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2-Local Isometries on Spaces of
Lipschitz Functions

A. Jiménez-Vargas and Moisés Villegas-Vallecillos

Abstract. Let (X, d) be a metric space, and let Lip(X) denote the Banach space of all scalar-valued
bounded Lipschitz functions f on X endowed with one of the natural norms

1 £1l = max{|| flloo, LA} or [Ifll = lIflloo +L(f),

where L(f) is the Lipschitz constant of f. It is said that the isometry group of Lip(X) is canonical if
every surjective linear isometry of Lip(X) is induced by a surjective isometry of X. In this paper we
prove that if X is bounded separable and the isometry group of Lip(X) is canonical, then every 2-local
isometry of Lip(X) is a surjective linear isometry. Furthermore, we give a complete description of all
2-local isometries of Lip(X) when X is bounded.

1 Introduction

In [14], Semrl introduced the following concept. A map ® of an algebra A into itself
is a 2-local automorphism (respectively, 2-local derivation) if for every a, b € A there
is an automorphism (respectively, derivation) ®,,: A — A, depending on a and b,
such that ®,,(a) = ®(a) and ®,,(b) = P(b). Semrl [14] proved that every 2-local
automorphism of the algebra B(H) of all bounded linear operators on an infinite-
dimensional separable Hilbert space H is an automorphism, and a similar assertion
was stated concerning the 2-local derivations.

Motivated by these results, Molnar [10] extended the notion of 2-locality to
isometries as follows. Given a Banach space X, it is said that a map ®: X — X isa 2-
local isometry if for every x, y € X there is a surjective linear isometry ®, ,,: X — X,
which depends on x and y, such that @, ,(x) = ®(x) and &, ,(y) = ®(y) (no linear-
ity or surjectivity of ® is assumed). Molnar [10] showed that every 2-local isometry
of B(H) is a surjective linear isometry. Numerous papers on 2-locality have since
appeared [9)[11}[17], and more recently [1,5H8}18].

Furthermore, Molnar [10] introduced the study of 2-locality for function algebras.
In this direction, Gy6ry [2] showed that if X is a first countable o-compact Hausdorff
space and Cy(X) is the Banach space of all scalar-valued continuous functions on X
vanishing at infinite endowed with the uniform norm, then every 2-local isometry
of Cy(X) is a surjective linear isometry. Recently, Hatori et al. [3] considered 2-local
isometries on uniform algebras including certain algebras of holomorphic functions
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of one and two complex variables. In this paper, we shall study 2-local isometries on
spaces of Lipschitz functions.

Let X be a metric space, and let Lip(X) be the Banach space of all scalar-valued
bounded Lipschitz functions on X, equipped either with the maximum norm || f|| =
max{|| f|loo, L(f)} or with the sum norm || f|| = || f||cc + L(f), where

[flloo = sup{[f()] : x € X}

is the uniform norm of f, and

|f(x) — f(y)]

L(f)zsup{ dxy) -x,y€X7x7éy}

is the Lipschitz constant of f.

The surjective linear isometries of Lip(X) have been the subject of considerable
study [4,[13L[15,[16]. It is easy to see that if 7 is a scalar of modulus 1 and ¢ is a
surjective isometry of X, then the weighted composition operator

is a surjective linear isometry of Lip(X). If every surjective linear isometry of Lip(X)
is of the above-mentioned form, we shall say, for brevity, that the isometry group of
Lip(X) is canonical. In general, the isometry group of Lip(X) is not canonical (see
an example in [[16]). However, Rao and Roy [12] proved that the isometry group
of Lip[0, 1] endowed with the sum norm is canonical. On the other hand, with the
maximum norm on Lip(X), the same conclusion was obtained, among others, by Roy
[13] when X is compact and connected with diameter at most 1; and, independently,
by Vasavada [[15] when X is compact and satisfies certain separation conditions.

