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Abstract. We give here a detailed technical description of a Monte Carlo scheme for the dynamical 
evolution of spherical stellar systems. The philosophy of the method, as well as a few illustrative 
results, are given elsewhere (Henon, 1971, hereafter called I). 

1. Superstars 

Each actual computation will be made with a set of n objects, with n having some 
definite value. On the other hand, we would like the results to be applicable to a 
system with an arbitrary number of stars N. We shall therefore make the convention 
that each object in the computation is a superstar, representing K actual stars, with: 
K= Njn. If the various units are suitably chosen (see below), K does not appear in 
the numerical computations, and is thus left as a freely adjustable parameter. 

Let r be the distance of a star to the centre, vr its radial velocity, vt its transverse 
velocity, and m its mass. A superstar will be characterized at any given time by the 
four quantities, r, vr, v„ m, and will be understood as a collection of K stars having 
these coordinates. Thus the mass of the superstar is: Km. The two angular coordinates 
defining the position of each star on the sphere with radius r are not specified; the 
stars are assumed to be randomly distributed on the sphere. Similarly, the angular 
coordinate defining the orientation of the transverse velocity is assumed to be ran­
domly distributed. 

In this way, the introduction of the superstars has another important advantage: 
it makes the system exactly spherically symmetrical. 

2. Initial Conditions 

The computation is started by selecting the four quantities r, vr, vt, m for each of 
the n superstars at time f=0. This is done by prescribing an initial distribution 
function /(r, v, m, 0), and then selecting the coordinates randomly in accordance 
with this distribution. 

The choice of the quasi-random number generator requires some care since a large 
quantity of these numbers is used in the course of the computation (typically about 
106 for one run with « = 1000). We have used, to our entire satisfaction, one of the 
generators studied by Coveyou and Macpherson (1967): 

ni+1=Anf + l (mod235), (1) 

with 

X = 273 673 163155 (octal). (2) 
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The «; are integers. Quasi-random numbers with a uniform distribution between 0 
and 1 are obtained by: Xt=2~35 nt. 

One restriction on the form of the initial distribution function is that it must be 
a steady state; the present scheme is not equipped to handle the initial phase of rapid 
collective motions, since it proceeds by time steps much larger than the crossing time 
tc, and we assume that these motions have already died out at time t=0. In the case 
of spherical symmetry, this means that the distribution function has the form: 

f = W(E,A,m), (3) 

where E and A are the energy per unit mass and the angular momentum per unit 
mass: 

E = U(r) + $(v? + v?), 
A=rvt;

 ( 4 ) 

U(r) is the gravitational potential. 
The function ¥ in (3) can be arbitrary. In practice, however, the computation of 

the initial conditions will be easier if f has a simple analytical form; in particular 
it is preferable to choose a form for which the corresponding potential U(r) can 
be obtained explicitly. 

3. Potential 

We need to know the mean, smoothed-out potential, in order to compute the un­
perturbed motion of the stars. Smoothing in the transverse directions is immediately 
achieved by forgetting the discrete nature of each superstar and assimilating it to 
a spherical shell of radius r, of mass Km. Smoothing in the radial direction would 
also be required in principle. This, however, raises some practical difficulties. One 
of them is the precise definition of the smoothed potential in that case. Another is 
that the kinetic energy of a star, computed from its total energy by (4a), may turn 
out to be negative in some cases if the actual potential is replaced by the smoothed-
out potential. On the other hand, experience indicates that radial smoothing is not 
really necessary (see Figure 4). The reason is probably that a system of concentric 
shells is already smoothed to a considerable degree; in particular, since it has spherical 
symmetry, the two integrals (4) of the motion of a star are exactly conserved. 

Therefore we take the mean potential as being that of the system of n concentric 
shells. To compute it, we sort first the n shells in order of increasing radius. Let rk 

and Kmk be the radius and mass of the shell of rank k from the centre. We also define: 
r0 = 0 and rn+1 = oo. Then, in the interval rk^r^rk+1, the potential is: 

k n 

U^^Kct-1- Vm,.- V ^Y (5) 
i + l i = k+l 

Thus U, plotted against 1/r, is a succession of straight segments, as schematically 
shown by Figure 1 for the case n = 3. In consequence, it is sufficient to store the values 
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Fig. 1. Gravitational potential U as a function of \jr, for a system of three shells. 

