + ‖v‖2/2)v)

− div(Tv)− ρb · v + div q − ρr = 0, (2.23d)

where

ε := 1
ρ

∑
α

ρ̃α

(
εα + 1

2
‖wα‖2

)
, (2.24a)

T :=
∑
α

Tα − ρ̃αwα ⊗ wα, (2.24b)

b := 1
ρ

∑
α

ρ̃αbα, (2.24c)

q :=
∑
α

qα − Tαwα + ρ̃α

(
εα + 1

2
‖wα‖2

)
, (2.24d)

r := 1
ρ

∑
α

ρ̃αrα, (2.24e)

and where we have postulated the following balance conditions to hold:
∑
α

γα = 0, (2.25a)

∑
α

πα = 0, (2.25b)

∑
α

Nα = 0, (2.25c)

∑
α

eα = 0. (2.25d)

In establishing the mixture laws (2.23) use has been made of the identities (2.12) and

∑
α

ρ̃α
1
2
‖wα‖2wα =

∑
α

(
ρ̃α

1
2
‖vα‖2wα − ρ̃αwα(wα · v)

)
. (2.26)
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In agreement with the first general principle of mixture theory, the kinetic, gravitational
and internal energies of the mixture are the superposition of the constituent energies:

K =
∑
α

Kα, (2.27a)

G =
∑
α

Gα, (2.27b)

S =
∑
α

ρ̃αεα. (2.27c)

The kinetic energy of the mixture can be decomposed as

K = ¯K +
∑
α

1
2
ρ̃α‖wα‖2, (2.28a)

¯K = 1
2
ρ‖v‖2, (2.28b)

where ¯K is a kinetic energy of the mixture variables, and where the second term
represents the kinetic energy of the constituents relative to the gross motion of the mixture.
As a consequence, (2.15d) represents the evolution of the internal and kinetic energy of
the mixture

∂tE + div(E v)− div(Tv)− ρb · v + div q − ρr = 0, (2.29)

with E = K + G + S , given the standing assumption of equal body forces. Finally, we
remark that the system of mixture balance laws (2.23) may be augmented with evolution
equations of the order parameters (mass and energy) and diffusive fluxes to arrive at a
system equivalent with (2.15) (ten Eikelder et al. 2023).

3. Constitutive modelling

In this section we perform the constitutive modelling. We choose to employ the
well-known Coleman–Noll procedure (Coleman & Noll 1974) to construct constitutive
models that satisfy the second law of thermodynamics. First, in § 3.1 we introduce the
second law of thermodynamics in the context of rational mechanics. Next, in § 3.2 we
establish the constitutive modelling restriction yielding from the second law. Then, in § 3.3
we select specific constitutive models compatible with the modelling restriction.

3.1. Second law
In agreement with the second general principle, the entropy of each of the constituents α
is governed by the balance law

∂t(ρ̃αηα)+ div(ρ̃αηαvα)+ div(Φα)− ρ̃αsα = Pα, (3.1)

where the constituent quantities are the specific entropy density ηα , the entropy flux
Φα , the specific entropy supply sα and the entropy production Pα . The second law of
thermodynamics dictates positive entropy production of the entire mixture:∑

α

Pα ≥ 0. (3.2)

The second law (3.2) is compatible with the first general principle of mixture theory.
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In the following we derive the modelling restriction that results from the second
law (3.2). To this purpose, we introduce the Helmholtz mass-measure free energy of
constituent α,

ψα := εα − θηα, (3.3)

where θ is the temperature. We restrict to isothermal mixtures and, thus, all constituents
have the same constant temperature θ = θα , α = 1, . . . ,N. We now substitute (3.1) and
(3.3) into (3.2) and arrive at

∑
α

∂t(ρ̃α(εα − ψα))+ div(ρ̃α(εα − ψα)vα)+ div(θΦα)− ρ̃αsαθ ≥ 0. (3.4)

Next, we insert the balance of energy (2.19) into (3.4) and find that

∑
α

−∂t(ρ̃αψα)− div(ρ̃αψαvα)+ Tα : ∇vα + div(θΦα − qα)

+ ρ̃α(rα − θsα)− πα · vα + γα‖vα‖2/2 ≥ 0, (3.5)

where the energy interaction term cancels because of (2.25d). In the final step we invoke
the mass balance equation (2.15a) to find that

∑
α

ρ̃αψ̀α − Tα : ∇vα + div(qα − θΦα)

+ ρ̃α(θsα − rα)+ πα · vα − γα‖vα‖2/2 + γαψα ≤ 0. (3.6)

This form of the second law provides the basis for the constitutive modelling.
Lastly, we remark that the second law may be written in an energy-dissipative form

(given rα = θsα).

PROPOSITION 3.1 (Energy dissipation). The second law may be written as the
energy-dissipation statement:

∑
α

(∂tEα + div(Eαvα)− div(Tαvα − qα + θΦα)) ≤ 0, (3.7)

with Eα = Kα + Gα + ρ̃αεα , and where we have set rα = θsα .

Proof . Using the constituent mass equation (2.15a), the second law (3.6) may be written
as

∑
α

[∂t(ρ̃αψα)+ div(ρ̃αψαvα)− Tα : ∇vα + div(qα − θΦα)

+ πα · vα − eα − γα‖vα‖2/2] ≤ 0. (3.8)

Adding (2.17) and (2.18) to the condition (3.8) provides the result. �
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Diffuse-interface mixture models of multicomponent fluids

3.2. Constitutive modelling restriction
We specify the modelling restriction (3.6) to a particular set of constitutive constituent
classes for the stress Tα , free energy ψα , entropy flux Φα , momentum supply πα and
mass supply γα . We introduce the constitutive free energy class

ψ̂α = ψ̂α(φα,∇φα,Dα), (3.9)

and postpone the specification of the other constitutive classes. Here Dα is the symmetric
velocity gradient of constituent α.

In the following we examine the constitutive modelling restriction (3.6) for this specific
set of constitutive classes. Substitution of the constitutive classes (3.9) into (3.6) and
expanding the peculiar derivative of the free energy provides

∑
α

ρ̃α

(
∂ψ̂α

∂φα
φ̀α + ∂ψ̂α

∂∇φα · ∇̀φα + ∂Dα ψ̂αD̀α

)
− T̂α : ∇vα

+ div(qα − θΦ̂α)+ ρ̃α(θsα − rα)

+ πα · vα − γα‖vα‖2/2 + γαψα ≤ 0. (3.10)

The arbitrariness of the peculiar time derivative D̀α precludes dependence of ψα on Dα .
Thus, the free energy class reduces to

ψ̂α = ψ̂α(φα,∇φα), (3.11)

and the last member in the first brackets of (3.10) is eliminated. We now introduce the
volumetric Helmholtz free energy Ψ̂α := ρ̃αψ̂α . Given the constituent class of ψ̂α (3.11),
we identify the volumetric Helmholtz free energy class:

Ψ̂α = Ψ̂α(φα,∇φα) = ρ̃αψ̂α(φα,∇φα) = ραφαψ̂α(φα,∇φα). (3.12)

Next we introduce a number of constituent generalized derivatives of the free energy
quantities that we require in examining the constitutive modelling restriction (3.6):

χα = φα
∂ψ̂α

∂φα
− div

(
φα

∂ψ̂α

∂∇φα
)
, (3.13a)

υα = ∂ψ̂α

∂ρ̃α
− 1
ρ̃α

div
(
ρ̃α

∂ψ̂α

∂∇ρ̃α
)
, (3.13b)

τα = ∂ψ̂α

∂φα
− div

(
∂ψ̂α

∂∇φα
)
, (3.13c)

μα = ∂Ψ̂α

∂φα
− div

(
∂Ψ̂α

∂∇φα
)
. (3.13d)
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M.F.P ten Eikelder, K.G. van der Zee and D. Schillinger

Here τα is a mass-measure-based chemical potential and μα is a volume-measure-based
chemical potential. These quantities are related via the following identities:

χα = ρ̃αυα, (3.14a)

μα = ρα(ψ̂α + χα), (3.14b)

ρ̃αχα = φαμα − Ψ̂α, (3.14c)

χα = φατα − ∇φα · ∂Ψ̂α

∂∇φα . (3.14d)

Next, we focus on the first term in the sum in (3.10).

