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Abstract

The convex hull of n independent random points in R
d , chosen according to the normal

distribution, is called a Gaussian polytope. Estimates for the variance of the number
of i-faces and for the variance of the ith intrinsic volume of a Gaussian polytope in
R

d , d ∈ N, are established by means of the Efron–Stein jackknife inequality and a new
formula of Blaschke–Petkantschin type. These estimates imply laws of large numbers for
the number of i-faces and for the ith intrinsic volume of a Gaussian polytope as n → ∞.
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1. Introduction and statement of results

Let X1, . . . , Xn be a Gaussian sample in R
d , d ∈ N, i.e. independent random points chosen

according to the d-dimensional standard normal distribution with mean 0 and covariance matrix
1
2Id . Denote by Pn = [X1, . . . , Xn] the convex hull of these random points, and call Pn a
Gaussian polytope. We are interested in geometric functionals such as the volume, the intrinsic
volumes, and the number of i-dimensional faces of Gaussian polytopes. Most of the previous
investigations on this topic were concerned with expectations of such functionals. The starting
point of this line of research is marked by a classic paper by Rényi and Sulanke [22], in which
the asymptotic behaviour of the expected number of vertices, E f0(Pn), of Pn – and, thus,
also that of the expected number of edges, E f1(Pn), as n tends to infinity – was determined
in the plane. This result was generalized by Raynaud [19], who investigated the asymptotic
behaviour of the mean number of facets, E fd−1(Pn), in arbitrary dimension. Both results are
only particular cases of the formula

E fi(Pn) = 2d

√
d

(
d

i + 1

)
βi,d−1(π ln n)(d−1)/2(1 + o(1)), (1.1)

where i ∈ {0, . . . , d − 1} and d ∈ N, as n → ∞. This follows, in arbitrary dimension, from
work of Affentranger and Schneider [2] and Baryshnikov and Vitale [3]. Here, fi(Pn) denotes
the number of i-faces of Pn and βi,d−1 is the internal angle of a regular (d − 1)-simplex at one
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of its i-dimensional faces. Recently, a more direct proof of (1.1) and some additional relations,
which cannot be derived from [2] and [3], were given in [9]. However, it turned out to be
difficult to extend these results to higher moments of fi(Pn) and, thus, to prove limit theorems.
An exception is the particular case i = 0, where Hueter [7], [8] stated a central limit theorem,

f0(Pn) − E f0(Pn)√
var f0(Pn)

d−→ N (0, 1) (1.2)

as n tends to infinity; here ‘
d−→’ denotes convergence in distribution and N (0, 1) is the (one-

dimensional) normal distribution. The asymptotic behaviour of the variance was asserted to be
of the form

var f0(Pn) = c̄d (ln n)(d−1)/2(1 + o(1)),

with a constant c̄d , as n → ∞. Most probably, it is difficult to establish such a precise limit
relation for all fi(Pn), i ∈ {1, . . . , d − 1}. Our first result provides an upper bound for the
order of the variance of fi(Pn), for all i ∈ {0, . . . , d − 1}, which is of order (ln n)(d−1)/2.

Theorem 1.1. Let fi(Pn) be the number of i-dimensional faces of a d-dimensional Gaussian
polytope Pn, d ∈ N. Then there exists a positive constant cd , depending only on the dimension,
such that

var fi(Pn) ≤ cd(ln n)(d−1)/2 (1.3)

for all i ∈ {0, . . . , d − 1}.
Combining Chebyshev’s inequality and (1.3), for all ε > 0 we obtain

P(|fi(Pn) − E fi(Pn)|(ln n)−(d−1)/2 ≥ ε) ≤ ε−2(ln n)−(d−1) var fi(Pn)

≤ ε−2cd(ln n)−(d−1)/2

and, thus, the random variable fi(Pn) satisfies a (weak) law of large numbers for all d ∈ N (the
case d = 1 is trivial). In fact, the law of fi(Pn)(ln n)−(d−1)/2 converges in probability to the
law concentrated at a constant.

Corollary 1.1. For d ∈ N and i ∈ {0, . . . , d − 1}, the number of i-dimensional faces, fi(Pn),
of a Gaussian polytope Pn in R

d satisfies

fi(Pn)(ln n)−(d−1)/2 −→ 2d

√
d

(
d

i + 1

)
βi,d−1π

(d−1)/2

in probability as n → ∞.

Massé [15] deduced a corresponding weak law of large numbers for d = 2 and i = 0 from
Hueter’s central limit theorem (1.2).

Our method of proof also works for the volume and, more generally, the intrinsic volumes.
Denote by Vi(Pn) the ith intrinsic volume of the Gaussian polytope Pn; hence, for instance,
Vd(Pn) is the volume, 2Vd−1(Pn) is the surface area, and V1(Pn) is a multiple of the mean width
of Pn. The expected values of the ith intrinsic volumes were investigated by Affentranger [1],
who proved that

E Vi(Pn) =
(

d

i

)
κd

κd−i

(ln n)i/2(1 + o(1)) (1.4)

https://doi.org/10.1239/aap/1118858627 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1118858627


Gaussian polytopes: variances and limit theorems SGSA • 299

for i ∈ {1, . . . , d} as n tends to infinity, where κj denotes the volume of the j -dimensional unit
ball. The case d = 1, which was not covered in [1], can be checked directly. Relation (1.4)
was expected to hold, since a result of Geffroy [5] implies that the Hausdorff distance between
Pn and the d-dimensional ball of radius (ln n)1/2, centred at the origin, converges almost surely
to 0. However, it seems that (1.4) cannot be deduced directly from Geffroy’s result.

In the planar case, Hueter also stated central limit theorems for V1(Pn) and V2(Pn):

V1(Pn) − E V1(Pn)√
var V1(Pn)

d−→ N (0, 1) and
V2(Pn) − E V2(Pn)√

var V2(Pn)

d−→ N (0, 1).

The variances suggested by Hueter are of the form var Vi(Pn) = 1
2π3/2(ln n)i(1 + o(1)). That

her result cannot be correct can be seen from the following: if the stated asymptotic behaviour
of the variances were true, this would immediately imply that

P(V1(Pn) ≤ 0) → �(−(4π)1/4),

P(V2(Pn) ≤ 0) → �(−(4π)1/4).

However, the stated probabilities would then be positive for large n, which obviously cannot
hold. In the next theorem, we give an upper bound for the variances, for all i = 1, . . . , d and
d ∈ N.

Theorem 1.2. Let Vi(Pn) be the ith intrinsic volume of a Gaussian polytope Pn in R
d , d ∈ N.

Then there exists a positive constant cd , depending only on the dimension, such that

var Vi(Pn) ≤ cd(ln n)(i−3)/2 (1.5)

for all i ∈ {1, . . . , d}.
Let X1, X2, . . . be a sequence of independent random points that are identically distributed

according to the d-dimensional normal distribution, and let Pn = [X1, . . . , Xn]. For d = 1,
the quantity V1(Pn) is the sample range of X1, . . . , Xn. Although its distribution and moments
can be expressed as multiple integrals (see [18, Chapter 8], [13, Chapter 14], and [14]), explicit
values are not available, in general. The asymptotic behaviour of var V1(Pn) for d = 1
is deduced in Chapter 14 (see Equation (14.100)) of [13], which yields (with the present
normalization)

var V1(Pn) = 1
12π2(ln n)−1(1 + o(1)) as n → ∞.

A different extension of the univariate sample range to higher dimensions is given by the largest
interpoint distance of the given random points. Limiting distributions have been considered in
[16] and, in a more general framework, in [6]; still another extension was discussed in [10].

From (1.4) and (1.5), we obtain an additive weak law of large numbers for i ∈ {1, 2}, i.e.