Uk= U(rk) of the potential on the shells in order to be able to compute quickly the 
potential at any point. These values are computed recursively by: 

Un+1=0, 
n 

Mn=M=KY mt, 
j = i 

(I 1 
Uk = Uk+1-GMk( 

\rk rk+l 
Mk-t =Mk- Kmk. 

(k = n,...,l) 

(6) 

Mk is the mass inside of and including the shell of rank k. M is the total mass of the 
system. The potential at any point is then given by: 

U(r) = Uk+ jlrk~jlr (Uk+1-Uk), for rk<r^rk+l. (7) 

4. Time Step 

We let now the system evolve during a time At, which must be small compared to 
the relaxation time. The crossing time is given as a function of the total mass M 
and the total energy S of the system by: 

fc = C 2 G M 5 / 2 K r 3 / 2 , (8) 

where C2 is a numerical constant (van Albada, 1968), and the relaxation time is 
related to the crossing time by: 

trltc = CtNI\nN, (9) 

where Q is another numerical constant (Chandrasekhar, 1942). Therefore we take 
for the time step: 

At=*b GM 5 / 2 K | " 3 / 2 , 
IniV 

(10) 
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where b is a small constant. Experience shows that 6=0.005 gives reasonable results. 
At as given by (10) is not constant but decreases markedly with time because N 

and M decrease as a result of the escape of stars. 

5. Relaxation 

We assume that the mean potential does not change during At. Then the unperturbed 
motion of each star would be a rosette motion, characterized by constant values of 
E and A. In fact, however, the perturbations will slightly change E and A during 
the time At. In order to simulate this effect in Monte Carlo fashion, we should first 
select at random the position of each star along its orbit. For the first time step, 
however, this is not necessary since the initial coordinates have been already chosen 
at random according to a given steady state distribution function. Thus we take each 
superstar where it is at / = 0. We shall compute the effect of the perturbations during 
a small time 5t, satisfying: 

5t<te. (11) 

Later on we shall multiply the effect by the correcting factor At/St, in order to com­
pensate for the rest of the time interval. 

Next, we must consider each star in turn as a test-star, and then select at random 
another star as a representative of the field stars. We call (r, v, m) and (r', v', m') the 
coordinates of the test star and the field star respectively. As is well known, the total 
perturbation from the field stars up to a distance / is approximately proportional to 
In (Nl/R), where R is a typical radius of the system; thus, although all stars contribute 
to the perturbation, the largest part of it comes from relatively near stars. For 
example, if N= 105, 80% of the perturbation comes from the field stars nearer than 
R/10. Therefore we shall make the simplifying assumption that the distribution of 
field stars with respect to mass and velocity is everywhere the same as where the 
test star is. In other words, we take the distribution function of field stars to be not 
f{t',\',m'), but f(r, v', m'). The advantage is that this last distribution is space-
independent, so that we can now select separately the position of the field star on 
the one hand, its velocity and its mass on the other. 

We select first the mass and the velocity, with a weight function proportional to 
the local distribution function. There is a very simple way to do this: we just select 
the mass and the velocity of the nearest star. A moment's reflexion will show that 
the probability to obtain given values m' and v' is proportional to the local distribution 
function. 

In fact, we do not know the positions of the stars, but only the radii of the super­
stars. Besides, it will be seen below that the choice of the nearest star leads to a 
divergence in the equations, which can be avoided by taking instead the p-th nearest 
star, with p> 1. Thus our practical rule will be: for a test star at rk, take the mass 
and the velocity of the field star either at rk+p or rk_p. The probability to obtain 
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given values of m' and v' is still proportional to the local distribution function, 
provided that p is not too large. 