We now describe the matter of this paper. In Section 2l under the condition that
X is a bounded metric space and the isometry group of Lip(X) is canonical, we shall
prove that every 2-local isometry ®: Lip(X) — Lip(X) is essentially a weighted com-
position operator of the form

q)(f) ‘on T(f o QD)? vf € Llp(X)v

where Xj is a subset of X, 7 is a unimodular scalar and ¢: Xy — X is a Lipschitz
bijection.

As we have seen above, the main problem concerning 2-local isometries on Banach
spaces is to answer the question whether the 2-local isometries are surjective linear
isometries. In Section Bl we shall give a positive answer for 2-local isometries of
Lip(X). Namely, when X is, in addition, separable, we shall show that X, = X and
 is a Lipschitz homeomorphism, and therefore @ is a surjective linear isometry of
Lip(X).
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2 Representation of 2-Local Isometries

Let (X, d) be a metric space. Throughout this paper we shall frequently use the fol-
lowing functions. For x € X and § > 0, define h,5: X — [0, 1] by

hys(z) = max{ 0,1— d(zé, %) } .

Clearly, hys € Lip(X) with L(hys) < 1/6; hys(z) = 0if d(z,x) > 0, and hy5(z) = 1
ifand only if z = x.

As usual, K will denote the field of real or complex numbers, and Sk the set of all
unimodular scalars of K. Given « € K, & will stand for the function constantly equal
a on X.

Theorem 2.1 Let X be a bounded metric space, and let ® be a 2-local isometry of
Lip(X) whose isometry group is canonical. Then there exists a subset Xy of X, a uni-
modular scalar T and a bijective Lipschitz map p: Xo — X such that

O(f)lx, =7(foyp), VfelipX).
Proof Let ¢ € Lip(X). Since ® is a 2-local isometry of Lip(X), there exists a sur-

jective linear isometry (I)i,g of Lip(X) such that &(1) = (I)i,g(i) and ®(g) = <I>Lg(g).
Because the isometry group of Lip(X) is canonical, we have

P, (f) =Ti(fowpiy), VfeLipX),

where Tig € Sk and (i ¢ Is a surjective isometry of X. Obviously, ®(1) = (I’i,g(i) =
7i ¢ and, since g is arbitrary, ®(1) = 4 ;. Define &y = 7j;P. Clearly,

Po(g) =T1,iTig(g0 ¥ig) =80 ¢i,
since 7 i 7 , = T i7j,j = 1. By the surjectivity of ¢; , it follows that
Po(9)(X) = g(X).
For x € X and f € Lip(X), define
Ecf={y e X:2(f)y) = f®)}.

Next we show that Ey y is nonempty and (7 cy;,x) Ex.f is @ singleton. Notice that
Dy(hy1)(X) = hye1(X) C [0, 1]. Furthermore,

Qo(he1) =T i P(he1) = Tq i The,.f(he1 © Pny, 1),
Qo(f) =T11P(f) = Ti iTher,f (f © Oney f)s
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where 7, s € Sk and @y, is a surjective isometry of X. Therefore

Eep, =1y € X [@o(he))(y)| = 1} = {y € X : hea(pn,, s(y)) = 1}
={yeX:on, rly) =x}

This last set has a unique point by, since ¢y, | ¢ is bijective. Hence E,j, , = {b.}. It
follows that

Qo(f)(bx) =T i T, r f (e, (b)) = T4 iTh,, (%),

and since TiiThef = Do(hy1)(by) = 1, we have ®¢(f)(by) = f(x). This means
that b, € E, s, and thus E,, , = {b.} C E, . Since f is arbitrary, we conclude that

ﬂfELip(X) Ec s = {by}.
Hence we can define a function ¢: X — X by

{vr= N Eey.

fELip(X)

Now we see that v is injective. Letx, y € X, x # y. Since ¢(x) € E,;_ and(y) €
Eyp.., we have ®g(hy1)(1(x)) = hyei(x) = 1 and ®o(hy1)(0(y)) = he1(y) # 1,
which implies ¥ (x) # (y).

Put Xy = 4(X) and let ¢ be the bijection y~!: Xy — X. Let y € X,. Clearly,
y = %) € MNevipw Eoty).f> and therefore, for every f € Lip(X), we have
y € Eyy). 5, thatis, f(o(y)) = @o(f)(y) = 71 ;2(f)(y), which yields ®(f)(y) =
i1 f(p(p)).