Vi(Pn) −
(

d

i

)
κd

κd−i

(ln n)i/2 → 0

in probability as n → ∞. In order to derive a (multiplicative) strong law of large numbers
for i ∈ {1, . . . , d}, we set nk = 2k . From the upper bound for the variance and Chebyshev’s
inequality, we deduce that

P(|Vi(Pnk
) − E Vi(Pnk

)|(ln nk)
−i/2 ≥ ε) ≤ ε−2cd(ln nk)

−(i+3)/2.
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Since ∑
k≥1

(ln nk)
−(i+3)/2 = (ln 2)−(i+3)/2

∑
k≥1

k−(i+3)/2 < ∞,

(1.4) and the Borel–Cantelli lemma imply that

Vi(Pnk
)(ln nk)

−i/2 →
(

d

i

)
κd

κd−i

(1.6)

with probability 1 as k tends to infinity. Moreover, since n �→ Vi(Pn) is increasing,

Vi(Pnk−1)(ln nk)
−i/2 ≤ Vi(Pn)(ln n)−i/2 ≤ Vi(Pnk

)(ln nk−1)
−i/2

for nk−1 ≤ n ≤ nk , where (ln nk+1)/(ln nk) → 1 by definition. Thus, (1.6) implies a strong
law of large numbers.

Corollary 1.2. Let Vi(Pn) be the ith intrinsic volume of a Gaussian polytope Pn in R
d , d ∈ N.

Then, for i ∈ {1, . . . , d},
Vi(Pn)(ln n)−i/2 →

(
d

i

)
κd

κd−i

with probability 1 as n → ∞.

This law of large numbers can also be deduced from a result of Geffroy [5].
The estimates for the variances obtained in Theorems 1.1 and 1.2 are based on the solution

of another problem, which is of independent interest. Consider the random polytope Pn and
choose another independent random point X according to the normal distribution. The question
in which we are interested is the following: if X /∈ Pn, how many facets of Pn can be seen
from X? We will determine the asymptotic behaviour of the expectation of the corresponding
random variable as n → ∞, and we will provide upper and lower bounds for its second moment.

In the following, let Fn(X) be the number of facets of Pn that can be seen from X; more
precisely, we count the number of those facets of Pn whose relative interiors are contained in
the interior of the convex hull of Pn and X. Note that Fn(X) = 0 if X is contained in Pn.

Theorem 1.3. Let X, X1, . . . , Xn be independent random points in R
d , d ∈ N, that are

identically distributed according to the d-dimensional normal distribution. Let P
(d−1)
d denote

a Gaussian polytope in R
d−1. Then

lim
n→∞ E Fn(X)n(ln n)−(d−1)/2 = 2d−1κd�(d + 1) E Vd−1(P

(d−1)
d ).

Furthermore, there is a positive constant cd , depending only on the dimension, such that

c−1
d n−1(ln n)(d−1)/2 ≤ E Fn(X)2 ≤ cdn−1(ln n)(d−1)/2.

For more information on random polytopes, we refer the reader to the recent survey article
by Schneider [25].

2. Projections of high-dimensional simplices

We want to give two interpretations of our results. The first one uses the fact that any
orthogonal projection of a Gaussian sample is itself a Gaussian sample. We therefore make our
notation more precise by writing P

(d)
n for a Gaussian polytope in R

d that is the convex hull of
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n normally distributed random points in R
d . Let �i : R

d → R
i be the projection onto the first

i components (i < d). For an arbitrary i-dimensional subspace of R
d , which we identify with

R
i , we then obtain

ϕ(�iP
(d)
n )

d= ϕ(P (i)
n ), (2.1)

where ‘
d=’ means equality in distribution and ϕ is any (measurable) functional on the convex

polytopes.
Now let P

(n)
n+1 be a Gaussian simplex in R

n. As a consequence of Corollary 1.2 and (2.1),
we obtain a law of large numbers for projections of high-dimensional random simplices: for a
fixed integer i ≥ 1,

Vi(�iP
(n)
n+1)(ln n)−i/2 → κi

in probability as n → ∞. Moreover, for a fixed integer i ≥ 1, (1.4) implies that

E Vi(�iP
(n)
n+1) = E Vi(P

(i)
n+1) = κi(ln n)i/2(1 + o(1))

as n → ∞. An estimate of the variance can be deduced from Theorem 1.2. Thus, for i ≥ 1,
we have

var Vi(�iP
(n)
n+1) ≤ ci(ln n)(i−3)/2.

Finally, Kubota’s theorem (see [26, Equation (4.6)] and [24, Equation (5.3.27)]), Hölder’s
inequality, and Theorem 1.2 yield the following asymptotic result for the ith intrinsic volume
of a high-dimensional Gaussian simplex (see the proof of Theorem 1.2 in Section 7 for a similar
argument).

Corollary 2.1. Let Vi(P
(n)
n+1) be the ith intrinsic volume of a Gaussian simplex in R

n. Then,
for any fixed integer i ≥ 1,

Vi(P
(n)
n+1)c

−1
n,i (ln n)−i/2 → κi

in probability as n → ∞, where cn,i = (
n
i

)
κn/(κiκn−i ).

Another method of generating n + 1 random points in R
d goes back to a suggestion of

Goodman and Pollack. Let R denote a random rotation of R
n, let �∗

d := �d ◦ R (recall that
�d denotes the projection onto R

d ), and let T (n) be a regular simplex in R
n. Then �∗

d(T (n)) is
a random polytope in R

d in the Goodman–Pollack model. It was proved, in [3], that

ϕ(�∗
dT (n))

d= ϕ(P
(d)
n+1) (2.2)

for any affine invariant (measurable) functional ϕ on the convex polytopes. Thus, if fi denotes
the number of i-faces, (1.1) is equivalent to

E fi(�
∗
dT (n)) = 2d

√
d

(
d

i + 1

)
βi,d−1(π ln n)(d−1)/2(1 + o(1))

as n → ∞, which is what was actually proved in [2]. By (2.2), the bound for the variance in
Theorem 1.1 and the law of large numbers in Corollary 1.1 now give bounds and a law of large
numbers, respectively, for �∗

dT (n), i.e.

var fi(�
∗
dT (n)) ≤ cd(ln n)(d−1)/2
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and, for d ∈ N,

fi(�
∗
dT (n))(ln n)−(d−1)/2 −→ 2d

√
d

(
d

i + 1

)
βi,d−1π

(d−1)/2

in probability, as n tends to infinity.
For further information on the Goodman–Pollack model and related work of Vershik and

Sporyshev [27], we refer the reader to [2].

3. A new formula of Blaschke–Petkantschin type

We work in the d-dimensional Euclidean space R
d with scalar product 〈· , ·〉 and induced

norm ‖ · ‖. The d-dimensional Lebesgue measure in R
d will be denoted by λd . We write S

d−1

for the Euclidean unit (d − 1)-sphere and σ for the spherical Lebesgue measure (the dimension
will be clear from the context). Recall that the convex hull of the points x1, . . . , xm ∈ R

d is
denoted by [x1, . . . , xm]. If P ⊂ R

d is a (convex) polytope then we write Fk(P ) for the set
of its k-dimensional faces and fk(P ) for the number of these k-faces, where k ∈ {0, . . . , d}.
The k-dimensional Lebesgue measure in a k-dimensional plane E ⊂ R

d is denoted by λE .
Subspaces are endowed with the induced scalar product and norm. Finally, we write �(·) for
the gamma function, recalling that �(n + 1) = n! for n ∈ N.

An important tool in our investigations will be a new formula of Blaschke–Petkantschin
type. The classical affine Blaschke–Petkantschin formula (see, e.g. [23, Section II.12.3] and
[26, Section 6.1]) states that

∫
Rd

· · ·
∫

Rd

f (x1, . . . , xd)

d∏
j=1

dλd(xj )

= �(d)

∫
Hd

d−1

∫
H

· · ·
∫

H

f (x1, . . . , xd)λH ([x1, . . . , xd ])
d∏

j=1

dλH (xj ) dµ̄(H)

for any nonnegative measurable function f : (Rd)d → R. Here, µ̄ is the motion-invariant Haar
measure on the affine Grassmannian Hd

d−1 of hyperplanes in R
d , normalized such that the

measure of all hyperplanes hitting the Euclidean unit ball is equal to dκd . Any hyperplane H

with 0 /∈ H can be parametrized (uniquely) by one of its unit normal vectors u ∈ S
d−1 and its

distance t ≥ 0 to the origin, such that H = {y ∈ R
d : 〈y, u〉 = t}. Then we have

µ̄(·) =
∫

Sd−1

∫ ∞

0
1{tu+u⊥∈·} dt dσ(u),

where u⊥ denotes the (d − 1)-dimensional subspace of R
d orthogonal to u.