This procedure does not determine completely the velocity of the field star, because 
only vr and vt are specified for a superstar. More specifically, we do not know the 
angle cp between the orbital planes of the test star and of the field star, defined by 
(r, v) and (r, v'). However, because of the spherical symmetry, and the correlated 
assumption that the orbital planes of the stars belonging to a given superstar are 
randomly distributed, the angle q> will also be randomly distributed, and we simply 
select its value at random between 0 and In with a uniform probability. 

We must now select the position of the field star. This position could be simply 
taken at random, with a uniform probability, inside the volume occupied by the 
system. However, a general rule in Monte Carlo computations says that whenever 
possible, a mean quantity should be computed exactly rather than estimated by samp­
ling, in order to minimize the variance of the final results. It happens here that the 
mean effect of a field star with given mass and velocity can be computed rather 
simply. Therefore, instead of taking the position at random, we shall choose it in 
such a way that the effect of the field star will be equal to the computed mean effect. 

We consider a moving frame of reference in which the centre of mass of the test 
star and the field star is at rest. In this frame, the modulus of the velocity of the 
test star does not change during the encounter; the direction of the velocity is deflected 
by an angle /?, generally small, given by: 

j3 G(m + m') l0 

•"»—4»H-f (12) 

where / is the impact parameter and w is the relative velocity: 

w = |T' - v| ; (13) 

thus l0 defined by (12) is independent of the position of the field star. Let v be the 
local number of field stars per unit volume. Then, since we sample one field star 
at random out of N, the probability to find it in a volume dV is: vdV/N; and the 
probability for the test star to 'meet' the field star during the time St, with an impact 
parameter between / and d/, is: 

InldlwdtvN"1. (14) 

Therefore the mean squared deflection is: 

<J32> = %nl2
0w 5tvN~1 f (dZ//); (15) 

we have made here the approximation: /?/2«tan/?/2. The appropriate cut-offs for 
the integral are respectively of the order of R/N and R (Henon, 1958), so that the 
integral is approximately equal to InN. 

We multiply this now by the correcting factors At/St for the rest of the motion, 
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and N for the other field stars, obtaining: 

(p2} =8nllwAtv In N. (16) 

This value will also result if we take a field star with a fixed impact parameter equal 
to: 

Z=(27tw.dtvlniV)-1/2. (17) 

There remains only the problem of estimating v, the local number density of the 
field stars. It would be difficult to compute this density accurately, since there is only 
a limited number of superstars in the computation. Therefore we revert here to a 
sampling procedure: we shall estimate v from the radial distance of the p-th nearest 
superstar, the same which has already been used to provide the mass and the velocity 
of the field star (this is not necessary, but convenient). Let Ar be this distance: 

*r = \rk±p - rk\. (18) 

Clearly the estimated density, v*, should be inversely proportional to Ar: 

v*=CjAr. (19) 

Since v enters linearly in (16), the constant C must be adjusted so that 

<v*>=v. (20) 

Let a be the number of superstars per unit interval in r; a is related to v by: 

Ka = Anr2v. (21) 

The probability for the p-th nearest superstar to be at a radial distance Ar is given 
by the Poisson formula: 

•""c£)id* (22) 

with: x=aAr. Therefore: 

<v*>=Ct7 [e-
x-^-vdx=~. (23) 

J 0 > - l ) ! p-1 
o 

From (20), (21) and (23) we obtain: 

C = KPPJ. (24) 
4nr 

Using (19) and substituting v* for v in (17), we finally have for the impact distance: 

J(P-l)KWAtlnNl-^ 

|_ 2r2Ar J 

Equation (23) shows why we cannot use/?= 1, i.e. the nearest superstar: <v*> would 
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be infinite. (This fact had been overlooked in Henon (1966) and Equation (3) in 
that paper is wrong). We have used the next value, p = 2, in the computations. 
Superstars are associated in pairs, according to their rank from the centre, as follows: 
1-3, 2-4, 5-7, 6-8, etc. If n is not a multiple of 4, one or two superstars are left out 
at the outside; the corresponding error is negliglible since n is large, and also because 
relaxation effects are very small in the outer parts of the system. For each pair, a 
single encounter is computed, and the velocities of both superstars are perturbed 
accordingly; in other words, each member of the pair acts as a field star for the other. 
This symmetrical scheme saves a factor 2 in computing time, and has also the ad­
vantage that the total energy of the system is exactly conserved during this stage of 
the computation. 