LEMMA 3.2 (Identity peculiar derivative free energy). We have the identity

ρ̃α

(
∂ψ̂α

∂φα
φ̀α + ∂ψ̂α

∂∇φα · ∇̀φα
)

= −ρ̃α
(
χα div vα +

(
∇φα ⊗ ∂ψ̂α

∂∇φα
)

: ∇vα

)

− div
(
ρ̃α

∂ψ̂α

∂∇φα (φα div vα)

)

+ γαχα + div
(
γαφα

∂ψ̂α

∂∇φα
)
. (3.15)

Proof . Noting the identity

`∇φα = ∇(φ̀α)− (∇φα)T∇vα, (3.16)

we can deduce that

ρ̃α
∂ψ̂α

∂∇φα · `∇φα = div
(
ρ̃α

∂ψ̂α

∂∇φα φ̀α
)

− φ̀α div
(
ρ̃α

∂ψ̂α

∂∇φα
)

− ρ̃α∇φα ⊗ ∂ψ̂α

∂∇φα · ∇vα. (3.17)

By substituting the mass balance equation (2.15a) into (3.17) we deduce that

ρ̃α
∂ψ̂α

∂∇φα
`∇φα = −div

(
ρ̃α

∂ψ̂α

∂∇φα (φα div vα − ρ−1
α γα)

)

+ (φα div vα − ρ−1
α γα) div

(
ρ̃α

∂ψ̂α

∂∇φα
)

−
(
ρ̃α∇φα ⊗ ∂ψ̂α

∂∇φα
)

: ∇vα. (3.18)
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Diffuse-interface mixture models of multicomponent fluids

As a result, the first term in (3.15) may be written as

ρ̃α

(
∂ψ̂α

∂φα
φ̀α + ∂ψ̂α

∂∇φα · ∇̀φα
)

= −ρ̃α
(
∂ψ̂α

∂φα
(φα div vα − ρ−1

α γα)

)
− div

(
ρ̃α

∂ψ̂α

∂∇φα (φα div vα − ρ−1
α γα)

)

+ (ρ̃α div vα − γα) div
(
φα

∂ψ̂α

∂∇φα
)

−
(
ρ̃α∇φα ⊗ ∂ψ̂α

∂∇φα
)

: ∇vα. (3.19)

Substituting (3.13a) into (3.19) completes the proof. �

Substitution of Lemma 3.2 into the second law (3.10) provides:

∑
α

−
(

παI + ρ̃α∇φα ⊗ ∂ψ̂α

∂∇φα + T̂α

)
: ∇vα

+ div
(

qα − θΦ̂α − ∂ψ̂α

∂∇φα φα(ρ̃α div vα − γα)

)

+ ρ̃α(θsα − rα)+ (πα − γαvα/2) · vα + γα(ψα + χα) ≤ 0. (3.20)

Here the thermodynamical pressure for the free energy constituent class (3.11) takes the
form:

πα := ρ̃αχα = ρ̃2
αυα = φαμα − Ψ̂α. (3.21)

At this point we remark that (3.20) is degenerate because of the dependency of the
various members in the superposition. Namely, the first two terms in the integral contain
∇vα and vα that are connected via the mass balance (2.15a). To exploit the degeneracy, we
introduce a scalar p representing the mixture mechanical pressure. Summation of (2.15a)
over the constituents provides:

0 =
∑
α

φ̀α + φα div vα − ρ−1
α γα

=
∑
α

vα · ∇φα + φα div vα − ρ−1
α γα. (3.22)

Here we recall the postulate of no excess volume (2.5). Employing the relation (3.22) into
(3.20) provides the requirement:

∑
α

−
(
𝔭αI + ρ̃α∇φα ⊗ ∂ψ̂α

∂∇φα + T̂α

)
: ∇vα

+ div
(

qα − θΦ̂α − ∂ψ̂α

∂∇φα φα(ρ̃α div vα − γα)

)
+ ρ̃α(θsα − rα)

+ (πα − γαvα/2 − p∇φα) · vα + γαgα ≤ 0. (3.23)

The term 𝔭α := pφα + πα represents a generalized form of the constituent pressure in
the incompressible mixture. It consists of the constituent mechanical pressure pφα and
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M.F.P ten Eikelder, K.G. van der Zee and D. Schillinger

the constituent thermodynamical pressure πα . Furthermore, gα represents the Gibbs free
energy of constituent α:

gα := ψα + 𝔭α
ρ̃α

= ψα + χα + p
ρα

= p + μα

ρα
. (3.24)

Remark 3.3 (Dalton’s law). The mechanical pressure obeys Dalton’s law. Namely, the
constituent mechanical pressure pφα is the product of the mixture mechanical pressure p
and the constituent volume fraction φα . Additionally, according to the axiom (2.5), the
sum of the constituent mechanical pressures is the mixture mechanical pressure p.

Remark 3.4 (Incompressibility constraint). The introduction of the mixture mechanical
pressure is connected with an incompressibility constraint in absence of mass fluxes
(i.e. γα = 0). Namely, by introducing the mean velocity

u :=
∑
α

φαvα, (3.25)

(3.22) takes the form

div u =
∑
α

div(φαvα) =
∑
α

vα · ∇φα + φα div vα = 0, (3.26)

provided γα = 0. The mean velocity u is known as the volume-averaged velocity that is
an incompressible field in absence of mass fluxes. The observation has been employed
in the formulation of reduced (approximate) quasi-incompressible NSCH models (Boyer
2002; Ding et al. 2007; Abels et al. 2012; ten Eikelder et al. 2023) with an incompressible
velocity field.

Based on the condition (3.23), we restrict to the following constitutive constituent
classes for the stress Tα , entropy flux Φα , entropy supply sα , mass supply γα and
momentum supply πα:

Φ̂α = Φ̂α(φα,∇φα, div vα, qα, γα), (3.27a)

ŝα = ŝα(rα), (3.27b)

T̂α = T̂α(φα,∇φα,Dα,πα, p), (3.27c)

γ̂α = γ̂α(φα,∇φα, p, {gβ}β=1,...,N), (3.27d)

π̂α = π̂α(φα,∇φα, p, {vβ}β=1,...,N, {gβ}β=1,...,N). (3.27e)

Here in (3.27d) and (3.27e) the dependence on the sets over all constituents is a
consequence of the axioms (2.25a) and (2.25b).

3.3. Selection of constitutive models
We are now in the position to pose thermodynamically consistent relations for the
constitutive classes (3.27).
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Diffuse-interface mixture models of multicomponent fluids

3.3.1. Entropy flux
By demanding the divergence term to equate zero, we identify the entropy flux of
constituent α as

Φ̂α ≡ qα
θ

− 1
θ

∂ψ̂α

∂∇φα φα(ρ̃α div vα − γ̂α). (3.28)

The first member in the entropy flux is the constituent version of the classical term that
appears in single-constituent models. On the other hand, the second member in the entropy
flux is the incompressible counterpart augmented with mass transfer, of the so-called extra
entropy flux.

Remark 3.5 (Interstitial working). Instead of working with the extra entropy flux, one
can also choose to augment the constituent energy equations (2.15d) with an extra flux
term called the interstitial working (Dunn & Serrin 1985). Since we are working in the
isothermal case, both approaches lead to the same final model.

3.3.2. Entropy supply
By requiring the last member in (3.23) to disappear, we identify the constituent entropy
supply density as

sα ≡ rα
θ
. (3.29)

3.3.3. Stress tensor
To preclude that variations of the velocity gradient ∇vα cause a violation of the second
law (3.23), we insist that

−
(
(πα + pφα)I + ρ̃α∇φα ⊗ ∂ψ̂α

∂∇φα + T̂α

)
: ∇vα ≤ 0. (3.30)

We select the following constitutive model for the stress tensor that is compatible with
(3.30):

T̂α = ν̃α(2Dα + λα(div vα)I)− (πα + pφα)I − ρ̃α∇φα ⊗ ∂ψ̂α

∂∇φα . (3.31)

Here ν̃α ≥ 0 is a dynamic viscosity and λα ≥ −2/d, with dimension d.

LEMMA 3.6 (Compatibility stress tensor). The choice (3.31) is compatible with the
thermodynamical restriction (3.30).

Proof . This is a standard result. In this particular case, (3.30) takes the form

− 2ν̃α

(
Dα − 1

d
(div vα)I

)
:
(

Dα − 1
d
(div vα)I

)
− ν̃α

(
λα + 2

d

)
(div vα)

2 ≤ 0.

(3.32)
�
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Remark 3.7 (General form stress tensor). The requirement (3.30) implies the general form

T̂α = 2KαDα − (πα + pφα)I − ρ̃α∇φα ⊗ ∂ψ̂α

∂∇φα , (3.33)

where Kα = Kα(φα,∇φα,Dα) is a quantity that satisfies

DT
α : (KαDα) ≥ 0. (3.34)

This implication follows from a result concerning thermodynamical inequalities proved by
Gurtin (1996).