The affine Blaschke–Petkantschin formula relates the d-dimensional volume elements
dλd(xj ) of points x1, . . . , xd to the differential dµ̄(H) of a hyperplane H and the (d − 1)-
dimensional volume elements dλH (xj ) of points xj ∈ H , j = 1, . . . , d. Intuitively speaking,
instead of choosing d random points in R

d , we first choose a random hyperplane and then, in
a second step, choose d random points in this hyperplane. More precisely, the corresponding
transformation involves a Jacobian of the form [x1, . . . , xd ].

In this paper, we need an analogous formula for two sets of points. The points x1, . . . , x2d−k

determine two hyperplanes, H1 and H2, which are the affine spans of x1, . . . , xd and
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xd−k+1, . . . , x2d−k , respectively. The following formula of Blaschke–Petkantschin type relates
the d-dimensional volume elements dλd(xj ), j = 1, . . . , 2d−k, to the differentials dµ̄(H1) and
dµ̄(H2) of the hyperplanes H1 and H2; to the (d − 1)-dimensional volume elements dλH1(xj )

and dλH2(xl) of points xj , j = 1, . . . , d − k, and xl , l = d + 1, . . . , 2d − k (that are contained
in exactly one hyperplane); and to the (d − 2)-dimensional volume elements dλH1∩H2(xj )

of points xj , j = d − k + 1, . . . , d (that are contained in both hyperplanes). Again, such a
transformation involves a Jacobian that takes into account the angle between the hyperplanes;
this angle is defined as the angle between the normal vectors of the hyperplanes. Since we only
consider the sine of this angle, the orientations of the normal vectors need not be specified.

Lemma 3.1. Let 0 ≤ k ≤ d − 1 and let g : (Rd)2d−k → R be a nonnegative measurable
function. Then,

∫
Rd

· · ·
∫

Rd

g(x1, . . . , x2d−k)

2d−k∏
j=1

dλd(xj ) (3.1)

= �(d)2
∫

Hd
d−1

∫
Hd

d−1

∫
H1

· · ·
∫

H1

∫
H1∩H2

· · ·
∫

H1∩H2

∫
H2

· · ·
∫

H2

g(x1, . . . , x2d−k)

× λH1([x1, . . . , xd ])λH2([xd−k+1, . . . , x2d−k])(sin ϕ)−k

×
2d−k∏

j=d+1

dλH2(xj )

d∏
j=d−k+1

dλH1∩H2(xj )

d−k∏
j=1

dλH1(xj ) dµ̄(H1) dµ̄(H2),

where sin ϕ denotes the sine of the angle between H1 and H2.

Proof. The Blaschke–Petkantschin formula, applied to x1, . . . , xd , and Fubini’s theorem
show that

∫
Rd

· · ·
∫

Rd

g(x1, . . . , x2d−k)

2d−k∏
j=1

dλd(xj )

= �(d)

∫
Hd

d−1

∫
H1

· · ·
∫

H1

∫
Rd

· · ·
∫

Rd

g(x1, . . . , x2d−k)λH1([x1, . . . , xd ])

×
2d−k∏

j=d+1

dλd(xj )

d∏
j=1

dλH1(xj ) dµ̄(H1).

We fix H1 and let

� (f ) =
∫

H1

· · ·
∫

H1

∫
Rd

· · ·
∫

Rd

f (xd−k+1, . . . , x2d−k)

2d−k∏
j=d+1

dλd(xj )

d∏
j=d−k+1

dλH1(xj )

for nonnegative measurable functions f : (Rd)d → R.
An essential ingredient of our proof is a special case of a generalized linear Blaschke–

Petkantschin formula due to Jensen and Kiêu [12] (see also [11, Theorem 5.6, p. 135]). For all
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nonnegative measurable functions h and for a (fixed) hyperplane H , we have

∫
H

· · ·
∫

H

∫
Rd

· · ·
∫

Rd

h(y1, . . . , yd−1)

d−1∏
j=k+1

dλd(yj )

k∏
j=1

dλH (yj )

= �(d)

∫
Ld

d−1

∫
H∩L

· · ·
∫

H∩L

∫
L

· · ·
∫

L

h(y1, . . . , yd−1)

× λL([0, y1, . . . , yd−1])(sin ϕ)−k
d−1∏

j=k+1

dλL(yj )

k∏
j=1

dλH∩L(yj ) dν̄(L),

where ϕ denotes the angle between H and L, and ν̄ is the rotation-invariant Haar measure on the
Grassmannian Ld

d−1 of (d − 1)-dimensional linear subspaces of R
d with total measure 1

2dκd .
Using a standard argument (see, e.g. [26, Section 6.1]) this immediately gives a generalized

affine Blaschke–Petkantschin formula for � (f ). Let

H = H1 − x2d−k and xd−k+j − x2d−k = yj ;

then

� (f ) =
∫

Rd

∫
H

· · ·
∫

H

∫
Rd

· · ·
∫

Rd

f (y1 + x2d−k, . . . , yd−1 + x2d−k, x2d−k)

×
d−1∏

j=k+1

dλd(yj )

k∏
j=1

dλH (yj ) dλd(x2d−k)

= �(d)

∫
Rd

∫
Ld

d−1

∫
H∩L

· · ·
∫

H∩L

∫
L

· · ·
∫

L

f (y1 + x2d−k, . . . , yd−1 + x2d−k, x2d−k)

× λL([0, y1, . . . , yd−1])(sin ϕ)−k

×
d−1∏

j=k+1

dλL(yj )

k∏
j=1

dλH∩L(yj ) dν̄(L) dλd(x2d−k)

= �(d)

∫
Hd

d−1

∫
H1∩H2

· · ·
∫

H1∩H2

∫
H2

· · ·
∫

H2

f (xd−k+1, . . . , x2d−k)

× λH2([xd−k+1, . . . , x2d−k])(sin ϕ)−k

×
2d−k∏

j=d+1

dλH2(xj )

d∏
j=d−k+1

dλH1∩H2(xj ) dµ̄(H2).

The proof of the lemma follows easily, by setting

f (xd−k+1, . . . , x2d−k) = �(d)g(x1, . . . , x2d−k)λH1([x1, . . . , xd ])

for fixed x1, . . . , xd−k .
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4. Some auxiliary estimates

Assume that X follows the standard normal distribution N(0, 1
2Id) in R

d with covariance
matrix 1

2Id . Denote by φd(x), or simply φ(x) if d = 1, the density of the standard normal
distribution. The one-dimensional normal distribution N(0, 1

2 ) is given by

�(z) :=
∫ z

−∞
φ(x) dx = 1√

π

∫ z

−∞
e−x2

dx, z ∈ R.

The corresponding measures, having these functions as densities with respect to the appropriate
Lebesgue measure, will be denoted by dφd(x) instead of φd(x) dx, etc.

We will repeatedly use the following asymptotic expansions concerning the density of the
normal distribution.

Lemma 4.1. Let j ≥ 0 and γ > 0. Then, as h1 → ∞,∫ ∞

h1

(h2 − h1)
jφ(h2)

γ dh2 = �(j + 1)

(2γ )j+1 h
−(j+1)
1 φ(h1)

γ (1 + O(h−2
1 )).

Lemma 4.2. For n ∈ N, α, β ∈ R, and γ > 0,∫ ∞

1
�(h1)

n−αh
β
1 φ(h1)

γ dh1 = �(γ )2γ−1n−γ (ln n)(β+γ−1)/2(1 + o(1))

as n → ∞.

The proof of Lemma 4.1 is immediate, by the substitution t = 2γ h1(h2 − h1). The proof
of Lemma 4.2 is a direct generalization of an argument given in [1].

We now provide two useful estimates, which will be needed later.

Lemma 4.3. Let j, l ≥ 0 and γ > 0. Then there exists a constant c > 0, depending only on
j, l, and γ , such that, for h1 ≥ 1,∫ ∞

h1

∫ π

0
(h2 − h1)

jφ(h2)
γ φ( 1

2h1 sin ϕ)(sin ϕ)l dϕ dh2 ≤ ch
−(j+l+2)
1 φ(h1)

γ .