In order to specify completely the encounter, one must know, in addition to the 
impact parameter /, the angle ifr of the plane of relative motion ( r ' - r , v'—v) with 
some reference plane. Because of the assumed homogeneous distribution of the field 
stars, i// is uniformly distributed, and therefore is chosen at random between 0 and 2n. 

The computation of an encounter for two superstars (r, vr, v„ m) and (r', v'r, v'„ m') 
proceeds in practice as follows. We consider a system of rectangular axes, x, y, z 
with the 2 axis parallel to r and the (x, z) plane parallel to v. In this system the 
velocities of the two stars are: 

v = (v„ 0, vr), v' = (v't cos <p, v't sin <p, v'r). (26) 

<p is computed by: 

q> = 2nX , (27) 

where X is a random number between 0 and 1. We compute the relative velocity: 

w = (v't cos q> — v„ v't sin <p, v'r — vr) = (wx, wy, wz), (28) 

and its modulus w. We compute the impact parameter / from (25), with: 

Ar=\r'-r\, (29) 

and r replaced by the mean value {r+r')j2 for the two superstars. We compute the 
deflection angle jS from (12). 

We compute the quantity: 

w (< + <r2- 00) p \"x • "y 

Let us now consider the two vectors: 

wi = (Hyv/w,, - wxwlw„, 0) , 

w2 = (~ wxwjwp, - wywzlwp, wp). 

It is readily verified that wt and w2 have the same modulus as w and that the three 
vectors w, Wj, w2 are mutually perpendicular. We take the plane (w, wt) as origin 
for the angle \j/, which is computed by: 

\j/ = 2nX, (32) 
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where X is a random number between 0 and 1. The new relative velocity of the two 
stars after the encounter is then: 

w* = w cos /? + wt sin /? cos \j/ + w2 sin /? sin \p. (33) 

Therefore the new velocities of the two stars are: 

v* 

• ' • 

= V 

= v' 

m + m' 
m 

+ 

(w*-

7 < W * " 

-w), 

-w) 
m + m 

(34) 

Using (33) and (34), we compute the three components of v* and v'*. Finally, we 
compute the new radial and transverse velocities of the first star: 

»; = »,*, vr = (v:2 + v;
2y2, (35) 

the new energy and angular momentum of the first star: 

E*=U(r) + i(v:2 + v?2), A* = rvt, (36) 

and similar quantities for the second star. 

6. Escape 

We shall consider two cases: 

A. ISOLATED SYSTEM 

It may happen that the new energy of a star given by (36) is positive. In that case 
the star will escape from the system in a time of the order of tc; on the relaxation 
time scale tr, it can be considered as immediately lost. Therefore the superstar is 
removed from the computations, n is decreased by one unit. 

B. NON-ISOLATED SYSTEM 

If the system is subjected to an external gravitational field, escape is facilitated: in 
some directions the tidal force is away from the centre and exceeds the attraction 
of the system past a given distance. The tidal field is not spherically symmetrical 
in general; therefore it can only be represented in an approximate way in the present 
scheme which assumes spherical symmetry. We shall assume that all stars which go 
beyond a certain distance re from the centre escape from the system. re should be 
proportional to Ml/3 (von Hoerner, 1958), and we define it by: 

re = re0(M/M0)1/3, (37) 

where M0 is the initial mass of the system, and re0 is a given constant, depending 
on the assumed strength of the tidal field. Then a star escapes iff: 

2E-2U(re)-A
2/r2

e>0 (38) 
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(see next paragraph). Since the whole system is contained inside re, this can also be 
written: 

IE + 2GM/re - A2\r2
e > 0. (39) 

7. New Positions 

We consider now a new time step At, and this time we must begin by selecting a 
new position for each star. 