Taking 7 = 7y i, then |7| = 1 and so we have shown that
S(Ny) =1f(p(y), VyeX, Vf e Lip(X).
It remains to prove that ¢ is Lipschitz. For each x € X, define
fi(z) = d(z,x), VzelX.

Clearly, f, € Lip(X) and || fx]] < |[filloo + L(fx) < diam(X) + 1, where diam(X)
denotes the diameter of X. Put k = diam(X) + 1. Then

[N = l1®g i (Sl = L £ll <K,

since @(f,) = @, ;(fv) and @ ; is an isometry of Lip(X).
Let x, y € Xo. Since L(®(f,(,))) < [|®(f,o() |, we have

|‘I)(f¢(y))(x) - q)(fcp(y))(J’” < kd(x, y).

Taking into account that

D(fo) (%) = Tfoip) (0(x)) = Td(p(x), 0(¥)),
Q(foi0)(¥) = T o (@(y) = Td(e(y), ¢(y)) = 0,

we conclude that d(p(x), p(y)) < kd(x, y). [ |
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3 A Problem of Algebraic Reflexivity for 2-Local Isometries

In this section we shall prove our main result: every 2-local isometry of Lip(X) is
a surjective linear isometry, when X is a separable bounded metric space and the
isometry group of Lip(X) is canonical. To prepare the proof of this fact, we begin
with the following.

Lemma 3.1 Let X be a metric space, and let R = {r, : n € N} be a countable set of
pairwise distinct points of X. Then there exists a Lipschitz function f: X — [0, 1] with
L(f) < 1 satisfying the following properties:

(a) 0 < f(rj) forall j € Nand f(r;) # f(r;) ifi,j € Nwithi # j.
(b) Foreach j € N, there exists t; €0, 1] such that

dx,rj) <tj/4 = fx) < f(r)) —d(x,r;)/2.
Hence f has a strict local maximum at r;.
(¢) f(r) =1and f(x) < lifx # r.

Proof We define two sequences {t,} and {s,} of positive scalars and a sequence { f, }
of non-negative functions on X as follows:

t1:17 51217 ﬁ:hrl,la

and for each positive integer #,

- :min<{t3"} U{M fren) < fulri), € {1,...,n}}),

Spt1 = tp1 fn(rn+l)a
for1 = max{fm Sur1 P spe }-
A plain argument by induction allows us to see that, for each n € N, f, € Lip(X),

L(fy) <1, fu(r1) =1and 0 < fu(x) < lifx # ry.
Next we prove the following.

Claim Foreachn € N,

(i) si1,...,s, are pairwise distinct;
(ii) Ifs; <s,forsome j € {1,...,n},thens,h,  (rj) < fii(rj) + Z?:jﬂ ti;
(iii) fu(rj) =sjforall j € {1,...,n}.

The proof is by induction on n. Assertions (i), (ii), and (iii) are trivial for n = 1.
Assume (i), (ii), and (iii) hold for 1, .. ., n; we shall prove it for n + 1.

To see that sy, ..., s, s, are pairwise distinct, let j € {1,...,n}. Using (iii), if
fa(rj) < fu(rus1), we have

Sj = fn(r]) < fn(rn+1) + L1 = Su+1s
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and if f, (1) < fulr),

fn(rj) - fn(rnﬂ)
4

Sp4l = bty + ﬁ1(rn+l) S + fn(rnJrl) < ﬁ1(1’1) - 5j~

In any case, 5,1 7 $j, and we have finished.

To prove (i) for n + 1, let j € {1,...,n+ 1} and suppose that s; < s,,1 (which
implies j < n+ 1). Clearly, 5,41 < s1, therefore j > 1. We distinguish two cases.
Case 1. If f,(ru1) = fuo1(rpr1) = -+ = fi(rus1), then fi(rp1) = fj—1(rp11). Inthe

contrary case we have f;(r,+1) = sj hy, ;(r411), and therefore
fa(rur1) = fi(ra) <sj = ful(rj).