Proof. Since the sine function is symmetric about 1
2π , by Fubini’s theorem and Lemma 4.1

we obtain ∫ ∞

h1

∫ π

0
(h2 − h1)

jφ(h2)
γ φ( 1

2h1 sin ϕ)(sin ϕ)l dϕ dh2

= 2
∫ ∞

h1

(h2 − h1)
jφ(h2)

γ dh2

∫ π/2

0
φ( 1

2h1 sin ϕ)(sin ϕ)l dϕ

≤ 2c1h
−(j+1)
1 φ(h1)

γ

∫ π/2

0
φ

(
h1ϕ

π

)
ϕl dϕ,

where the fact that (2/π)ϕ ≤ sin ϕ ≤ ϕ for 0 ≤ ϕ ≤ 1
2π was used in the last step. Here, the

constant c1 depends only on j and γ . Making the substitution h1ϕ = t , we obtain∫ π/2

0
φ

(
h1ϕ

π

)
ϕl dϕ ≤ h

−(l+1)
1

∫ ∞

0
φ

(
t

π

)
t l dt ≤ c2h

−(l+1)
1 ,

where c2 is a constant depending only on l. Thus, the assertion follows.
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Lemma 4.4. Let j, l ≥ 0 and γ > 0. Then there exists a constant c > 0, depending only on
j, l, and γ , such that, for h1 ≥ 1,∫ ∞

h1

∫ π

0
(h2 − h1)

jφ(h2)
γ φ

(
h1 − h2 cos ϕ

2 sin ϕ

)
(sin ϕ)l−1 dϕ dh2 ≤ ch

−(j+l+1)
1 φ(h1)

γ .

Proof. We will use Fubini’s theorem repeatedly and let c1, c2, . . . denote constants depend-
ing only on j, l, and γ . Then, first making the substitutions (for fixed h2)

u = h1 − h2 cos ϕ

sin ϕ
, du = h2 − h1 cos ϕ

sin2 ϕ
dϕ =

√
u2 + h2

2 − h2
1 sin−1 ϕ dϕ

with

sin ϕ = 1

u2 + h2
2

(h1u + h2

√
u2 + h2

2 − h2
1),

and then defining s such that h2 = h1 + s2/2h1, we find that∫ ∞

h1

∫ π

0
(h2 − h1)

jφ(h2)
γ φ

(
h1 − h2 cos ϕ

2 sin ϕ

)
(sin ϕ)l−1 dϕ dh2

=
∫ ∞

h1

∫ ∞

−∞
(h2 − h1)

jφ(h2)
γ φ( 1

2u)
(h1u + h2

√
u2 + h2

2 − h2
1)

l√
u2 + h2

2 − h2
1(u

2 + h2
2)

l

du dh2

≤ c1h
−j
1 φ(h1)

γ

∫ ∞

−∞

∫ ∞

0
φ(s)γ φ

(
s2

2h1

)γ

φ( 1
2u)s2j h−2l

1

×
(h1u + (h1 + s2/2h1)

√
u2 + s2 + s4/4h2

1)
l√

u2 + s2 + s4/4h2
1

s

h1
ds du

≤ c2h
−(j+l+1)
1 φ(h1)

γ

∫ ∞

−∞

∫ ∞

0
φ(s)γ φ( 1

2u)s2j s√
u2 + s2 + s4/4h2

1

×
(

|u| +
(

1 + s2

2h2
1

)√
u2 + s2 + s4

4h2
1

)l

ds du

≤ c2h
−(j+l+1)
1 φ(h1)

γ

∫ ∞

−∞

∫ ∞

0
φ(s)γ φ( 1

2u)[s2j (|u| + (1 + s2)(|u| + s + s2))l] ds du

≤ ch
−(j+l+1)
1 φ(h1)

γ ,

since the last double integral is finite.

5. Reduction of Theorem 1.1 to Theorem 1.3

In this section, we prove that Theorem 1.1 can be deduced from Theorem 1.3. The method of
proof is a combination of the Efron–Stein jackknife inequality [4] and the fact that a Gaussian
polytope is simple with probability 1. For random polytopes under a different distribution
(for the convex hull of random points chosen in a given smooth convex set) this method was
developed in [20]; see also [21]. Although the present approach is similar in the sense that the
Efron–Stein jackknife inequality is used, it turns out that the computations needed in the case
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of Gaussian polytopes are much more involved. In particular, we use the facts that the normal
distribution is rotationally invariant and the image measure of a Gaussian measure under an
orthogonal projection is itself a Gaussian measure.

If S ≡ S(Y1, . . . , Yn) is any real symmetric function of the independent, identically
distributed random vectors Yj , 1 ≤ j < ∞, we let

Si = S(Y1, . . . , Yi−1, Yi+1, . . . , Yn+1),

S(·) = (n + 1)−1
n+1∑
i=1

Si.

The Efron–Stein jackknife inequality then states that

var S ≤ E
n+1∑
i=1

(Si − S(·))2 = (n + 1) E(Sn+1 − S(·))2.

Note that the right-hand side does not decrease if S(·) is replaced by any other function of
Y1, . . . , Yn+1.

We apply this inequality to the random variable f (Pn), where f (·) is a measurable function
of convex polytopes. Then

S = f ([X1, . . . , Xn]) = f (Pn),

and we replace S(·) by f (Pn+1), which is a function of the convex hull of Pn and a further
random point Xn+1. The Efron–Stein jackknife inequality then yields

var f (Pn) ≤ (n + 1) E(f (Pn) − f (Pn+1))
2. (5.1)

In the case that f (·) is the number of i-faces of Pn, we obtain

var fi(Pn) ≤ (n + 1) E(fi(Pn+1) − fi(Pn))
2.

Let Pn be fixed and choose the additional random point Xn+1. If Xn+1 is contained in Pn then
the random variable fi(Pn+1)−fi(Pn) equals 0. If Xn+1 /∈ Pn then the relative interior of some
of the i-dimensional faces of Pn is contained in the interior of [Pn, Xn+1] (let f −

i (Xn+1) be the
number of such faces), and some of the i-dimensional faces of [Pn, Xn+1] are not contained in
Pn (let f +

i (Xn+1) be the number of such faces). We then have

|fi([Pn, Xn+1]) − fi(Pn)| = |f +
i (Xn+1) − f −

i (Xn+1)| ≤ f +
i (Xn+1) + f −

i (Xn+1).

Since Pn is simplicial with probability 1, this number can easily be estimated in terms of
Fn(Xn+1), the number of facets of Pn that can be seen from Xn+1. Here, Fn(Xn+1) = 0 if
Xn+1 is contained in Pn, and if Xn+1 /∈ Pn then Fn(Xn+1) > 0 is the number of facets of
Pn that are – up to (d − 2)-dimensional faces – contained in the interior of the convex hull of
Pn and Xn+1. Now, each i-dimensional ‘new’ face of [Pn, Xn+1], not contained in Pn, is the
convex hull of Xn+1 and an (i − 1)-dimensional face of Pn. Since this (i − 1)-dimensional
face is also a face of a facet of Pn that can be seen from Xn+1, and each facet is a simplex, we
obtain

f +
i (Xn+1) ≤

(
d

i

)
Fn(Xn+1).
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On the other hand, each i-dimensional face of Pn that is – up to (i − 1)-dimensional faces
– contained in the interior of [Pn, Xn+1] is also a face of a facet contained in the interior of
[Pn, Xn+1]. Hence,

f −
i (Xn+1) ≤

(
d

i + 1

)
Fn(Xn+1),

and combining these estimates proves that

E(fi(Pn+1) − fi(Pn))
2 ≤

(
d + 1

i + 1

)2

E Fn(Xn+1)
2. (5.2)

Thus, each estimate for the second moment of Fn(Xn+1) yields an estimate for var fi(Pn) and,
hence, Theorem 1.1 follows from Theorem 1.3.