3.3.4. Mass transfer
To rule out violations of (3.23) caused by the latter term on the left-hand side, we impose
the following requirement on the mass interaction terms:

∑
α

γ̂αgα ≤ 0. (3.35)

The requirement distinguishes from the compressible situation by the occurrence of the
hydrodynamic pressure p; see, e.g. Morro (2016). For the mass transfer, we take the model

γ̂α =
∑
β

Γαβ, (3.36a)

Γαβ = mαβ(gβ − gα) (3.36b)

for some non-negative symmetric quantity mαβ = mβα ≥ 0 (α, β = 1, . . . ,N) that
vanishes when φα = 0 or φα = 1. We recall that N ≥ 2 is the number of constituents.

LEMMA 3.8 (Compatibility mass transfer). The choice (3.36) is compatible with the
balance of mass supply (2.25b) and the thermodynamical restriction (3.35).

Proof . Compatibility with (2.25a) is immediate from the skew-symmetry property:
Γαβ = −Γβα . Compatibility with (3.35) follows from the sequence of identities:

∑
α

γ̂αgα =
∑
α,β

mαβ(gβ − gα)gα

= −1
2

∑
α,β

mαβ(gα − gβ)2

≤ 0. (3.37)

�
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Diffuse-interface mixture models of multicomponent fluids

3.3.5. Momentum transfer
To avoid a violation of (3.23) resulting from momentum transfer, we demand that∑

α

vα · (π̂α − γ̂αvα/2 − p∇φα) ≤ 0. (3.38)

We select the momentum transfer model

π̂α = p∇φα +
∑
β

Rαβ(vβ − vα)+
∑
β

1
2
Γαβ(vα + vβ), (3.39)

where Rαβ = Rβα ≥ 0 is a symmetric non-negative matrix that vanishes when φα = 0 or
φα = 1.

LEMMA 3.9 (Compatibility momentum transfer). The momentum transfer model (3.39)
is compatible with the balance of momentum supply (2.25b) and the thermodynamical
restriction (3.38).

Proof . Compatibility with (2.25b) is a consequence of the axiom of constant volume (2.5),
the skew symmetry of Γαβ and the symmetry of Rαβ . Next, we verify compatibility with
the thermodynamical restriction (3.38):

∑
α

(π̂α − γ̂αvα/2) · vα =
∑
α,β

Rαβ(vβ − vα) · vα +
∑
α

∑
β

1
2
Γαβvβ · vα

= −1
2

∑
α

∑
β

Rαβ‖vα − vβ‖2

≤ 0. (3.40)

Here the mass transfer component vanishes due to Γαβ being skew symmetric. �

Remark 3.10 (Stefan–Maxwell model). Selecting the symmetric matrix Rαβ as

Rαβ = Rθρφαφβ
Dαβ

, (3.41)

with Dαβ > 0 a symmetric diffusion coefficient and R > 0 the gas constant, yields an
isothermal Stefan–Maxwell model (Whitaker 2009; Bothe & Dreyer 2015; Bothe 2022).
The term Rθρφαφβ is proportional to the frequency of collisions between α and β.
This makes intuitive sense in the way that the force that is exerted by constituent β
on constituent α scales with the frequency of collisions between the two constituents.
Provided that Γαβ = 0, the momentum transfer vanishes if and only if

p∇φα +
∑
β

Rθρφαφβ
Dαβ

(vβ − vα) = 0 (3.42)

for α = 1, . . . ,N. Equations (3.42) represent a form of the well-known Stefan–Maxwell
equations that describe an equilibrium situation. The first term of (3.42) represents the
diffusion driving force for constituent α, whereas the second term of (3.42) is the drag
force on constituent α that resists the diffusion. As such, Dαβ can be interpreted as an
inverse drag coefficient and is referred to as Stefan–Maxwell diffusivity.
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We have now obtained the incompressible multi-constituent model that is consistent
with the second law,

∂tρ̃α + div(ρ̃αvα) =
∑
β

mαβ(gβ − gα), (3.43a)

∂t(ρ̃αvα)+ div(ρ̃αvα ⊗ vα)+ φα∇p − div(ν̃α(2Dα + λα div vα))

+∇πα + div
(
ρ̃α∇φα ⊗ ∂ψ̂α

∂∇φα
)

− ρ̃αb =
∑
β

Rαβ(vβ − vα)

+
∑
β

1
2

mαβ(gβ − gα)(vβ + vα), (3.43b)

for α = 1, . . . ,N. The model may be written in a more compact form by means of the
following lemma.

LEMMA 3.11 (Compact form free energy contributions). The free energy contributions in
the momentum equation may be expressed in the compact form:

φα∇μα = ∇πα + div
(
ρ̃α∇φα ⊗ ∂ψ̂α

∂∇φα
)
. (3.44)

Proof . Substituting (3.21) and subsequently expanding the derivatives yields

∇πα + div
(
ρ̃α∇φα ⊗ ∂ψ̂α

∂∇φα
)

= ∇(φαμα − Ψ̂α)+ div
(

∇φα ⊗ ∂Ψ̂α

∂∇φα
)

= φα∇μα + ∇φα ∂Ψ̂α
∂φα

− ∇φα div
(
∂Ψ̂α

∂∇φα
)

− ∇Ψ̂α

+ ∇φα div
(
∂Ψ̂α

∂∇φα
)

+ (Hφα)
∂Ψ̂α

∂∇φα

= φα∇μα − ∇Ψ̂α + ∇φα ∂Ψ̂α
∂φα

+ (Hφα)
∂Ψ̂α

∂∇φα , (3.45)

where Hφα is the Hessian of φα . As a consequence of the volumetric Helmholtz free
energy class (3.12), the latter three terms in the final expression in (3.45) vanish. �
990 A8-18

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

50
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.502


Diffuse-interface mixture models of multicomponent fluids

On the account of Lemma 3.11, the multi-constituent model (3.43) takes the more
compact form

∂tρ̃α + div(ρ̃αvα) =
∑
β

mαβ(gβ − gα), (3.46a)

∂t(ρ̃αvα)+ div(ρ̃αvα ⊗ vα)+ φα∇( p + μα)

− div(ν̃α(2Dα + λα div vα))− ρ̃αb =
∑
β

Rαβ(vβ − vα)

+
∑
β

1
2

mαβ(gβ − gα)(vβ + vα), (3.46b)

for α = 1, . . . ,N.
We explicitly state the compatibility with the second law.

THEOREM 3.12 (Compatibility second law). The model (3.43) is compatible with the
second law of thermodynamics (3.2).

Proof . This follows from the form of the second law (3.23) and Lemmas 3.6, 3.8 and 3.9.
In particular, inserting (3.28), (3.29), (3.31), (3.36) and (3.39) into (3.23) reveals that the
second law is satisfied with

θ
∑
α

Pα =
∑
α

2ν̃α

(
Dα − 1

d
(div vα)I

)
:
(

Dα − 1
d
(div vα)I

)

+
∑
α

ν̃α

(
λα + 2

d

)
(div vα)

2 + 1
2

∑
α,β

Rαβ‖vα − vβ‖2

+ 1
2

∑
α,β

mαβ(gα − gβ)2 ≥ 0. (3.47)

�

We finalize this section by noting the reduction to the standard Navier–Stokes equations
in the single fluid regime.

PROPOSITION 3.13 (Reduction to Navier–Stokes). If the chemical potentials μα are
well defined for φα ∈ [0, 1], the multi-constituent system (3.43) reduces to the standard
incompressible Navier–Stokes equations in the single-constituent regime (φα = 1)

∂t(ραvα)+ div(ραvα ⊗ vα)+ ∇p

− div(να(2Dα + λα div vα))− ραb = 0, (3.48a)

div vα = 0, (3.48b)

with ρα = ρ, vα = v and Dα = D := (∇v + (∇v)T)/2.

4. Diffuse-interface models

In this section we present diffuse-interface models. First, in § 4.1 we introduce the
Helmholtz free energy. Next, in § 4.2 we provide the dimensionless form of the model.
In § 4.3 we discuss the equilibrium conditions of the mixture model. Finally, in § 4.4 we
specify the interface profile for the Ginzburg–Landau free energy.
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4.1. Helmholtz free energy
We consider two different options for the free energy: (I) volume measure based, and (II)
mass measure based.