Consider a particular star, which has values of E and A just computed by (36) 
(we drop the asterisks now). We assume that it moves in the smoothed-out potential 
U(r) which has been computed above. The star describes a rosette orbit, with r 
oscillating between two extreme values rmm and rmax, which are the roots of: 

Q (r) = 2E-2U (r) - A2/r2 = 0. (40) 

We begin by computing rmin and rmax. If we introduce a new variable z=\jr, then it 
is apparent from (40) and Figure 1 that d2g/dz2 is always negative. On the other 
hand, Q is positive at the old position according to (36); for z = 0, Q = 2E<Q; and 
for z=oo, g = —oo. It follows that Equation (40) has always exactly two roots (cf. 
Contopoulos, 1954). 

The interval in which rmin falls is found by looking up the tables of the ordered 
radii rk and of the corresponding potentials Uk; that is, one determines k such that: 

Q(rk)<0<Q(rk+1). (41) 

The potential is then given by (7), which can be written: 

U = az + b, (42) 
with: 

Uk + i-Uk Ukzk + i-Uk+lzk 
a = , b = ; (43) 

zt ^fc+l — ^k ^k+l ^k 

substituting into (40), we obtain a quadratic equation for z. Moreover, dg/dr must 
be positive for r=rmin, and therefore the largest root for z must be taken, i.e.: 

__L _ -a + la2-2A2(b-E)r2 .... 
r • ~ A2 '' *• ' 
' min "*••• 

A similar computation gives rmax; the inequality signs in (41) are then reversed and 
the plus sign in (44) is replaced by a minus sign. For reasons of computational 
accuracy it is in fact preferable to write rmax in the equivalent form: 

-a + {a2-2A2(b-E)Y12 

r = — — . (45) 
2(b-E) y } 

Now we must select a position of the star between rmin and rmax. The probability to 
take it in an interval dr should be equal to the fraction of time spent by the star 
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in dr, i.e.: 

dt 

T 

drl\vr (46) 
• max 

j drl\vr\ 

with the radial velocity vr given by: 

\vr\ = [_2E-2U(r)-A
2lr2r2 = lQ(r)T'^ (47) 

The computation of the half-period T would be time-consuming; fortunately it can 
be avoided by the classical von Neumann rejection technique (Hammersley and 
Handscomb, 1964). We want a probability distribution proportional to a known 
funct ion/(r) (in the present case: / ( r ) = l / | t ; r | ) , without knowing the constant of 

milt 'o ' max 
Fig. 2. The rejection technique. 

proportionality. We take a number F which is everywhere larger t h a n / ( r ) (Figure 
2). We select a point (r0,f0) at random in the rectangle rmi„<r0<rma„ 0<fo<F, 
with a uniform distribution, i.e. we compute: 

rn = r„ l + 0"max->WU> fo = FX', (48) 

where X and X' are a pair of normalized random numbers. If the point is below 
the c u r v e : / 0 < / ( r 0 ) , we take r=r0 as the selected value. In the opposite case, this 
value is rejected, a new point in the rectangle is tried with a fresh pair of random 
numbers, and so on until a point below the curve is obtained. 

In the present case, however, this procedure cannot be applied directly because 
f(r)= l/|fr| becomes infinite at both ends of the interval. This difficulty is eliminated 
by the introduction of a new variable s, defined by an appropriate relationr~r(s). 
The probability to sample a value in ds should be proportional to: 

1 dr 

i>, ds 
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therefore r(s) should be such that (49) remains finite in the whole interval. Since 
dQ/dr has a finite slope, \vr\ is proportional to (/•—rmin)

112 for r-»rmm; therefore there 
should be: r — rminoz (s — smin)

2 for r->rmi„, and similarly for r->/-max. Also r should be 
an easily computable function of s. A function r (s) satisfying these requirements is: 

r = a0 + aji + x2s
2 + a3s

3, (50) 

with a minimum equal to rmin and a maximum equal to rmax (Figure 3). We normalize 

- 1 0 +1 

Fig. 3. Relation between r and s. 

s by the conditions: 

? . = — 1 v = 1 • 

the coefficients in (50) are then determined and the relation becomes: 

r = i (rmin + rmax) + i (rmax - rmin) (3* - s3). 