6. Proof of Theorem 1.3

6.1. Asymptotic expansion of the expectation

We start with the proof of the first part of Theorem 1.3. The case d = 1 is included by correct
interpretation of the subsequent arguments. Choose n + 1 independent, normally distributed
random points X1, . . . , Xn, X in R

d . The convex hull of the first n points is a Gaussian polytope
Pn, which is simplicial with probability 1. For I ⊂ {1, . . . , n} with |I | = d, denote by FI the
convex hull of {Xi, i ∈ I }, which is a (d − 1)-dimensional simplex. The affine hull of FI is
denoted by H(FI ). With probability 1, this affine hull is a hyperplane that divides R

d into two
(closed) half-spaces. The half-space that contains the origin will be denoted by H0(FI ), and the
other by H+(FI ). (The origin is contained in exactly one half-space with probability 1). In the
following, we want to assume that Pn contains the origin. This happens with high probability
since, by Wendel’s theorem [28],

P(0 /∈ Pn) = O(nd2−n)

and, thus, the condition that Pn contains the origin can be enforced by adding a suitable error
term. Moreover, we can also assume that the points X1, . . . , Xn, X are in general relative
position (i.e. any subset of at most d + 1 of these random points is affinely independent).

We are interested in the number of facets of Pn that can be seen from the additional random
point X /∈ Pn. Denote the set of these facets by Fn(X), i.e.

Fn(X) =: F (X1, . . . , Xn; X)

= {FI : Pn ⊂ H0(FI ), X ∈ H+(FI ), I ⊂ {1, . . . , n}, |I | = d}.
Here, we can define Fn(X) as the empty set if the origin is not contained in the interior of Pn

or if the random points are not in general relative position. Similar definitions can be given
for deterministic points x1, . . . , xn, x in general relative position such that the convex hull of
x1, . . . , xn contains the origin. When applying Wendel’s theorem in considering E Fn(X), the
error term is of the order n2d2−n = O(c−n), with a suitable constant c > 1, since Fn(X) is
bounded by

(
n
d

)
. Using this, we have

E Fn(X) =
∫

Rd

· · ·
∫

Rd

∑
1{FI ∈Fn(x)}

n∏
j=1

dφd(xj ) dφd(x) + O(c−n), (6.1)
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where the summation extends over all subsets I ⊂ {1, . . . , n} with |I | = d. Denote by F1 the
convex hull of x1, . . . , xd . Then,

E Fn(X) =
(

n

d

) ∫
Rd

· · ·
∫

Rd

1{F1∈Fn(x)}
n∏

j=1

dφd(xj ) dφd(x) + O(c−n).

The probability content of the half-space H+(F1) is∫
H+(F1)

dφd(x) = 1 − �(h1),

where h1 is the distance of H(F1) to the origin. If F1 ∈ Fn(X) then X is contained in the half-
space H+(F1) with probability content 1−�(h1), and the random points Xj , j ∈ {d+1, . . . , n},
are contained in the half-space H0(F1) with probability content �(h1). Hence, we obtain

E Fn(X) =
(

n

d

) ∫
Rd

· · ·
∫

Rd

�(h1)
n−d(1 − �(h1))

d∏
j=1

dφd(xj ) + O(c−n).

Parametrizing the hyperplane H(F1) =: H1 in terms of the distance h1 ≥ 0 from the origin
and its unit normal vector u1 in the form H1 ≡ H(u1, h1), and using the affine Blaschke–
Petkantschin formula, we find that

E Fn(X)

= �(d)

(
n

d

) ∫
Sd−1

∫ ∞

0
�(h1)

n−d(1 − �(h1))

×
{∫

H1

· · ·
∫

H1

λH1([x1, . . . , xd ])
d∏

j=1

(φd(xj ) dλH1(xj ))

}
dh1 dσ(u1)

+ O(c−n).

The inner integral (in brackets) is the product of φ(h1)
d and the expected volume

E Vd−1(P
(d−1)
d )

of a random (d − 1)-dimensional Gaussian simplex in R
d−1. Therefore,

E Fn(X) = �(d)

(
n

d

)
E Vd−1(P

(d−1)
d )

∫
Sd−1

∫ ∞

0
�(h1)

n−d(1 − �(h1))φ(h1)
d dh1 dσ(u1)

+ O(c−n).

The expected volume of a random Gaussian simplex was computed explicitly by Miles [17]. It
now follows from Lemma 4.1 and Lemma 4.2 that

E Fn(X) = 2d−1κd�(d + 1) E Vd−1(P
(d−1)
d )n−1(ln n)(d−1)/2(1 + o(1)). (6.2)

This proves the first part of Theorem 1.3.
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6.2. Estimate of the variance

The main part of the proof is devoted to estimating the second moment of Fn(X). In the
case d = 1, we have Fn(X) = Fn(X)2, whence the assertion follows. Now let d ≥ 2.

As in (6.1), we have

E Fn(X)2 =
∫

Rd

· · ·
∫

Rd

(∑
I

1{FI ∈Fn(x)}
)2 n∏

j=1

dφd(xj ) dφd(x) + O(c−n),

with some c > 1. The summation extends over all subsets I ⊂ {1, . . . , n} with |I | = d. We
expand the integrand to obtain

E Fn(X)2 =
∑
I

∑
J

∫
Rd

· · ·
∫

Rd

1{FI ,FJ ∈Fn(x)}
n∏

j=1

dφd(xj ) dφd(x) + O(c−n), (6.3)

where the summation extends over all subsets I, J ⊂ {1, . . . , n} with |I | = |J | = d. If we fix
the number k = |I ∩ J | ∈ {0, . . . , d}, then the corresponding term in (6.3) depends only on k

and not on the particular choice of I and J . For a given k ∈ {0, . . . , d}, we let

F1 = [X1, . . . , Xd ],
F

(k)
2 = [Xd−k+1, . . . , X2d−k].

Note that for k = d we have F1 = F
(d)
2 . Hence, E Fn(X)2 can be rewritten as

E Fn(X)2 =
d∑

k=0

(
n

d

)(
d

k

)(
n − d

d − k

)∫
Rd

· · ·
∫

Rd

1{F1,F
(k)
2 ∈Fn(x)}

n∏
j=1

dφd(xj ) dφd(x)+O(c−n).

The summand corresponding to k = d is just E Fn(X) and, thus, (6.2) yields

E Fn(X)2 ≤ c1

d−1∑
k=0

n2d−k

∫
Rd

· · ·
∫

Rd

1{F1,F
(k)
2 ∈Fn(x)}

n∏
j=1

dφd(xj ) dφd(x)

+ O(n−1(ln n)(d−1)/2).

Here, and in the following, c1, c2, . . . denote constants that are independent of n. The summand
corresponding to k = d also yields the asserted lower bound for E Fn(X)2.

Let h1 and h2 be the distances to the origin and u1 and u2 the unit normal vectors of H(F1)

and H(F
(k)
2 ), respectively, such that

H(F1) = H(u1, h1) and H(F
(k)
2 ) = H(u2, h2).

Since the integrand is symmetric in F1 and F
(k)
2 , we restrict our integration to the range h1 ≤ h2.

Thus, we obtain

E Fn(X)2 ≤ c2

d−1∑
k=0

n2d−k

∫
Rd

· · ·
∫

Rd

1{h1≤h2} 1{F1,F
(k)
2 ∈Fn(x)}

n∏
j=1

dφd(xj ) dφd(x)

+ O(n−1(ln n)(d−1)/2).
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If F1, F
(k)
2 ∈ Fn(x) then the points x2d−k+1, . . . , xn are contained in H0(F1) ∩ H0(F

(k)
2 ) and

the corresponding measure of the set of these points is at most �(h1)
n−2d+k . Moreover, having

F1, F
(k)
2 ∈ Fn(x) implies that x is contained in H+(F1) ∩ H+(F

(k)
2 ). Denote the distance of

H+(F1) ∩ H+(F
(k)
2 ) to the origin byh12. Then the corresponding measure is at most 1−�(h12).

This yields

E Fn(X)2 ≤ c2

d−1∑
k=0

n2d−k

∫
Rd

· · ·
∫

Rd

1{h1≤h2} �(h1)
n−2d+k(1 − �(h12))

2d−k∏
j=1

dφd(xj )

+ O(n−1(ln n)(d−1)/2).