4.1.1. Model I: Volume measure
The Helmholtz volume-measure-based free energy is given by

Ψ̂ I
α = σα

εα
Wα(φα)+ σαεα‖∇φα‖2, (4.1)

where Wα = Wα(φα) is the constituent potential, εα are interface thickness variables and
σα are quantities related to the surface energy density. We assume that εα and σα are
constants. The chemical potential takes the form

μI
α = σα

εα
W ′
α(φα)− 2σαεα�φα. (4.2)

Furthermore, the mass flux takes the form

γ̂ I
α = −

∑
β

mαβ

(
σα

ραεα
W ′
α(φα)− σβ

ρβεβ
W ′
β(φβ)

−2
σα

ρα
εα�φα + 2

σβ

ρβ
εβ�φβ +

(
1
ρα

− 1
ρβ

)
p
)
, (4.3)

for α = 1, . . . ,N.

4.1.2. Model II: Mass measure
The Helmholtz mass-measure-based free energy reads

ψ̂ II
α = 2

κα

εα
Wα(φα)+ 2καεα‖∇φα‖2. (4.4)

Also in this second model, the interface thickness variables εα and surface energy density
quantities κα are assumed constant. The associated chemical potential takes the form

τ II
α = 2

κα

εα
W ′
α(φα)− 4καεα�φα. (4.5)

The corresponding mass flux reads

γ̂ II
α = −

∑
β

mαβ

(
2φα

κα

εα
W ′
α(φα)− 2φβ

κβ

εβ
W ′
β(φβ)

− 4καεαφα�φα + 4κβεβφβ�φβ + 2
κα

εα
Wα(φα)− 2

κβ

εβ
Wβ(φβ)

−2καεα‖∇φα‖2 + 2κβεβ‖∇φβ‖2 +
(

1
ρα

− 1
ρβ

)
p
)
, (4.6)
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for α = 1, . . . ,N. Invoking relation (3.14), the corresponding volumetric free energy and
associated chemical potential take the form

Ψ̂ II
α = 2

ρακα

εα
Kα(φα)+ 2ρακαεαφα‖∇φα‖2, (4.7a)

Kα(φα) = φαWα(φα), (4.7b)

μII
α = φαρατ

II
α + ρα

(
2
κα

εα
Wα(φα)− 2καεα‖∇φα‖2

)
. (4.7c)

4.2. Dimensionless form
We perform non-dimensionalization based on the dimensionless variables

x∗ := x
L0
, v∗

α := vα

V0
, t∗ := t

t
T0
, ν̃∗

α := ν̃α

να
, p∗

α := pL0

aα
,

μ∗
α := μαL0

aα
, g∗

α = ραL0

aα
gα, m∗

αβ := L0V0

ρα
mαβ, R∗

αβ := V0L2
0

aα
Rαβ,

⎫⎪⎪⎬
⎪⎪⎭

(4.8)

where L0, T0,V0 = L0/T0 and να denote a characteristic length, time, velocity, density
and constituent dynamic viscosity, respectively, and aα = σα and aα = ρακα for models I
and II, respectively. The rescaled system takes the form

∂t∗φα + div∗(φαv∗
α) = γ̂ ∗

α , (4.9a)

∂t∗(φαv
∗
α)+ div∗(φαv∗

α ⊗ v∗
α)− 1

Reα
div∗(ν̃∗

α(2D∗
α + λα div∗ v∗

α))

+ 1
Weα

φα∇∗g∗
α + 1

Fr2φαj = π∗
α, (4.9b)

for α = 1, . . . ,N, where we note that the dimensionless Gibbs free energy may be written
as g∗

α = p∗
α + μ∗

α . Here ∇∗,Δ∗ and div∗ denote the dimensionless spatial derivatives. The
dimensionless variables are the constituent Reynolds number (Reα), the Froude number
(Fr), the constituent Cahn number (Cnα) and the constituent Weber number (Weα):

Reα = ραV0L0

να
, (4.10a)

Fr = V0√
bL0

, (4.10b)

Cnα = εα

L0
, (4.10c)

Weα = ραV2
0 L0

aα
. (4.10d)

The dimensionless mass and momentum transfer terms read

γ̂ ∗
α = −

∑
β

m∗
αβ

(
1

Weα
g∗
α − 1

Weβ
g∗
β

)
, (4.11a)

π̂∗
α = − 1

Weα

∑
β

R∗
αβ(v

∗
α − v∗

β)− 1
2

∑
β

m∗
αβ

(
1

Weα
g∗
α − 1

Weβ
g∗
β

)
(v∗
β + v∗

α). (4.11b)
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The free energies take the form

Ψ̂ I,∗
α = ψ̂ II,∗

α = 1
CnαWeα

Wα(φα)+ Cnα
Weα

‖∇φα‖2, (4.12a)

Ψ̂ II,∗
α = 2

CnαWeα
Kα(φα)+ 2Cnα

Weα
φα‖∇φα‖2, (4.12b)

and the chemical potentials equate to

μI,∗
α −

(
1

Cnα
W ′
α(φα)− 2CnαΔ∗φα

)
= 0, (4.13a)

μII,∗
α − 2φα

(
1

Cnα
W ′
α(φα)− 2CnαΔ∗φα

)

− 2
(

1
Cnα

Wα(φα)− Cnα‖∇∗φα‖2
)

= 0. (4.13b)

We suppress the star symbols in the remainder of this paper.

4.3. Equilibrium conditions
The equilibrium conditions of the model (4.9) are characterized by zero entropy
production: ∑

α

Pα = 0. (4.14)

From the equivalent form (3.47) we find that

ν̃α

(
Dα − 1

d
(div vα)I

)
:
(

Dα − 1
d
(div vα)I

)
= 0, (4.15a)

ν̃α

(
λα + 2

d

)
(div vα)

2 = 0, (4.15b)

Rαβ‖vα − vβ‖2 = 0, (4.15c)

mαβ

(
1

Weα
gα − 1

Weβ
gβ

)2

= 0, (4.15d)

for α = 1, . . . ,N in (4.15a)–(4.15b) and α, β = 1, . . . ,N in (4.15c)–(4.15d). Consider now
the non-trivial case 0 < φα < 1, mαβ > 0,Rαβ > 0 and ν̃α > 0. First, (4.15c) yields vα =
v for all α = 1, . . .N. We obtain from (4.15a)–(4.15b) that vα = v are rigid motions, for all
α = 1, . . .N. We do not intend to study the most general equilibrium conditions, but rather
to present a set of practically relevant equilibrium conditions. As such, we now restrict
to constant (rigid) motions: vα = v = constant. As a consequence, the viscous term and
the term containing Rαβ in the momentum balance (4.9b) vanish. Next, by using (4.15d)
we find that γ̂α = 0 and π̂α = 0, for all α = 1, . . . ,N. As such, from the mass balance
equation (4.9a) we get φ̀α = 0. This causes the inertia terms in momentum balance (4.9b)
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Diffuse-interface mixture models of multicomponent fluids

to vanish:
∂t(φαvα)+ div(φαvα ⊗ vα) = vαφ̀α = 0. (4.16)

The static equilibrium solutions are now identified by the following relations (for α, β =
1, . . . ,N):

1
Weα

gα − 1
Weβ

gβ = 0, (4.17a)

∇
(

gα + Weα
Fr2 y

)
= 0. (4.17b)

Remark 4.1 (Constituent body force). The equilibrium relations (4.17) are compatible due
to the standing assumption of equal body forces (bα = b for α = 1, . . . ,N).

Assume now the absence of gravitational forces (Fr−2 = 0). The conditions (4.17) imply
that the scaled Gibbs free energies are constant in equilibrium, i.e.

1
Weα

gα = 1
Weα

( pα + μα) = C (4.18)

for α = 1, . . . ,N, where C is a constant independent of the constituent number.
The interface profiles φα = φ

eq
α (ξ) are determined by the differential equations

(for α = 1, . . . ,N)

C = 1
Weα

(μI
α + pα) = 1

Weα

(
φeq
α

(
1

Cnα
W ′
α(φ

eq
α )− 2Cnα�φeq

α

)
+ pα

)
, (4.19a)

C = 1
Weα

(μII
α + pα) = 1

Weα

(
2φeq

α

(
1

Cnα
W ′
α(φ

eq
α )− 2Cnα�φeq

α

)

+ 2
Cnα

Wα(φ
eq
α )− 2Cnα‖∇φeq

α ‖2 + pα

)
, (4.19b)

1 =
∑
α

φeq
α . (4.19c)

4.4. Equilibrium profile Ginzburg–Landau energy
An important class of fluid mixture models arises when selecting the constituent
Helmholtz free energy to be of Ginzburg–Landau type:

Ψ̂ I
α = ψ̂ II

α = 1
CnαWeα

Wα(φα)+ Cnα
Weα

‖∇φα‖2, (4.20a)

Ψ̂ II
α = 2

CnαWeα
Kα(φα)+ 2Cnα

Weα
φα‖∇φα‖2, (4.20b)

Wα(φα) = W(φα) = 2φ2
α(1 − φα)

2, (4.20c)

Kα(φα) = K(φα) = 2φ3
α(1 − φα)

2. (4.20d)

We visualize the potentials W = W(φα) and K = K(φα) in figure 2. The potential W =
W(φα) admits the well-known symmetrical double-well shape, whereas K = K(φα) is a
non-symmetric double well.
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0.15

W (φα)

K(φα)

0.10

0.05

0

–0.2 0 0.2 0.4 0.6

φ

0.8 1.0

Figure 2. The potentials W = W(φα) and K = K(φα).