For s-y — l it is easily computed from (47), (49) and (52) that: 

g (s) - * ( - 1) = [3 (rmax - rm i n) /(de/dr) r = r m iJ
1 / 2 , 

and for s-* +1: 

g(s) -> 0 (+ 1) = [ - 3 (rmax - rmin)/(d6/dr)r 

dQ/dr is computed from (40) and (42): 

J 1/2 

dg _ 242 2a 

d^T3~ + 7' 
An upper boundary for g (s) is computed by the empirical formula: 

F = 1 .2max[a ( -1 ) , fl(+l)]. 

(51) 

(52) 

(53) 

(54) 

(55) 

(56) 

A check is kept on all computed values of g (s) to verify that they do not exceed 
F. Experience shows that formula (56) is entirely satisfactory in that respect. 
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In practice, the computation proceeds as follows. First rmin and rmax are computed. 
Next, F is computed from (53), (54), (55) and (56). Then the rejection procedure is 
applied: a pair of random values (s0, g0) is computed by: 

s0 = -l+2X, g0 = FX'; (57) 

corresponding values of r, drjds, \vr\, and g(s0) are computed by (52), (47), and (49); 
and as soon as a pair is found for which there is: g0 < g (s0), the corresponding value 
of r is taken as the new position of the star. The new radial velocity is: vr= + \vr\, 
since the motion can be outwards or inwards; the sign is chosen at random with 
a probability \ for each. Finally, the new transverse velocity is computed by: 

vt = A\r. (58) 

This procedure is repeated for all superstars. The same potential U(r) is used through­
out; it is not updated after the displacement of each superstar. The reason is that 
such an updating would mean changing part of the tables rk and Uk after each 
displacement, and thus would involve a total number of operations proportional to 
n2; this is to be avoided since in all other parts of the program the number of opera­
tions is proportional only to n or to Inn. The effect is that the potential U(r) used 
lags slightly behind the real potential, by a time equal to one half of the time step 
At in the mean. This effect probably has no serious consequences, since At is small 
compared to the relaxation time tr, which is the time scale for the changes in the 
potential. 

8. Continuation 

Now that we have new positions and velocities for the superstars, the loop is closed 
by going back to the computation of the potential described above, and a new cycle 
of operations begins. The cycle is repeated again and again (typically a few hundred 
times), until the desired evolution of the system has been achieved. 

9. Units 

All symbols appearing in the equations so far are to be understood, as usual, as 
physical quantities. They will be related to the numbers appearing in the numerical 
computations by relations such as: 

r = t / , [ r ] , (59) 

where r is the physical quantity, [/•] is the corresponding number, and t/, is the 
adopted unit of length. 

The units should be chosen in such a way that the numbers computed are the 
same whatever the actual mass of the system considered, its dimensions, and the 
number N of its stars. The first two requirements are easily met by an appropriate 
choice of the units of mass and length. The third one is a little more tricky, because 
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N appears explicitly in some equations, namely (6b), (6d) (remembering that K= N/ri), 
(10) and (25); it can be met only by using a non-coherent system of units. 

First, we define basic units of mass, length and time by the condition that the 
gravitational constant G, the total mass M0 and the total energy S0 of the system 
at time r=0, expressed in these units, should be respectively: 

[G] = l, [M0] = l, K , ] = - i - (60) 

This gives the following expressions for the basic units: 

Um = M0, 17, = GM0
2 ( - 4 * o ) " ' , U, = GM0

5'Z(-U0)-
312. (61) 

U, is of the order of the dimensions of the system, and Ut is of the order of the crossing 
time (see Equation (8)). 