The range of integration can be further reduced to that imposed by 1{1≤h1≤h2}, since the
additional error term is of order n2d�(1)n−2d+k = O(c−n), with a suitable c > 1. For
h1 ≥ 1, and since h12 ≥ h1, Lemma 4.1 implies that

1 − �(h12) ≤ c3h
−1
1 φ(h12).

Therefore, we conclude that

E Fn(X)2 ≤ c4

d−1∑
k=0

n2d−k

∫
Rd

· · ·
∫

Rd

1{1≤h1≤h2} �(h1)
n−2d+kh−1

1 φ(h12)

2d−k∏
j=1

dφd(xj )

+ O(n−1(ln n)(d−1)/2). (6.4)

To develop an estimate for the integral

�k =
∫

Rd

· · ·
∫

Rd

1{1≤h1≤h2} �(h1)
n−2d+kh−1

1 φ(h12)

2d−k∏
j=1

dφd(xj )

in the cases in which 0 ≤ k ≤ d − 1, we apply the Blaschke–Petkantschin formula (3.1) to
obtain

�k = �(d)2
∫

Sd−1

∫ ∞

1

∫
Sd−1

∫ ∞

h1

�(h1)
n−2d+kh−1

1 φ(h12)(sin ϕ)−k

× Jk(u1, h1, u2, h2) dh2 dσ(u2) dh1 dσ(u1), (6.5)

with

Jk(u1, h1, u2, h2) =
∫

H1

· · ·
∫

H1

∫
H1∩H2

· · ·
∫

H1∩H2

∫
H2

· · ·
∫

H2

λH1(F1)λH2(F
(k)
2 )

×
2d−k∏
j=1

φd(xj )

2d−k∏
j=d+1

dλH2(xj )

d∏
j=d−k+1

dλH1∩H2(xj )

d−k∏
j=1

dλH1(xj ).

(6.6)

In the following, we distinguish between the cases k = 0 and k ∈ {1, . . . , d − 1}.
First, let k ∈ {1, . . . , d − 1}. We denote by h

(d−2)
12 the distance from the origin to the

(d −2)-dimensional intersection H1 ∩H2 and define an angle ϕ∗ ∈ (0, 1
2π) by h1 = h2 cos ϕ∗.
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Then

h12 = h2 ≤ h
(d−2)
12 if 0 ≤ ϕ ≤ ϕ∗,

h12 = h
(d−2)
12 if ϕ ≥ ϕ∗.

By v1 and v2, we denote unit vectors parallel to H1 and H2, respectively, and orthogonal to
H1 ∩ H2. The (d − 1)-volumes of the simplices F1 and F

(k)
2 can be bounded from above by

the (d − 2)-volumes of their projections onto H1 ∩ H2, namely

projH1∩H2
F1 and projH1∩H2

F
(k)
2 ,

and their heights in the direction orthogonal to H1 ∩ H2. Hence, we obtain

λH1(F1) ≤ λH1∩H2(projH1∩H2
F1)

(
max

j=1,...,d−k
|〈xj , v1〉| +

√
(h

(d−2)
12 )2 − h2

1

)
,

where we have bounded the height of F1 by the sum of the distance between H1 ∩H2 and h1u1,
which is ((h

(d−2)
12 )2 − h2

1)
1/2, and the maximal distance from the points xj to the point h1u1 in

the direction v1. Analogously,

λH2(F
(k)
2 ) ≤ λH1∩H2(projH1∩H2

F
(k)
2 )

(
max

j=d+1,...,2d−k
|〈xj , v2〉| +

√
(h

(d−2)
12 )2 − h2

2

)
.

Writing xj ∈ H1, j = 1, . . . , d − k, as the orthogonal sum

xj = h1u1 + x1
j v1 + yj ,

where yj is contained in the (d − 2)-dimensional linear subspace parallel to H1 ∩ H2, which
we identify with R

d−2, we have

〈xj , v1〉 = x1
j and φd(xj ) = φ(h1)φ(x1

j )φd−2(yj ).

For the integration with respect x1
j , we obtain

∫
R

· · ·
∫

R

max
j=1,...,d−k

|x1
j |

d−k∏
j=1

(φd(xj ) dx1
j ) ≤ c5

d−k∏
j=1

(φ(h1)φd−2(yj )),

and an analogous result holds for xj ∈ H2, j = d + 1, . . . , 2d − k. Recall that h1 ≤ h2. This
shows that

Jk(u1, h1, u2, h2) ≤ (c5 +
√

(h
(d−2)
12 )2 − h2

1)
2φ(h1)

d−kφ(h2)
d−kφ(h

(d−2)
12 )k

×
∫

Rd−2
· · ·

∫
Rd−2

λd−2([y1, . . . , yd ])λd−2([yd−k+1, . . . , y2d−k])

×
2d−k∏
j=1

(φd−2(yj ) dλd−2(yj )).

Using the facts that (a + b)2 ≤ 2(a2 + b2) and (1 + 1
2x) e−x/2 ≤ 1 for a, b ∈ R and x ≥ 0,

we deduce that

Jk(u1, h1, u2, h2) ≤ c6φ(h1)
d−k+1/2φ(h2)

d−kφ(h
(d−2)
12 )k−1/2 (6.7)
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and, thus,

�k ≤ c7

∫
Sd−1

∫ ∞

1

∫
Sd−1

∫ ∞

h1

�(h1)
n−2d+kh−1

1 φ(h1)
d−k+1/2φ(h2)

d−k

× φ(h12)φ(h
(d−2)
12 )k−1/2(sin ϕ)−k dh2 dσ(u2) dh1 dσ(u1).

Since the integrand is rotation invariant, we may assume that u1 = ed (i.e. u1 coincides with a
basis vector) and, hence, arrive at

�k ≤ c8

∫ ∞

1

∫
Sd−1

∫ ∞

h1

�(h1)
n−2d+kh−1

1 φ(h1)
d−k+1/2φ(h2)

d−k

× φ(h12)φ(h
(d−2)
12 )k−1/2(sin ϕ)−k dh2 dσ(u2) dh1. (6.8)

Elementary calculations show that

(h
(d−2)
12 )2 = h2

1 + (h2 − h1 cos ϕ)2

(sin ϕ)2 = h2
2 + (h1 − h2 cos ϕ)2

(sin ϕ)2 , ϕ ∈ (0, π); (6.9)

moreover,

(h
(d−2)
12 )2 ≥ h2

12 = h2
2 ≥ h2

1(1 + 1
4 (sin ϕ)2), ϕ ∈ (0, ϕ∗], (6.10)

and

h2
12 = (h

(d−2)
12 )2 ≥ h2

1(1 + 1
4 (sin ϕ)2), ϕ ∈ [ϕ∗, π). (6.11)

We parametrize u2 ∈ S
d−1 \ {ed, −ed} in terms of the angle ϕ, between u2 and ed , and its

normalized projection v onto R
d−1 (with v ∈ S

d−1 ∩ e⊥
d and ϕ ∈ (0, π)). Let σd−2 denote the

spherical Lebesgue measure on S
d−2. We can then estimate the inner double integral in (6.8)

by using the fact that k − 1
2 ≥ 1

4 and Lemma 4.4:

∫ ∞

h1

∫
Sd−1

φ(h2)
d−kφ(h12)φ(h

(d−2)
12 )k−1/2(sin ϕ)−k dσ(u2) dh2

≤ c9φ(h1)
k+1/2

∫ ∞

h1

∫
Sd−2

∫ π

0
φ(h2)

d−kφ

(
h1 − h2 cos ϕ

2 sin ϕ

)
(sin ϕ)d−k−2 dϕ dσd−2(v) dh2

≤ c10φ(h1)
k+1/2

∫ ∞

h1

∫ π

0
φ(h2)

d−kφ

(
h1 − h2 cos ϕ

2 sin ϕ

)
(sin ϕ)d−k−2 dϕ dh2

≤ c11h
−(d−k)
1 φ(h1)

d+1/2. (6.12)

Then, for k ∈ {1, . . . , d − 1}, we deduce from (6.8) and (6.12) that

�k ≤ c12

∫ ∞

1
�(h1)

n−2d+kh−d+k−1
1 φ(h1)

2d+1−k dh1 ≤ c13n
−(2d−k+1)(ln n)(d−1)/2. (6.13)
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Finally, we consider the case k = 0. Using the previous notation and (6.10) and (6.11), from
(6.5) and (6.6) we directly obtain

�0 ≤ c14

∫
Sd−1

∫ ∞

1

∫
Sd−1

∫ ∞

h1

�(h1)
n−2dh1

−1φ(h12)φ(h1)
dφ(h2)

d dh2 dσ(u2) dh1 dσ(u1)

≤ c15

∫ ∞

1
�(h1)

n−2dh1
−1φ(h1)

d+1
∫ ∞

h1

∫ π

0
φ(h2)

dφ

(
h1 sin ϕ

2

)
(sin ϕ)d−2 dϕ dh2 dh1.