We determine the explicit interface profiles in the one-dimensional situation. Denote
with ξ a spatial coordinate centred at the interface.

THEOREM 4.2 (Equilibrium profile). In absence of gravitational forces and equal
interface widths, i.e. Cnα = Cn for α = 1, . . . ,N, the system (4.9) obeys in one dimension
the classical interface profile

φα = φeq
α (ξ) = 1

2

(
1 + tanh

( ±ξ
Cn

√
2

))
. (4.21)

Proof . One may verify via substitution that the interface profile (4.21) satisfies the
identities

1
Cnα

W ′(φeq
α )− 2Cnα

d2φ
eq
α

dξ2 = 0, (4.22a)

1
Cnα

W(φeq
α )− Cnα

(
dφeq

α

dξ

)2

= 0. (4.22b)

Hence, we have μα = 0, and thus, pα/Weα = C = 0. �

Theorem 4.2 conveys the shape of the interface profile for equal interface width
parameters: Cnα = Cn, α = 1, . . . ,N. We remark that the usage of equal interface width
parameters is compatible with multi-component NSCH models (Boyer & Minjeaud 2014;
Rohde & von Wolff 2021). In the remainder of the paper we restrict to equal interface
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3.0
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(a)

–1.0 –0.5 0

ξ

0.5 1.0 1.5 –1.5 –1.0 –0.5 0

ξ

0.5 1.0 1.5

2.5

1.0

0

3.0
Cn = 0.5

Cn = 0.25

Cn = 0.125

Cn = 0.5

Cn = 0.25

Cn = 0.125
2.0

1.5

0.5

(b)

2.5

1.0

0

Figure 3. The free energies for the equilibrium solution φα = φ
eq
α (ξ). (a) WeαΨ̂ I

α = Weαψ̂ II
α and

(b) WeαΨ̂ II
α .

width parameters. As a consequence of the above identities, we have

Ψ̂ I
α(φ

eq
α (ξ)) = ψ̂ II

α (φ
eq
α (ξ)) = 2

CnWeα
W(φeq

α )

= 1
4CnWeα

(
1 − tanh2

( ±ξ
Cn

√
2

))2

, (4.23a)

Ψ̂ II
α (φ

eq
α (ξ)) = 4

CnWeα
K(φeq

α )

= 1
4CnWeα

(
1 + tanh

( ±ξ
Cn

√
2

))

×
(

1 − tanh2
( ±ξ

Cn
√

2

))2

. (4.23b)

We visualize the free energies in figure 3. The free energy of model I is symmetric around
0, whereas the free energy of model II is non-symmetric. Both free energies collapse onto
the interface for Cn → 0.

Remark 4.3 (Pure fluid equilibrium). In scenario of a pure fluid (φα ≡ 1) with
gravitational forces, the thermodynamical pressure μα vanishes and (4.17) implies that
pα = p∞,α − yWeα/Fr2, where p∞,α is a constant equilibrium pressure.

Finally, we introduce the (dimensionless) constituent surface tension coefficient as

Θ̂α =
∫

R

Ψ̂α(φ
eq
α (ξ)) dξ. (4.24)

One may verify that the integral is the same for each of the two models:
∫

R

Ψ̂ I
α(φ

eq
α (ξ)) dξ =

∫
R

Ψ̂ II
α (φ

eq
α (ξ)) dξ =

√
2

3Weα
. (4.25)
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5. Connection with the NSCHAC model

In this section we explore the connection of the mixture model (3.46) and the NSCHAC
model. We restrict ourselves to binary mixtures for the sake of clarity, and note that the
extension to multi-constituent mixtures is straightforward. In particular, we discuss the
connection for the NSCHAC model (1.1) and use the diffuse-interface closure models
outlined in § 4. This model is invariant to the choice of fundamental variables. Hence,
it can be formulated using the mass-averaged mixture velocity or the volume-averaged
mixture velocity. For details on the equivalence of the two forms, see ten Eikelder et al.
(2023).

First, in § 5.1 we lay down two particular forms of the NSCHAC model. Then, in § 5.2 we
analyse the connection of the components of the mixture model with that of the NSCHAC
model. Finally, we discuss the connection of the complete models in § 5.3.

5.1. The NSCHAC model
Restricting to two constituents, the volume fractions now constitute a single order
parameter. We define this order parameter in the classical way as the difference of the
volume fractions of the individual constituents: φ = φ1 − φ2 ∈ [−1, 1]. Invoking (2.3)
and (2.5) provides

φ1 = 1 + φ

2
, φ2 = 1 − φ

2
, (5.1a)

ρ(φ) = ρ1(1 + φ)

2
+ ρ2(1 − φ)

2
. (5.1b)

We note that the NSCHAC model (1.1) involves the volume-measure-based Helmholtz
free energy belonging to the constitutive class

Ψ̄ = Ψ̄ (φ,∇φ). (5.2)

On the other hand, it is also common to work with a mass-measure-based Helmholtz free
energy:

ψ̄ = ψ̄(φ,∇φ). (5.3)

To establish the connection between the two Helmholtz free energy classes, we select the
following natural identification:

Ψ̄ (φ,∇φ) ≡ ρ(φ)ψ̄(φ,∇φ). (5.4)

Furthermore, we introduce chemical potentials associated with each of the constitutive
classes:

μ̄ = ∂Ψ̄

∂φ
− div

(
∂Ψ̄

∂∇φ
)
, (5.5a)

ῡ = ∂ψ̄

∂φ
− 1
ρ

div
(
ρ
∂ψ̄

∂∇φ
)
. (5.5b)

We present (equivalent) compact forms of the NSCHAC model, one suited for each of
the two choices. With the aim of introducing the first compact form, we present a lemma
analogous to Lemma 3.11.
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LEMMA 5.1 (Compact form free energy contributions). The following identity holds:

φ∇μ̄ = ∇(μ̄φ − Ψ̄ )+ div
(

∇φ ⊗ ∂Ψ̄

∂∇φ
)
. (5.6)

Proof . The proof is similar to that of Lemma 3.11. �

Remark 5.2 (Lemma 5.1). The identity (5.6) is often employed in the particular scenario
of the Ginzburg–Landau free energy. Here we note that it holds for the general constitutive
class of the Helmholtz free energy.

Applying Lemma 5.1, we arrive at the first form of the NSCHAC model:

∂t(ρv)+ div(ρv ⊗ v)+ ∇p + φ∇μ̄− div(ν(2D + λ(div v)I))− ρb = 0, (5.7a)

∂tρ + div(ρv) = 0, (5.7b)

∂tφ + div(φv)− div(M̄∇(μ̄+ ωp))+ ζ m̄(μ̄+ ωp) = 0. (5.7c)

Next, the second form of the NSCHAC model follows when switching to the
mass-measure-based Helmholtz free energy in (5.7). To this purpose, we introduce the
relation between the chemical potentials (5.5).

LEMMA 5.3 (Relation chemical potentials). The chemical potentials (5.5) are related as

μ̄ = ρῡ + ψ̄
ρ1 − ρ2

2
. (5.8a)

Proof . This follows from a straightforward substitution. For details, we refer the reader to
ten Eikelder et al. (2023). �

Applying Lemma 5.3, we arrive at the second form of the NSCHAC model:

∂t(ρv)+ div(ρv ⊗ v)+ ∇p + φ∇
(
ρῡ + ψ̄

ρ1 − ρ2

2

)

− div(ν(2D + λ(div v)I))− ρb = 0, (5.9a)

∂tρ + div(ρv) = 0, (5.9b)

∂tφ + div(φv)− div
(

M̄∇
(
ρῡ + ψ̄

ρ1 − ρ2

2
+ ωp

))

+ ζm
((
ρῡ + ψ̄

ρ1 − ρ2

2

)
+ ωp

)
= 0. (5.9c)

Remark 5.4 (Variable transformation). One can apply a variable transformation in (5.9) to
absorb the term ψ̄(ρ1 − ρ2)/2 into the pressure p. For details, we refer the reader to ten
Eikelder et al. (2023).