We shall use, for the various physical quantities appearing in the equations, the 
units given in Table I; N0 is the number of stars at time r=0. The choice has been 

TABLE I 

mass of the system, M; 
mass of a superstar; 
partial mass, M* (Equation (6)) 
mass of a star, m 
distance to centre, r; 
distance between shells, Ar 
impact parameter, / 
time step, At; 
evolution time, t' 
velocities vr, vt, w 
energy per unit mass, E; ) 
potential, U ) 
angular momentum per unit mass, A 
gravitational constant, G 

Um 

UmNo'1 

Vl 

UiNo-1 

UtNo/inNo 

UiUr1 

WUr2 

WUr1 

Um-Wi3Ur2 

guided by physical considerations, and it can be readily verified that it eliminates 
N (and also G) from all equations. 
In fact, Equations (6), (10), (12), (25) become: 

n 

[M„]=M=1 y K ] , 

1 

i = l 

lUk] = lUk+i-}-[Mk] 

[Mt_1] = [ J \ 4 ] - ~ K ] ; 

1 

[>*] [>*+i] 

(62) 

(k = n, ..., 1) 
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[^] = b- [M] 5 / 2 [K | ] - 3 / 2 ; (63) 

P _ [« ] + [W] 
t a n - = ^ „ J ; (64) 

(_ 2[r] n0[^r] J 

In (63) and (65) we have made the approximation: lniV=lnN0, which is acceptable 
since N is large. The other equations used in the computation are unaffected, i.e. 
one has simply to put each quantity into brackets. 

The mean relaxation time is (Henon, 1958): 

1 (i;2)3/2N 

AKQG2M\VIN' 
' , = r , ; 2 ^ , . (66) 

where Q is the mean density of the system. We estimate it by: 

M/2 

4JtR3/3' e = - ^ > (67) 

where R is the mean radius of the system, and from the virial theorem we have: 

Hence, 

GM2 -^ -IS 
Rx , v2 « . (68) 

-AS M y ' 

1 N 
t. = — - F — GM512 (-SY312. (69) r 24^/2 In N v ' y ' 

Thus, in our units and at time t=0, the mean relaxation time is: 

[ a O ) ] = i = 0.236.... (70) 

From (10) and (69) we derive also: 

At 
— = 24y/2b. (71) 

Thus for 6=0.005, the time step is equal to about £ of the mean relaxation time. 
With the help of Equations (61) and Table I, the results of a Monte Carlo com­

putation can be compared to any real system, or to any other theoretical model. 
If one considers for example a typical globular cluster with JV0 = 105, m=0.5mQ and 
(^)1 / 2 = 5km/s, there is: Um = M0 = 5 x 104 mQ, - 4 «?0 = 2.5x 106 mQ km2 s"2, 
U, = 4.5pc, l/r = 6.4xl05yr , l/riV0/lnN0 = 5.5x 109 yr. 
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10. Technical Problems 

We describe now a few practical problems which have not been yet entirely solved. 

A. DENSE CORE 

The relaxation time at a given point varies as the inverse of the density. Thus, as 
a model evolves and begins to form a very dense core (see I), the relaxation time 
near the centre decreases sharply and eventually becomes shorter than the time step 
At. The computation then no longer represents the real evolution of the core. The 
main effect is to slow down artificially the evolution of the core. 

The situation is aggravated, in the case of stars of equal masses, by the following 
subsidiary effect. For tr-4At, the computed impact distance / will be in general much 
smaller than l0, and the deflection angle /? computed from (12) will be close to 180°. 
Thus the two stars merely exchange their velocities, and from the point of view of 
the distribution function nothing happens. For stars of unequal masses, the effect 
is not so radical, but it still tends to slow down the computed relaxation. 

This effect can be eliminated by limiting the deflection angle to 90°. Experience 
shows that this device effectively increases the rate of evolution of the core, and it 
has been incorporated into our procedure. 

Still, the main problem remains. One could, of course, take a time step At equal 
to a fraction of the central relaxation time, rather than a fraction of the mean relaxa­
tion time. However, this would practically bring the computation to a standstill as 
the central relaxation time becomes very small. 

A similar difficulty exists in the exact N-body computations, where it has been 
partially remedied by the introduction of individual time steps: stars are recomputed 
much more frequently in the core than in the halo. Perhaps a similar device could 
be introduced in the Monte Carlo scheme. 