From Lemma 4.3, we then obtain

�0 ≤ c16

∫ ∞

1
�(h1)

n−2dh1
−(d+1)φ(h1)

2d+1 dh1 ≤ c17n
−(2d+1)(ln n)(d−1)/2. (6.14)

Combining the estimates (6.4), (6.13), and (6.14), we arrive at

E Fn(X)2 ≤ c18

d∑
k=0

n2d−kn−2d+k−1(ln n)(d−1)/2 ≤ c19n
−1(ln n)(d−1)/2.

This completes the proof of Theorem 1.3.

7. Proof of Theorem 1.2

The proof is based on arguments similar to those involved in the proofs of Theorems 1.1
and 1.3. Therefore, we use the same notation as before. In particular, c1, c2, . . . denote
constants that depend only on the dimension.

Denote by νi the Haar probability measure on the set Ld
i of i-dimensional linear subspaces

in R
d . Kubota’s theorem and the rotation invariance of the normal distribution immediately

give

E Vi(Pn) = E

(
cd,i

∫
Ld

i

Vi(projL Pn) dνi(L)

)
= cd,i E Vi(projL0

Pn)

(where, recall, cd,i = (
d
i

)
κd/κiκd−i), for an arbitrary i-dimensional linear subspace L0 that

we identify with R
i . The projection onto R

i of a Gaussian sample in R
d is itself a Gaussian

sample. Hence,
E Vi(Pn) = cd,i E Vi(P

(i)
n ),

where P
(i)
n is the convex hull of a Gaussian sample in R

i . For the variance, we obtain

var Vi(Pn) = E(Vi(Pn) − E Vi(Pn))
2

= E

(
cd,i

∫
Ld

i

(Vi(projL Pn) − E Vi(P
(i)
n )) dνi(L)

)2

≤ c2
d,i E

(∫
Ld

i

(Vi(projL Pn) − E Vi(P
(i)
n ))2 dνi(L)

)

by Hölder’s inequality. Thus, Fubini’s theorem and rotation invariance imply that

var Vi(Pn) ≤ c2
d,i E(Vi(P

(i)
n ) − E Vi(P

(i)
n ))2 = c2

d,i var Vi(P
(i)
n ).
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Therefore, by the Efron–Stein jackknife inequality (5.1), it suffices to prove that

var Vd(Pn) ≤ (n + 1) E(Vd(Pn+1) − Vd(Pn))
2 ≤ c1(ln n)(d−3)/2

(i.e. the case i = d), which then yields the general result.
We will assume that Pn contains the origin, which leads to an error term of the order

(n5d2−n)1/2 = O(c−n),

with a suitable constant c > 1. To see this, we can use Cauchy’s inequality

E((Vd(Pn+1) − Vd(Pn))
2 1{0/∈Pn}) ≤

√
E(Vd(Pn+1) − Vd(Pn))4 P(0 /∈ Pn)

and Hölder’s inequality

E(Vd(Pn+1) − Vd(Pn))
4 ≤ E Vd(Pn+1)

4

≤ E

(∑
I

Vd([0, FI ])
)4

≤
(

n + 1

d

)4

E Vd([0, F1])4;

here the summation extends over all sets I ⊂ {1, . . . , n + 1} with |I | = d. Since Wendel’s
theorem [28] shows that P(0 /∈ Pn) = O(nd2−n) and since E Vd([0, F1])4 is a (finite) constant,
the assertion follows. Thus, we obtain

E(Vd(Pn+1) − Vd(Pn))
2 = E

(∑
I

1{FI ∈Fn(X)} Vd([FI , X])
)2

+ O(c−n)

= 2
d∑

k=0

(
n

d

)(
d

k

)(
n − d

d − k

) ∫
Rd

· · ·
∫

Rd

1{1≤h1≤h2}

× 1{F1,F
(k)
2 ∈Fn(x)} Vd([F1, x])Vd([F (k)

2 , x])

×
n∏

j=1

dφd(xj ) dφd(x) + O(c−n)

≤ c2

d∑
k=0

n2d−k

∫
Rd

· · ·
∫

Rd

1{1≤h1≤h2} 1{F1,F
(k)
2 ∈Fn(x)}

× Vd([F1, x])Vd([F (k)
2 , x])

n∏
j=1

dφd(xj ) dφd(x) + O(c−n).

For the integration with respect to x, observe that Vd([F1, x]) equals (1/d)λH1(F1) (which
is independent of x) times the distance 〈x, u1〉 − h1 between x and H1 = H(F1); a similar
assertion holds for F

(k)
2 .
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Let us first consider the summand corresponding to k = d. In this case, we estimate that

nd

∫
Rd

· · ·
∫

Rd

1{1≤h1} 1{F1∈Fn(x)} Vd([F1, x])2
n∏

j=1

dφd(xj ) dφd(x)

≤ nd

∫
Rd

· · ·
∫

Rd

�(h1)
n−d 1{1≤h1}

×
∫

Rd

1{x∈H+(F1)}(〈x, u1〉 − h1)
2 dφd(x)λH1(F1)

2
d∏

j=1

dφd(xj )

= nd

∫
Rd

· · ·
∫

Rd

�(h1)
n−d 1{1≤h1}

∫ ∞

h1

(h − h1)
2φ(h) dh λH1(F1)

2
d∏

j=1

dφd(xj )

≤ c3n
d

∫
Rd

· · ·
∫

Rd

�(h1)
n−d 1{1≤h1} h−3

1 φ(h1)λH1(F1)
2

d∏
j=1

dφd(xj )

≤ c4n
d

∫ ∞

1
�(h1)

n−dh−3
1 φ(h1)

d+1 dh1

≤ c5n
−1(ln n)(d−3)/2,

where the affine Blaschke–Petkantschin formula and Lemma 4.2 have been applied in the fourth
step.

If d = 1 then only the case k = 1 can occur, and the proof is finished at this point.
Subsequently, we consider the case d ≥ 2. In order to estimate the summands corresponding
to k with 0 ≤ k ≤ d − 1, we need some preparations. Again, denote by ϕ the angle between u1
and u2, by h12 the distance from H+(F1) ∩ H+(F

(k)
2 ) to the origin, and by u12 the unit vector

pointing from the origin to the nearest point of H+(F1)∩H+(F
(k)
2 ). Then H+(F1) ∩ H+(F

(k)
2 )

is contained in {y ∈ R
d : 〈y, u12〉 ≥ h12}. We use the parametrization x = hu12 + z with

z ∈ u⊥
12, where h ≥ h12, and have

〈x, ui〉 − hi = h〈u12, ui〉 + 〈z, ui〉 − hi ≤ h − h12 + ‖z‖ sin ϕ + h12〈u12, ui〉 − hi

for ϕ ≤ 1
2π , since the angle between ui and u12 is bounded by the angle between u1 and u2. If

ϕ∗ ≤ ϕ ≤ 1
2π then h12 = h

(d−2)
12 and h12u12 ∈ H(F1) ∩ H(F

(k)
2 ); hence, h12〈u12, ui〉 = hi for

i = 1, 2. If 0 < ϕ < ϕ∗ then h12u12 ∈ H(F
(k)
2 ), h12 = h2, u12 = u2, and h12〈u12, u1〉−h1 ≤

h2 − h1. In either case, we then have∫
Rd

1{x∈H+(F1)∩H+(F
(k)
2 )}(〈x, u1〉 − h1)(〈x, u2〉 − h2) dφd(x)

≤
∫ ∞

h12

∫
u⊥

12

(h − h12 + ‖z‖ sin ϕ + h2 − h1)(h − h12 + ‖z‖ sin ϕ) dφd−1(z) dφ(h)