Analogous to the diffuse-interface models in § 4, we distinguish between a
Ginzburg–Landau free energy that is either volume measure based, or mass measure based.
It is our purpose to compare the associated models with the diffuse-interface models of
§ 4 (model I and model II). We also refer to the NSCHAC free energy models as model I
and model II to emphasize this intent.
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Model I: the volume-measure-based Ginzburg–Landau free energy is given by

Ψ̄ I = σ

ε
F(φ)+ σε

2
‖∇φ‖2, (5.10a)

F(φ) := 1
4
(1 − φ2)2, (5.10b)

where F = F(φ) represents a double-well potential, ε is a (constant) interface thickness
variable and σ is a (constant) variable related to the surface energy density. The chemical
potential and mass transfer take the form

μ̄I = σ

ε
F′(φ)− σε�φ, (5.11a)

γ̄ I = −m(μ̄I + ωp). (5.11b)

Model II: the mass-measured-based Ginzburg–Landau free energy reads

ψ̄ II = κ

ε
F(φ)+ κε

2
‖∇φ‖2, (5.12)

where F = F(φ) is given in (5.10b). Also in this second model, the interface thickness
variables ε and surface energy density quantities κ are assumed constant. The associated
chemical potentials and mass transfer take the form

ῡII = τ̄ II − κε(ρ1 − ρ2)

2ρ
‖∇φ‖2, (5.13a)

τ̄ II := κ

ε
F′(φ)− κε�φ, (5.13b)

γ̄ II = −m
(
ρτ̄ II + ρ1 − ρ2

2

(κ
ε

F(φ)− κε

2
‖∇φ‖2

)
+ ωp

)
. (5.13c)

We now present the energy-dissipation property of the NSCHAC model. Introduce
the global energy as the superposition of the Helmholtz free energy, kinetic energy and
gravitational energy:

Ē (Ω) :=
∫
Ω

Ψ̄ + ¯K + Ḡ dΩ. (5.14a)

Here the Helmholtz free energy (5.2) is specified in (5.10) and (5.12), the kinetic energy is
given in (2.28b) and the gravitational energy is

Ḡ := ρgy. (5.15)

THEOREM 5.5 (Energy dissipation NSCHAC model). Suppose that the NSCHAC model
is equipped with the natural boundary conditions on Ω:

(−pI + ν(2D + λ(div v)I))n = 0, (5.16a)

∇φ · n = 0, (5.16b)

(M̄∇(μ̄+ ωp))n = 0. (5.16c)
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Diffuse-interface mixture models of multicomponent fluids

Here n denotes the outward unit normal, then the associated total energy satisfies the
dissipation relation:

d
dt

Ē (Ω) = −
∫
Ω

(
2ν

(
D − 1

d
(div v)I

)
:
(

D − 1
d
(div v)I

))
dΩ

−
∫
ν

(
λ+ 2

d

)
(div v)2 dΩ

−
∫
Ω

∇(μ̄+ ωp) · (M̄∇(μ̄+ ωp)) dΩ

−
∫
Ω

m̄ζ(μ̄+ ωp)2 dΩ ≤ 0. (5.17)

The equilibrium profile of the model is characterized by zero energy evolution:

d
dt

E (Ω) = 0. (5.18)

Following a similar argumentation as in § 4.4, in absence of gravitational forces one can
deduce the equilibrium profile

φ = φeq(ξ) = tanh
( ±ξ
ε
√

2

)
, (5.19)

where again ξ is a coordinate centred at the interface (φ = 0).
Lastly, we consider the determination of the surface tension coefficient. Similar to

(4.24), we set

Θ̄ I =
∫

R

Ψ̄ I(φeq(ξ)) dξ, (5.20a)

Θ̄ II =
∫

R

Ψ̄ II(φeq(ξ)) dξ, (5.20b)

and note that the integrals are equal to

Θ̄ I = σ
2
√

2
3
, (5.21a)

Θ̄ II = (ρ1 + ρ2)κ

√
2

3
. (5.21b)

5.2. Connection of the components of the mixture model
To study the connection of the mixture model (3.46) and the NSCHAC model (5.7), (5.9),
it is useful to formulate the mixture model in terms of pure mixture quantities. The mixture
quantities are the mixture velocity v (defined in (2.10)), the order parameter φ (defined
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M.F.P ten Eikelder, K.G. van der Zee and D. Schillinger

(5.1)) and lastly a diffusive flux quantity defined as

J := J 1 − J 2 = ρ̃1w1 − ρ̃2w2. (5.22)

To formulate the mixture model (3.46) in mixture quantities, we introduce the variable
transformations

v1 = v + J
2ρ̃1

, (5.23a)

v2 = v − J
2ρ̃2

, (5.23b)

which follow from (2.10) and (5.22).
In the remainder of this subsection we formulate the various energies and components

of the mixture model (3.46) in mixture quantities, and establish the connection with
their counterparts in the NSCHAC model. We compare the quantities associated with the
Ginzburg–Landau free energy model of § 4.4 with quantities of the corresponding free
energy model of § 5.1.

5.2.1. Kinetic energy
We recall from (2.28) that the kinetic energy of the mixture (2.27a) may be decomposed
as

K = ¯K +
∑
α

1
2
ρ̃α‖wα‖2. (5.24)

The kinetic energy corresponding to the peculiar velocity is neglected in the NSCHAC
model. The next lemma reformulates this kinetic energy in mixture quantities.

LEMMA 5.6 (Kinetic energy peculiar velocity). The kinetic energy associated with the
peculiar velocity takes the form

∑
α=1,2

ρ̃α‖wα‖2 = ρ‖J‖2

2ρ1ρ2(1 − φ2)
. (5.25)

Proof . On the account of (2.12) we add a suitable partition of zero to the left-hand side
and find that ∑

α=1,2

ρ̃α‖wα‖2 = w1 · (ρ̃1w1 + ρ̃2w2)+ w2 · (ρ̃1w1 + ρ̃2w2)

− w1 · ρ̃2w2 − w2 · ρ̃1w1

= −w1 · ρ̃2w2 − w2 · ρ̃1w1

= −ρw1 · w2. (5.26)

Next, by recognizing the constituent diffusive flux we arrive at the result

∑
α=1,2

ρ̃α‖wα‖2 = −ρJ 1 · J 2

ρ̃1ρ̃2
= J · J

4ρ̃1ρ̃2
= ρ‖J‖2

2ρ1ρ2(1 − φ2)
. (5.27)

�
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Diffuse-interface mixture models of multicomponent fluids

5.2.2. Gravitational energy
The gravitational energy of the mixture G coincides with the NSCHAC gravitational
energy:

G1 = ρ1
1 + φ

2
by, (5.28a)

G2 = ρ2
1 − φ

2
by, (5.28b)

G = G1 + G2 = Ḡ = ρby. (5.28c)

5.2.3. Free energy
We define the mixture free energies as

Ψ̂ (φ,∇φ) = Ψ̂1(φ1,∇φ1)+ Ψ̂2(φ2,∇φ2), (5.29a)

ρψ̂(φ,∇φ) = ρ̃1ψ̂1(φ1,∇φ1)+ ρ̃2ψ̂2(φ2,∇φ2). (5.29b)

We distinguish between the two models specified in § 4.4.
Model I: the constituent free energies (4.20) take the form

Ψ̂ I
1 = σ1

2ε
F(φ)+ σ1ε

4
‖∇φ‖2, (5.30a)

Ψ̂ I
2 = σ2

2ε
F(φ)+ σ2ε

4
‖∇φ‖2, (5.30b)

where F = F(φ) is defined in (5.10b). Inserting the Ginzburg–Landau free energy (5.30)
into (5.29) we obtain

Ψ̂ I =
(σ1

2ε
+ σ2

2ε

)
F(φ)+ σ1ε + σ2ε

4
‖∇φ‖2. (5.31)

This form coincides with the standard Ginzburg–Landau form (5.10) for the scenario σ =
σ1 = σ2:

Ψ̂ I = Ψ̄ I = σ

ε
F(φ)+ σε

2
‖∇φ‖2. (5.32)

Model II: the constituent free energies (4.4) read

ψ̂ II
1 = κ1

ε
F(φ)+ κ1ε

2
‖∇φ‖2, (5.33a)

ψ̂ II
2 = κ2

ε
F(φ)+ κ2ε

2
‖∇φ‖2. (5.33b)

Inserting the Ginzburg–Landau free energy (5.33) into (5.29) yields

ρψ̂ II =
(ρ1κ1

2ε
+ ρ2κ2

2ε

)
F(φ)+ ρ1κ1ε + ρ2κ2ε

4
‖∇φ‖2

+
(ρ1κ1

2ε
− ρ2κ2

2ε

)
φF(φ)+ ρ1κ1ε − ρ2κ2ε

4
φ‖∇φ‖2. (5.34)

In the special case κ = κ1 = κ2 we retrieve the NSCHAC free energy:

ψ̂ II = ψ̄ II = κ

ε
F(φ)+ κε

2
‖∇φ‖2. (5.35)
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5.2.4. Korteweg tensor
We differentiate between the two models specified in § 4.4.