Hence 5,11 < fu(rj) = s; < su41, a contradiction. Thus f;(r,41) = fj—1(rs41). Since
L(fi—1) < 1, we have

A(rp41,7;
Sni <1 _ (”HJ)>
Sn+1

=ty t fn(rnﬂ) —d(rp1, rj) =ty t fj—l("nﬂ) — d(rp1, rj)

n+l
< tun + fim(r) < i+ fia(r),
i=j+1
and therefore
n+l
St My (1) <Y i+ i (r)).
i=j+1

Case 2. Suppose Case 1 does not hold. Then j < #, and thereisi € {j+1,...,n}
such that
fn(rn+l) - ﬁ171(rn+1) —_ = ﬁ(rnJrl) =S hr,-,s,-(rnJrl)-

If s; < sj, using (iii), we have
fn(rn+1) =5 hri,si(rn+1) <s = fn(ﬁ)»
and therefore

Su+1l = el T fn(rn+l) < + fn(rnJrl) < fn(ri) =5 < Sj < Sp+1,

Ju(ri) = fu(rni1)
4
which is impossible. Hence s; < s;. Then

d(ryi1, 1))
]
Sn+l (1 -0 =ty TS hr,',s,'(rn+l) - d(f‘n+1, 1’]) S Lnt1 T Si hri,si(rj)

Sn+1
i n+1
Stua+ Y 0+ f0r) < Yt ()
I=j+1 I=j+1
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and, in consequence,

n+l1

Sn+1 hrn+[75n+[(rj) S Z )+ f:i—l(rj)-
I=j+1
Finally, we check (iii) for n + 1. Let j € {2,...,n}. If s; < s,41, as proved above,
we have
n+l n+l—j 1
St My (1) < IZH t+ fia(rj) <t ; 5 1) <sj= fulry)
= -

and thus f,41(r;) = fu(rj) = sj. s, < s, since s, by, s, (7)< Spas, it s clear
that f,,,(r;) = s;. For j = n+ 1, fu41(ru1) = suy1 follows easily, and this completes
the proof of our claims. ]

Now we find f. Pick n € N. We shall prove that || f+1 — fulloo < fuy1. Given
x € X, we have either
fn+1(x) - fn(x) =0< tnt1

or
0< ﬁ1+1(x) - fn(x) = 5n+1hr,,+1,sn+1 (x) - fn(x)
d(x, 1y
= Spt1 (1 — (x,rﬂ)) — fu(x)
Sn+1
=ty + fn(rn+l) - d(x, rn+1) - fn(x) S tyl-
Therefore,
t 1
(31) ||ﬁ1+1 - fﬂHoo < [#] < 9 = 9, Vn € N.

Hence { f,} is a Cauchy sequence in (Cy(X), || - || )> Where C;(X) denotes the space
of all scalar-valued bounded continuous functions on X. Then there exists f € C;(X)
such that lim, o || fu — fllec = 0, and it is immediate to check that f € Lip(X) and
L(f) < 1.

Next we prove (a), (b), and (c). Since f(rj) = s; for all j € N and the scalars s;
are positive and pairwise distinct, (a) follows.

To prove (b), let j € N and x € X be such that 0 < d(x,rj) < tj/4. For j > 1
observe that

fi-1x) < fioa(r) +d(x, 1) <sj—d(x,rj) = sjhy, 5, (%),

and therefore f;(x) = s; h;, 5;(x). Moreover, fi = s hy, .
If fu(x) = fj(x) foralln > j, using that s; = f(r;) we have

d(x,r;
f(x) = fi(x) = sjhy,,(x) = sj — d(x, 1) < f(r;) — %,
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which proves (b) in this case.
Suppose now {n € N:n > j, f,(x) > fj(x)} # &, and let

m=min{n € N:n> j, f,(x) > fij(x)}.