≤ c6(h
−3
12 + h−2

12 (sin ϕ + (h2 − h1)) + h−1
12 (sin2 ϕ + (h2 − h1) sin ϕ))φ(h12)

=: S1(h1, h2, ϕ)

for ϕ ≤ 1
2π , where we have used Lemma 4.1. For ϕ ≥ 1

2π , (6.9) implies that

h
(d−2)
12 = h12 ≥ 21/2h1.
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Thus, for ϕ ≥ 1
2π we obtain∫

Rd

1{x∈H+(F1)∩H+(F
(k)
2 )}(〈x, u1〉 − h1)(〈x, u2〉 − h2) dφd(x)

≤
∫ ∞

h12

(h − h1)
2φ(h) dh ≤ 3φ(h12) + (h12 − h1)

2

h12
φ(h12)

≤ c7φ(ηh1)

=: S2(h1, h2, ϕ),

where η := 1
2 (1 + 21/2). In addition, we define

S1(h1, h2, ϕ) = 0 for ϕ > 1
2π ,

S2(h1, h2, ϕ) = 0 for ϕ < 1
2π ,

and then let
S(h1, h2, ϕ) := S1(h1, h2, ϕ) + S2(h1, h2, ϕ).

The probability that the random pointsX2d−k+1, . . . ,Xn are contained inH0(F1) ∩ H0(F
(k)
2 )

can be bounded from above by �(h1)
n−2d+k . Hence, we obtain

E(Vd(Pn+1) − Vd(Pn))
2

≤ c8

d−1∑
k=0

n2d−k

∫
Rd

· · ·
∫

Rd

1{1≤h1≤h2} �(h1)
n−2d+kS(h1, h2, ϕ)

× λH1(F1)λH2(F
(k)
2 )

2d−k∏
j=1

dφd(xj ) + O(n−1(ln n)(d−3)/2). (7.1)

For k ∈ {0, . . . , d − 1}, we apply the Blaschke–Petkantschin formula (3.1) to the integral

�k =
∫

Rd

· · ·
∫

Rd

1{1≤h1≤h2} �(h1)
n−2d+kS(h1, h2, ϕ)λH1(F1)λH2(F

(k)
2 )

2d−k∏
j=1

dφd(xj )

(7.2)
to obtain

�k = �(d)2
∫

Sd−1

∫ ∞

1

∫
Sd−1

∫ ∞

h1

�(h1)
n−2d+kS(h1, h2, ϕ)(sin ϕ)−k

× Jk(u1, h1, u2, h2) dh2 dσ(u2) dh1 dσ(u1),

with
Jk(u1, h1, u2, h2)

=
∫

H1

· · ·
∫

H1

∫
H1∩H2

· · ·
∫

H1∩H2

∫
H2

· · ·
∫

H2

λH1(F1)
2λH2(F

(k)
2 )2

2d−k∏
j=1

φd(xj )

×
2d−k∏

j=d+1

dλH2(xj )

d∏
j=d−k+1

dλH1∩H2(xj )

d−k∏
j=1

dλH1(xj ).
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The two cases k = 0 and k ∈ {1, . . . , d − 1} will again be treated separately. We decompose
�k in the form �k = � 1

k + � 2
k , corresponding to the decomposition S = S1 + S2.

We start with the case k = 0, and obtain

� 1
0 = c9

∫
Sd−1

∫ ∞

1

∫
Sd−1

∫ ∞

h1

�(h1)
n−2dS1(h1, h2, ϕ)

×
∫

H1

· · ·
∫

H1

λH1(F1)
2

d∏
j=1

φd(xj )

d∏
j=1

dλH1(xj )

×
∫

H2

· · ·
∫

H2

λH2(F
(0)
2 )2

2d∏
j=d+1

φd(xj )

2d∏
j=d+1

dλH2(xj ) dh2 dσ(u2) dh1 dσ(u1)

≤ c10

∫
Sd−1

∫ ∞

1

∫
Sd−1

∫ ∞

h1

�(h1)
n−2dS1(h1, h2, ϕ)φ(h1)

dφ(h2)
d dh2 dσ(u2) dh1 dσ(u1)

≤ c11

∫ ∞

1
�(h1)

n−2dφ(h1)
d

∫ π/2

0

∫ ∞

h1

S1(h1, h2, ϕ)(sin ϕ)d−2φ(h2)
d dh2 dϕ dh1.

Now we must consider the five different summands into which S1(h1, h2, ϕ) naturally decom-
poses, and estimate the corresponding integrals. Using the fact that h12 ≥ h1 and repeatedly
applying Lemma 4.3, we thus obtain

∫ ∞

h1

∫ π/2

0
S1(h1, h2, ϕ)(sin ϕ)d−2φ(h2)

d dh2 dϕ ≤ c12h
−(d+3)
1 φ(h1)

d+1

and, so, arrive at

� 1
0 ≤ c13

∫ ∞

1
�(h1)

n−2dh
−(d+3)
1 φ(h1)

2d+1 dh1 ≤ c14n
−(2d+1)(ln n)(d−3)/2.

Moreover,

� 2
0 ≤ c15

∫
Sd−1

∫ ∞

1

∫
Sd−1

∫ ∞

h1

�(h1)
n−2dS2(h1, h2, ϕ)φ(h1)

dφ(h2)
d dh2 dσ(u2) dh1 dσ(u1)

≤ c16

∫ ∞

1
�(h1)

n−2dφ(h1)
d

∫ π

π/2

∫ ∞

h1

φ(ηh1)(sin ϕ)d−2φ(h2)
d dh2 dϕ dh1

≤ c17

∫ ∞

1
�(h1)

n−2dh−1
1 φ(h1)

2d+η2
dh1

≤ c18n
−(2d+η2)(ln n)(2d+η2−1−1)/2

≤ c19n
−(2d+1)(ln n)(d−3)/2,

since 1 < η2 < 2. Thus, we have

�0 ≤ c20n
−(2d+1)(ln n)(d−3)/2. (7.3)

We next consider the cases k ∈ {1, . . . , d − 1}. First, we obtain

Jk(u1, h1, u2, h2) ≤ c21φ(h1)
d−k+1/2φ(h2)

d−kφ(h
(d−2)
12 )k−1/2
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by arguing in a similar way as we did in proving (6.7). We therefore have to bound∫ ∞

1

∫
Sd−1

∫ ∞

h1

�(h1)
n−2d+k

× S(h1, h2, ϕ)(sin ϕ)−kφ(h1)
d−k+1/2φ(h2)

d−kφ(h
(d−2)
12 )k−1/2 dh2 dσ(u2) dh1

from above, where ϕ is the angle between e1 and u2. Parametrizing the unit sphere as before,
we see that this integral can be bounded from above by∫ ∞

1

∫ ∞

h1

∫ ∞

0
�(h1)

n−2d+kφ(h1)
d−k+1/2

× S(h1, h2, ϕ)φ(h2)
d−kφ(h

(d−2)
12 )k−1/2(sin ϕ)d−k−2 dϕ dh2 dh1,

up to a constant multiplier. Using (6.9), Lemma 4.4, and the facts that h12 ≥ h1, h2 ≥ h1, and
k − 1

2 ≥ 1
4 , this multiple integral can be estimated from above by

∫ ∞

1
�(h1)

n−2d+kφ(h1)
d−k+1/2φ(h1)

k−1/2φ(h1)

×
∫ ∞

h1

∫ ∞

0
φ(h2)

d−kS(h1, h2, ϕ)φ(−h12)φ

(
h1 − h2 cos ϕ

2 sin ϕ

)
(sin ϕ)d−k−2 dϕ dh2 dh1

≤ c22

∫ ∞

1
�(h1)

n−2d+kφ(h1)
d+1h

−(d−k+3)
1 φ(h1)

d−k dh1

≤ c23n
−2d+k−1(ln n)(d−3)/2. (7.4)

Thus, combining (7.1), (7.2), (7.3), and (7.4), we finally obtain

E(Vd(Pn+1) − Vd(Pn))
2 ≤ c24n

−1(ln n)(d−3)/2,

which completes the proof.
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