Model I: the constituent Korteweg tensors read in mixture quantities as

∇φα ⊗ ∂Ψ̂ I
1

∂∇φα = σ1ε

2
∇φ ⊗ ∇φ, (5.36a)

∇φα ⊗ ∂Ψ̂ I
2

∂∇φα = σ2ε

2
∇φ ⊗ ∇φ. (5.36b)

The superposition of the constituent Korteweg tensors yields

∑
α=1,2

∇φα ⊗ ∂Ψ̂ I
α

∂∇φα = ∇φ ⊗ ∂Ψ̂ I

∂∇φ =
(σ1ε

2
+ σ2ε

2

)
∇φ ⊗ ∇φ. (5.37)

The first equality holds for all constituent classes Ψ̂ II = Ψ̂ I(φ,∇φ), whereas the second
follows from (5.36). For the special case σ = σ1 = σ2, we find that the standard mixture
Korteweg tensor

∑
α=1,2

∇φα ⊗ ∂Ψ̂ I
α

∂∇φα = σε∇φ ⊗ ∇φ. (5.38)

Model II: the constituent Korteweg tensors read in mixture quantities as

∇φ1 ⊗ ∂ψ̂ II
1

∂∇φ1
= κ1ε∇φ ⊗ ∇φ, (5.39a)

∇φ2 ⊗ ∂ψ̂ II
2

∂∇φ2
= κ2ε∇φ ⊗ ∇φ. (5.39b)

The superposition of the constituent Korteweg tensors yields

∑
α=1,2

∇φα ⊗ ∂Ψ̂ II
α

∂∇φα = ∇φ ⊗ ∂Ψ̂ II

∂∇φ

=
(ρ1κ1ε

2
+ ρ2κ2ε

2
+ φ

ρ1κ1ε

2
− φ

ρ2κ2ε

2

)
∇φ ⊗ ∇φ. (5.40)

In the scenario κ = κ1 = κ2 the mixture Korteweg tensor reduces to

∑
α=1,2

∇φα ⊗ ∂Ψ̂ II
α

∂∇φα = ρκε∇φ ⊗ ∇φ. (5.41)

5.2.5. Chemical potential
Likewise to the other terms involving the free energy, we separate the two modelling
choices specified in § 4.4.
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Diffuse-interface mixture models of multicomponent fluids

Model I: the chemical potentials take the form

μI
1 = σ1

ε
F′(φ)− σ1ε�φ, (5.42a)

μI
2 = −σ2

ε
F′(φ)+ σ2ε�φ. (5.42b)

In the case σ = σ1 = σ2 we arrive at

μI
1 = −μI

2 = μ̄I = σ

ε
F′(φ)− σε�φ. (5.43)

Model II: the associated chemical potentials take the form

μII
1 = 1 + φ

2
ρ1τ1 + ρ1

(κ1

ε
F(φ)− κ1ε

2
‖∇φ‖2

)
, (5.44a)

μII
2 = 1 − φ

2
ρ2τ2 + ρ2

(κ2

ε
F(φ)− κ2ε

2
‖∇φ‖2

)
, (5.44b)

τ II
1 = 2κ1

ε
F′(φ)− 2κ1ε�φ, (5.44c)

τ II
2 = −2κ2

ε
F′(φ)+ 2κ2ε�φ. (5.44d)

In the case κ = κ1 = κ2 we arrive at

μII
1 = ρ1(1 + φ)τ̄ II + ρ1

(κ
ε

F(φ)− κε

2
‖∇φ‖2

)
, (5.45a)

μII
2 = −ρ2(1 − φ)τ̄ II + ρ2

(κ
ε

F(φ)− κε

2
‖∇φ‖2

)
. (5.45b)

The free energy contributions take the form
∑
α=1,2

φα∇μI
α = φ

2
∇(μI

1 − μI
2)+ 1

2
∇(μI

1 + μI
2). (5.46)

LEMMA 5.7 (Reduction free energy contribution). In case of equal parameters σ = σ1 =
σ2 (model I) and κ = κ1 = κ2 (model II), the surface tension contributions reduce to∑

α=1,2

φα∇μI
α = φ∇μ̄I, (5.47a)

∑
α=1,2

φα∇μII
α = φ∇

(
ρῡII + ψ̄ II ρ1 − ρ2

2

)
+ c, (5.47b)

c = ∇
(
(ρ̃1 − ρ̃2)τ̄

II + ρ1 + ρ2

2

(κ
ε

F(φ)− κε

2
‖∇φ‖2

))
. (5.47c)

Proof . This is a straightforward consequence of the variable transformation (5.1) and the
form of the chemical potentials (5.42) and (5.44). �

Lemma 5.7 conveys that, for free energy model I, the surface tension contribution
coincides with that of the NSCHAC model. On the other hand, for model II, it does not
match with the NSCHAC model due to the presence of c in (5.47b) (which is in general
not zero).
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5.2.6. Mass transfer
On the account of the balance (2.25a), we introduce a single mass transfer quantity γ̂ that
is related to the constituent mass transfer quantities via

γ̂ = γ̂1 − γ̂2, γ̂1 = 1
2 γ̂ , γ̂2 = −1

2 γ̂ . (5.48a–c)

We distinguish between the two free energy models specified in § 4.4.
Model I: substitution of the order parameter into (4.3) provides

γ̂ I = −m̂
((

σ1

ρ1ε
+ σ2

ρ2ε

)
F′(φ)−

(
σ1ε

ρ1
+ σ2ε

ρ2

)
�φ +

(
1
ρ1

− 1
ρ2

)
p
)
, (5.49)

where m̂ = 2m12 = 2m21. In the scenario σ = σ1 = σ2 the mass transfer reduces to the
NSCHAC mass transfer

γ̂ I = γ̄ I = −m̄(μ̄I + ωp), (5.50)

with m̄ = m̂(ρ−1
1 + ρ−1

2 ).
Model II: substitution of the order parameter into (4.6) provides

γ̂ II = −m̂
((κ1

ε
+ κ2

ε

)
F′(φ)+

(κ1

ε
− κ2

ε

)
φF′(φ)

− (κ1ε + κ2ε)�φ − (κ1ε − κ2ε)φ�φ

+
(κ1

ε
− κ2

ε

)
F(φ)−

(κ1ε

2
− κ2ε

2

)
‖∇φ‖2

+
(

1
ρ1

− 1
ρ2

)
p
)
, (5.51)

where m̂ = 2m12 = 2m21. In the scenario κ = κ1 = κ2 the mass flux reduces to

γ̂ II = −m̆
(

2ρ1ρ2

ρ1 + ρ2
τ̄ II + ωp

)
, (5.52)

with m̆ = m̂(ρ−1
1 + ρ−1

2 ). This does in general not match with the NSCHAC mass transfer.
However, in the density matching case ρ1 = ρ2 = ρ it reduces to the NSCHAC mass
transfer γ̂ II = γ̄ II .