Then f,,(x) = suhy, 5, (x). We shall prove that s,, <s;. If s; < s,,, then j > 1and, by
applying (ii) of the claim, we have

t.
Snhy s, (1) < Z ti+ fioi(r) <t Z 5 fin) <4 4 S =55 5.
i=j+1
It follows that
fin () = sphy,, 5, (0) < dx, 1)) + S by, (1)) < dx, 1)) 455 — 2
<sj— 7 <sj—dx,r) = filx),
which contradicts the definition of m. Hence s,,, < s;. Then

fmfl(rm) <ty fmfl(rm) = Sm S 5j - fmfl(rj)v

and therefore

f, + -ln fm l(rm) éfmfl(rj) - fmfl(rm) + fm—l(rm)
3 3 3 -3 4 3
_ S sj
33

In consequence,

tmgsj_smgsj_fm(x)<5j_fj(x).
3 3 3

On the other hand, using inequality (3.I)) we have

Jrrm—1(x) = f;(X) = furm—1(x) — fn—1(x)
- fn+m71(x) - fn+m72(x) +oeeet fm(x) - fmfl(x)

< < tm 3
_tn+m71+"'+tm_3n71+"' §<Et

for every n € N. Hence,

F00 < 0+ 3t < fta + TP g D gy B0,

and this completes the proof of (b).
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Finally, we show (c). Since f,(r;) = 1 for all n, we have f(r;) = 1. Letx € X\{r }.
Notice that f, > f; for all n. If f,(x) = f1(x) foralln > 1, then f(x) = fi(x) < 1.
Otherwise we can suppose {n € N:n > 1, f,(x) > fi(x)} # @ and let

m=min{n € N:n> 1, f,(x) > fi(x)}.

Clearly, f,(x) = suhy,, s, (). As fiu_1(ry) < 1 = fu_1(r1), then, reasoning as in the
proof of (b), we obtain

5 — filx).

3
t < T fn+m_1(x)—ﬁ(x)<5tm, VneN

and thus

Flx) < filx) + >

1—2ﬁ(x) :51+2fl(x) <1=f(n). u

In order to prove our central result, we also need the following proposition, which
is interesting in itself. It is a version of a result of Gy6ry [22] for Lipschitz functions.
A detailed reading of its proof shows that the adaptation is far from simple.

Proposition 3.2 Let X be a metric space, and let R = {r, : n € N} be a countable
set of pairwise distinct points of X. Then there exist Lipschitz functions f,g: X — [0, 1]
such that f has a strict local maximum at every point of R and

{z€X:(f(2),8(2) = (f(rn), g(ri))} = {ru}, VmeN.

Proof Let f and {¢,} be as in Lemma[3.Il We prepare the proof in three steps.
First, we show that for each n € N, there exists g, € Lip(X) satisfying the following
conditions.
(i) 0<g,<1/2,g,(rj) > 0forall j € Nand g,(x) < g,(r1) ifx # r1;
(ii) For each j € N there exist scalars d, ; € ]0,1] and v, ; > 0 such that

dlx,rj) < 0pj = gu(x) < gulrj) — ap d(x, 7).

Hence, g, has a strict local maximum at r;.
(iil) ga(rj)) ¢ g(fT'{fr)P\{r;}P forall j=1,... n.
(iv) The set g,(f~'({f(rj)})) is finite forall j € N.
() Lig) <Y, %<1

We prove it by induction. Define g = f/2. Using the properties of f, it is easy
to check that g; satisfies properties (i) to (v). Assume there is g, € Lip(X) satistying
properties (i) to (v).

Taking into account (ii), the fact that f has a strict local maximum at r,,;; and that
f(rar1) # f(rj) forall j € {1,...,n}, the continuity of f permits us to choose a
scalar pu41 € 10, 0y 41 [ such that f(x) # f(rj) forall j € {1,...,n}, f(x) < f(rus1)
and g, (x) < gu(rp41) — a1 d(x, 1401) for all x € X for which 0 < d(x, r41) < pps1.
Put

A= {X eX: P+l S d(X, rn+1) < 5n,n+1}7
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and define the scalar 8,41 = sup{g.(x) : x € A} if A # & and 8,41 = 0, otherwise.
Ifx € A, 2 yields
Bn#—l S gn(rn+l) - an,n+lpn+1 < gn(rn+1)-