B. SPURIOUS RELAXATION 

As already mentioned, the mean potential used to compute the orbital motion of 
the stars is not completely smooth: it contains random fluctuations in the radial 
direction. These fluctuations are time-dependent since at every new time step the 
potential is recomputed from the new positions of the stars. They produce a spurious 
relaxation, in addition to the normal relaxation which is already incorporated into 
the program. In order to estimate the importance of this effect, trial computations 
have been run with the normal relaxation suppressed: the computation of the 
encounters is simply by-passed. The initial steady state should then in principle 
maintain itself indefinitely. Figure 4 shows the results for two cases with 100 and 
1000 superstars respectively. The initial state is a polytrope of index 1, with an 
isotropic distribution of velocities and with equal masses. Each curve represents the 
radius of the sphere containing a given fraction of the total mass. For n = 1000, the 
steady state is very well conserved; comparing with I, Figure 2, which represents 
the same case with encounters, one can see that the spurious relaxation is entirely 
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Fig. 4. Evolution of systems of 100 and 1000 superstars when the relaxation is suppressed. 

negligible, at least during the first stages of the computation. For n = 100, the spurious 
relaxation becomes visible (Figure 4). One can define a 'spurious relaxation time', 
which, from experimental results as well as from theoretical arguments, appears to 
be of the order of n A t. Therefore the effect will be small compared to real relaxation if: 

nAt>tr. (72) 

Since A t is of the order of tr/6, this criterion is easily satisfied. One can also require 
that the cumulative effect remains small to the end of the computation; this leads 
to the more stringent criterion: 

nAt>taBX, (73) 

where tmax is the length of the computed evolution. Equation (73) means: the number 
of superstars should be large compared to the total number of time steps. A typical 
computation corresponds to 200 to 300 time steps; therefore the number of superstars 
should be at least 1000, and preferably more. 

A particular consequence of the spurious relaxation is a slow but systematic drift 
of the total energy upwards, superimposed on random fluctuations. The explanation 
is simple: each star interacts with a fluctuating field and tends in the mean to be 
accelerated, just as with Fermi's mechanism for the acceleration of the cosmic rays. 
This effect becomes more serious as a dense core develops, because the fluctuations 
of the potential near the centre become quite wild. In order to neutralize it, we have 
sometimes adopted the procedure of renormalizing the system after each time step, 
so as to keep the total energy constant. This procedure, however, does not really 
eliminate the spurious relaxation, which is not uniform throughout the system; in 

i i i i 
n r 100 M ( r ) -
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fact, because the spurious relaxation is much more active near the centre, the re-
normalization produces an artificial contraction of the outer parts of the system, 
which becomes visible at the end of the evolution (I, Figures 2 and 6). 

The total energy could also be made strictly constant by recomputing the potential 
after the displacement of each superstar. However, this would require a number of 
operations proportional to n2, as already mentioned; and again the spurious relaxa­
tion would probably not be really eliminated. 

C. SPURIOUS ESCAPE 

Stars can escape from a cluster by two different mechanisms: either a slow, gradual 
variation of the energy resulting from the cumulative effect of many encounters, or 
a sudden variation of the energy resulting from a single close encounter (Henon, 
1960; Hayli, 1970). The second effect is normally smaller by a factor of the order of 
lniV, and therefore negligible. In the case of an isolated system, however, the first 
effect is inoperative (Henon, 1960), so that the second effect becomes important. 

The first effect depends only on the mean squared value of the deflections, and it 
is correctly reproduced in our procedure where we compute the impact distance / 
so as to obtain the same mean squared deflection as in reality. The second effect, 
however, depends on the shape of the tail of the distribution of deflections, or roughly 
speaking, on the number of large deflections. The Monte Carlo procedure as described 
above does not reproduce exactly the tail of the distribution of deflections; therefore 
it does not represent correctly the mechanism of escape by a single close encounter. 

Perhaps it would be possible to modify the procedure so as to reproduce the tail 
exactly. But, since the effect is proportional to 1/lnN, it would then be necessary 
to specify a value of N, thus restricting the generality of the results. 

Note added in proof. A similar scheme has been recently developed by Spitzer and 
his collaborators (Spitzer and Hart, 1971a, b; Spitzer and Shapiro, 1971; Spitzer and 
Thuan, 1971). 
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