5.2.7. Momentum transfer
Based on the balance (2.25b), we introduce the momentum transfer γ̂ related to the
constituent momentum transfer quantities via

π̂ = π̂1 − π̂2, π̂1 = 1
2
π̂, π̂2 = −1

2
π̂. (5.53a–c)

Inserting the order parameter and denoting D = D12 = D21, we obtain

π̂ = p∇φ − ρp
2Dρ1ρ2

J + 1
2
γ̂ v + γ̂

2

(
1

ρ1(1 + φ)
− 1
ρ2(1 − φ)

)
J , (5.54)

where the last member vanishes when φ = ±1.
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Diffuse-interface mixture models of multicomponent fluids

5.2.8. Viscous stress tensor
Invoking the variable transformation (5.23), the superposition of the viscous components
of the stress tensors admits the form

∑
α=1,2

ν̃α(2Dα + λα(div vα)I) = ν(2D + λ div v)

+ ν̂(2A + λ(div J )I)

+ ν̆(2B + λ(J · ∇φ)I), (5.55a)

where we have introduced the viscosity quantities

ν = ν1
1 + φ

2
+ ν2

1 − φ

2
, (5.56a)

ν̂ = ν1

2ρ1
− ν2

2ρ2
, (5.56b)

ν̆ = − ν1

2ρ1(1 + φ)
+ ν2

2ρ2(1 − φ)
, (5.56c)

the symmetric tensors

D = 1
2(∇v + (∇v)T), (5.57a)

A = 1
2 (∇J + (∇J )T), (5.57b)

B = 1
2 (J ⊗ ∇φ + ∇φ ⊗ J ), (5.57c)

and we have set ν̃α = ναφα and λ = λα . In establishing the above form we have made use
of the identities

∇v1 = ∇v + 1
ρ1(1 + φ)

∇J − 1
ρ1(1 + φ)2

J ⊗ ∇φ, (5.58a)

∇v2 = ∇v − 1
ρ2(1 − φ)

∇J + 1
ρ2(1 − φ)2

J ⊗ ∇φ. (5.58b)

Each of the three members of the viscous stress tensor (5.55) appears in the classical form
of a symmetric tensor and λI times its trace. The form (5.55) conveys that the mixture
viscous stress term is composed of a contribution solely associated with the mixture
velocity v, and a part in terms of the diffusive velocity J . The first contribution is precisely
the viscous stress tensor in the NSCHAC model. In contrast, the second contribution
represents diffusion with respect to the peculiar velocity. This contribution is absent in
the NSCHAC model.

5.2.9. Peculiar velocity stress component
With the aim of expressing the peculiar velocity component of the stress in mixture
variables, we introduce the following lemma.

LEMMA 5.8 (Symmetry dyadic product peculiar velocity). The peculiar velocity dyadic
product is symmetric:

w1 ⊗ w2 = w2 ⊗ w1. (5.59)
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Proof . This follows from the sequences of identities:

w1 ⊗ w2 = (v1 − v)⊗ (v2 − v)

= v1 ⊗ v2 − 1
ρ

v1 ⊗ (ρ̃1v1 + ρ̃2v2)− 1
ρ
(ρ̃1v1 + ρ̃2v2)⊗ v2 + v ⊗ v

= − ρ̃1

ρ
v1 ⊗ v1 − ρ̃2

ρ
v2 ⊗ v2 + v ⊗ v. (5.60)

�

We may now write the peculiar velocity component in mixture quantities.

LEMMA 5.9 (Peculiar velocity component stress). The peculiar velocity component of the
stress takes the form ∑

α=1,2

ρ̃αwα ⊗ wα = ρJ ⊗ J
2ρ1ρ2(1 − φ2)

. (5.61)

Proof . The proof is similar to that of Lemma 5.6 and relies on Lemma 5.8. �

This contribution represents the inertia of the diffusive flux. It is not present in the
NSCHAC model.

5.3. Connection of the complete models
We start with the mass balance laws. The mixture mass balance law

∂tρ + div(ρv) = 0, (5.62)

as presented in (2.23a), is identical in the mixture model (3.46) and the NSCHAC models
(5.7) and (5.9). Next, the phase equation formulated in mixture quantities follows from
(3.46a):

∂tφ + div(φv)+ div h − ζγ = 0. (5.63)

Here we have introduced the diffusive flux quantity

h = h1 − h2 = φ1w1 − φ2w2. (5.64)

This equation is not of Cahn–Hilliard type. The phase equation (5.63) does not contain a
chemical potential or pressure variable. This sets it apart from its NSCHAC counterpart in
which the diffusive flux h is replaced by the constitutive model:

h̄I = −M̄∇(μ̄+ ωp), (Model I) (5.65a)

h̄II = −M̄∇
(
ρῡ + ψ̄

ρ1 − ρ2

2
+ ωp

)
. (Model II) (5.65b)

The diffusive flux (5.64) and the constitutive model (5.65) both vanish in equilibrium. On
the other hand, the mass transfer term of the mixture model and the NSCHAC model is
of similar type. In the scenario of model I with equal modelling parameters (σ1 = σ2) it
coincides with the NSCHAC mass transfer (see § 5.2).
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Diffuse-interface mixture models of multicomponent fluids

Remark 5.10 (Diffusive fluxes). The diffusive fluxes J and h constitute a single unknown
in the system, since they are related as J = 2ρ1ρ2h/(ρ1 + ρ2). For a proof, we refer the
reader to ten Eikelder et al. (2023).

Next, we focus on the mixture momentum equation that follows from the superposition
of the constituent momentum balance equations (3.46b):

∂tm + div(m ⊗ v)+ ∇p − div(ν(2D + λ div v))− ρb

+ φ

2
∇(μI

1 − μI
2)+ 1

2
∇(μI

1 + μI
2)

− div(ν̂(2A + λ(div J )I)+ ν̆(2B + λ(J · ∇φ)I))

+ div
(

ρJ ⊗ J
2ρ1ρ2(1 − φ2)

)
= 0. (5.66)

Here we have substituted the expressions for viscous and peculiar velocity contributions.
The first line matches with the NSCHAC model. The second line consists of free energy
terms. In case of equal modelling parameters, it reduces for model I to the free energy
contribution in the NSCHAC model. This does not apply to the second model. Next, we
remark that the members of the last two lines are absent in the NSCHAC linear momentum
equation. These terms are all linked to the diffusive flux. The diffusive flux in the mixture
model is described by an evolution, whereas in the NSCHAC model it is determined
by the constitutive model (5.65). This is related to the usage of the energy-dissipation
statement modelling restriction of the NSCHAC model, instead of the second law of
thermodynamics adopted for the mixture model. This precludes the need of a constitutive
model for the momentum transfer. The system described by the mixture mass balance
(5.62), the phase equation (5.63), the linear momentum equation (5.66), augmented with
the evolution equation of the diffusive flux (see ten Eikelder et al. 2023) is equivalent to
the mixture model (3.46) (for the diffuse-interface models of § 4).

The mixture model and the NSCHAC model share the same one-dimensional
equilibrium profile:

φ = φeq(ξ) = tanh
( ±ξ
ε
√

2

)
. (5.67)

We consider the surface tension coefficient and define, for both models,

Θ̂ := Θ̂1 + Θ̂2. (5.68)

This results in

Θ̂ I = (σ1 + σ2)

√
2

3
, (5.69a)

Θ̂ II = (ρ1κ1 + ρ2κ2)

√
2

3
. (5.69b)

For equal parameters σ1 = σ2 = σ and κ1 = κ2 = κ , these integrals match with the
NSCHAC surface tension coefficients:

Θ̂ I = Θ̄ I = σ
2
√

2
3
, (5.70a)

Θ̂ II = Θ̄ II = (ρ1 + ρ2)κ

√
2

3
. (5.70b)
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Mixture model NSCHAC model

Mixture theory ✓ ✗
Modelling restriction Second law Energy dissipative
No. mass balance laws N N
No. momentum balance laws N 1
Diffusive flux Evolution equation Constitutive model
Interface profile Tangent hyperbolic Tangent hyperbolic

Table 1. Comparison mixture model and NSCHAC model for N constituents. With the term ‘mixture theory’
we indicate whether the model is compatible with mixture theory. Next, energy dissipative refers to the
energy-dissipative property of the NSCHAC model. Finally, in the last line we note that both models admit
the standard tangent hyperbolic interface profile for the Ginzburg–Landau free energy.

Lastly, we summarize the comparison of the mixture model and the NSCHAC model in
table 1.

6. Conclusion

In this paper we presented a thermodynamical consistent diffuse-interface incompressible
mixture model. Starting from the continuum theory of mixtures we derived a constitutive
modelling restriction that is compatible with the second law of thermodynamics.
Subsequently, we selected constitutive models that satisfy this modelling restriction. To
close the mixture model, we presented two diffuse-interface models, each associated with
a particular Helmholtz free energy. Finally, we studied in detail the connection with the
NSCHAC model (see table 1 for an overview).

While the diffuse-interface mixture models we have set out are helpful in the study of the
evolution of incompressible mixtures, we certainly do not claim that these are sufficient.
We outline two main avenues of potential future research. The first avenue is the rigorous
mathematical analysis of the models, and the study of the sharp interface asymptotics. This
sharp interface analysis is of a different type to that of the NSCHAC model. Indeed, the
proposed mixture models are not of a Cahn–Hilliard type and do not contain a mobility
parameter. Furthermore, to assess the behaviour of solutions of the mixture model, it
is essential to develop suitable numerical algorithms. In particular, it is worthwhile to
compare numerical solutions of the mixture model with those of the NSCHAC model.
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