Let Yn+1 € ]ﬁn+17gn(rn+l)[ and define
Upit = {x € X 1 gu(x) > Va1, d(x, Tns1) < puia }-
Clearly, U,,1; is an open neighbourhood of r,,;;. Furthermore,

a, j=1,...,n,

T {fEHNUnn = {{mﬂ}, i—n+1,

and therefore

(32) fﬁl({f(rnJrl)}) \ {rnJrl} C X \ Un+1~

From property (i) we deduce that g, is not constant, and therefore L(g,) > 0. Since
& (f Y ({ f(r441)})) is finite by (iv), we can take a scalar €, in the set
(3.3)

o, [ \ | IS s w (17 () -

7n+1 - gn(rn+1) '

Then g,41 < 1/2"1. Let g,11: X — R be defined by

g (X) o (1 - 5n+1)gn(x) + Ent1Vn+1, X S Un+l7
n+1 -
gn(x)7 X e X\UnJr].

Observe that g,+1 < g,. Next we show that g,,;; satisfies properties (i) to (v).
Property(v) Letx,y € X. Assume, for instance, g,+1(y) < gu1(x). If x, ¥ € Uy, it
is clear that

1) — gur1(¥) = (1 — €4r1) @ (%) — (1 — €441)8u(y)

n+1

< (1 £n)L(g)d(x,y) < (Z ;k) d(x, y).

k=1

Likewise, the same conclusion can be drawn for x € Uiy, ¥ € X\U,41, and for
%,y € X\U,4,. Finally, ifx € X\U,4; and y € U,;, we have

Yn+1 = (1 - 5n+1)7n+1 + En+1VYn+1 < (1 - 5n+1)gn(y) + En+1Yn+1

= gnr1(y) < gur1(x) = gu(x).

Since x € X\U,41, it follows that p,y < d(x, 7,41). Moreover, 6, 541 < d(x, Tpi1),
since otherwise we have x € A and g,(x) < 41 < Vn+1, @ contradiction. Hence,

5n,n+1 - er—l < d(xa rn+1) - d()/, rn+1) S d(X, )/)7
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and thus

d(x,y)

2n+1

5n,n+1 - pn+1

on+l L(g”) <

Enr1€n(Y) — Enr1Ynr1 < Enn18n(y) < €np < L(gn)-

In this way,

n1(%) — gur1(¥) = 8(%) — &(¥) + €18 (¥) — Ent1Vn1

L(g,) 11 e 1
DB ) < (30 35 + e, y) = (3 5, ).
k=1 k=1

< L(gy)d(x, y) +

Hence g,1; € Lip(X) and L(g4+1) < ZZ: 3
Property (i) It is a simple matter to see that g, satisfies this property.

Property (ii) Let j € N. If rj € X\Upy1, then gu11(rj) = gu(r;). Let us take, in this
case, Opt1,j = Onj €10, 1[ and avpy1,j = ayj > 0. If d(x, 1j) < 61,5, We have

Gnt1(%) < €u(x) < gu(rj) — auy jd(x, 1)) = gui1 (1)) — Qi jd(x, 1)).
Ifr; € Uyy1, we can choose a 0,41, € 10, 8, ;[ such that
{xeX:d(x,rj) <n1,j} C Uppr.
Put ;= (I — €pp1)an; > 0.1 d(x,75) < 6pi1 )

Sit1(x) = (1 — €441)gu(X) + Eps1Vut1
< (1 = ep)gn(rj) — (1 = epp)un jd(x, 75) + €ns1Vur1

= gur1(rj) — appy,jd(x, 1j).
Property (iii) Since €,+ belongs to the set (3.3]), we have
gn+1(7’n+1) - (1 - 5n+l)gn(rn+l) + 5n+17n+1 ¢ gn(f_l({f(f’nﬂ)})),

and, by inclusion (3.2),

gn+1(f_l({f(rn+l)})\{rn+l}) = gn(f_l({f(rn+1)})\{rn+l})

Calf ' {framn D).
Hence, gn+1(rn+l) ¢ gn+l(f_l({f(rn+1)})\{rn+l})~
Let j € {1,...,n}. Since f~'({f(r)}) N Uny1 = @, then r; € X\U,s; and
' fEDP\{rj} C X\Ups1. Therefore

gun1(rj) = gu(rj) & gu(f DI\ D) = gt (F T { DD,
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Property (iv) Let j € N. It is sufficient to observe that the sets

1 (f T {fH N Upi) =
{(1 - €n+1)gn(x) + Ent1Vn+l + X € f_l({f(r])}) N Un+l}
and
gt (T {FEH N (XN\Unin)) = gu(f T {0 (X\Uns1))

are finite by the property (iv) of g,.

Secondly, it is straightforward to check that {g,} converges to ¢ € Lip(X) in
(Cp(X), || - lloo)- Moreover, L(g) < 1and 0 < g < 1/2.

Thirdly, we prove that {x € X : (f(x),g(x)) = (f(r;),g(rj))} = {r;}, for each
7 € N. Indeed, we show easily by induction that for each n € N,

lx) = gj(x), Vxe f_l({f(r]-)})7 Vie{l,...,n}.

Given j € N, assume (f(x), g(x)) = (f(rj),g(r;)) for some x € X\{r;}. Thenr;,x €

F~'({f(r))}) and, as proved above, we have g,.;(x) = g;j(x) and g,.(r;) = g;(r})
for all n € N. It follows that

gi(r)) = g(rj) = g(x) = gj(x) € (f ' {frpH\{r;}),
but this contradicts property (iii) of g;. ]
We have now gathered all the ingredients to prove our main theorem.

Theorem 3.3 Let X be a separable bounded metric space. If the isometry group of
Lip(X) is canonical, then every 2-local isometry of Lip(X) is a surjective linear isometry.

Proof By Theorem 1] there exist X, C X, 7 € Sk and a Lipschitz bijection
¢: Xo — X such that ®(f)|x, = 7(f o ) forall f € Lip(X).

If X is finite, it is clear that Xy = X and ¢~ !': X — X is Lipschitz.

Let us suppose now that X is nonfinite. Due to the separability of X, there exists
a countable dense subset R = {r, : n € N} of X, where the points r, are pairwise
distinct. Let f, g: X — [0, 1] be as in Proposition[3.2l We can write ®(f) = 774(f o
©0rg) and ®(g) = 77 4(go @y, ) for some 77, € Sk and some surjective isometry @y o
of X. For each natural n we have

Tref(@rg(e™ (1)) = ()™ (1) = Tf(ra),
Tr.68(Prg (97 (1)) = B (™ (1)) = Tg(rn).
Since f and g are non-negative and |77,| = |7| = 1, it follows that
flepgle™ ) = f(ra),  glprglo™ (1)) = glrn).
Then PropositionB2yields ¢ 1 ¢(¢~(r,)) = 7, and s0

o (2) = @f,gil(z), Vz € R.
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Let x € Xj. Since R is dense in X, there is a sequence {z,} in R converging to ¢ 4 (x).
Then {¢s, " (z4)} converges to x, but s, '(z,) = ¢~ '(z,) forall n € N, and so
{7 (z,)} converges to x. It follows that {z,} converges to (x). In consequence,
©rq(x) = @(x) for every x € X,.

Let y € X. Since ¢ is surjective, there is x € X, for which p(x) = ¢r.(y). Then
©7.¢(x) = @f(y), as proved above, which implies y = x by the injectivity of ¢, and
so y € Xo. Hence X = Xj. Therefore ¢ = ¢y, and thus ¢ is a surjective isometry of
X.

In both cases we have ®(f) = 7(f o ) for all f € Lip(X), where p~1: X — X
is Lipschitz. Consequently, ® is surjective and linear. From the definition of 2-local
isometry, it is easy to deduce that @ is an isometry. We conclude that @ is a surjective
linear isometry of Lip(X). ]
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