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Systems of multiple current sheets arise in various situations in natural plasmas, such
as at the heliospheric current sheet in the solar wind and in the outer heliosphere
in the heliosheath. Previous three-dimensional simulations have shown that such
systems can develop turbulent-like fluctuations resulting from a forward and inverse
cascade in wave vector space. We present a study of the transition to turbulence
of such multiple current sheet systems, including the effects of adding a magnetic
guide field and velocity shears across the current sheets. Three-dimensional hybrid
simulations are performed of systems with eight narrow current sheets in a triply
periodic geometry. We carry out a number of different analyses of the evolution of
the fluctuations as the initially highly ordered state relaxes to one which resembles
turbulence. Despite the evidence of a forward and inverse cascade in the fluctuation
power spectra, we find that none of the simulated cases have evidence of intermittency
after the initial period of fast reconnection associated with the ion tearing instability
at the current sheets. Cancellation analysis confirms that the simulations have not
evolved to a state which can be identified as fully developed turbulence. The addition
of velocity shears across the current sheets slows the evolution in the properties of
the fluctuations, but by the end of the simulation they are broadly similar. However, if
the simulation is constrained to be two-dimensional, differences are found, indicating
that fully three-dimensional simulations are important when studying the evolution of
an ordered equilibrium towards a turbulent-like state.
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1. Introduction
In this paper we consider the evolution of systems of multiple current sheets, using

hybrid simulations with particle-in-cell (PIC) ions to correctly model key aspects
of the physical processes involved, such as reconnection. Such systems, as well as
being an interesting case to study in their own right, occur in several situations.
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For example, in the heliosphere the magnetic field in the solar wind has a polarity
connecting towards or away from the Sun, and regions of outward and inward polarity
are separated by a thin region known as the heliospheric current sheet (HCS) (Owens
& Forsyth 2013). Misalignment of the Sun’s rotation and magnetic axes leads to
a warped HCS which extends at low heliolatitudes throughout the heliosphere.
Combined with the spiral pattern of the heliospheric magnetic field, this leads to
multiple, embedded current sheets with field reversals in the outer heliosphere, as
observed by the Voyager spacecraft up to the heliospheric termination shock (HTS)
and beyond into the heliosheath (Burlaga & Ness 2011).

Recent interest in the effects of these current sheets, particularly multiple current
sheet (MCS) systems, has been stimulated by discrepancies between simple theories
of shock acceleration and Voyager observations of the anomalous cosmic ray (ACR)
component (Stone et al. 2005, 2008). Using PIC simulations Drake et al. (2010)
investigated particle energization from energy release in a system of closely spaced
current sheets. A similar system was studied by Burgess, Gingell & Matteini (2016)
using a three-dimensional hybrid simulation (particle ions with fluid electron response)
including pick up ions as found in the outer heliosphere. A major result of this study
was that the highly symmetric and ordered initial state of a MCS system evolves
to a complex three-dimensional state, with a long-time end state which appears to
become close to well-developed turbulence. A power-law form of the power spectrum
of magnetic fluctuations develops due to both inverse and forward cascades and
fluctuations are anisotropic for the case when a guide field is present, as found for
solar wind turbulence.

In this paper we address specifically the transition to turbulence of an MCS system,
in order to fully characterize the resultant fluctuations. The concept of universality is
often invoked when considering plasma turbulence, and it is pertinent to consider the
properties of apparently turbulent fluctuations generated by different initial conditions
in simulations. For this reason the study of the MCS system is interesting in that it
might represent an alternative method for initializing simulations of turbulence. One
advantage of the MCS system is that velocity shear can be included in the initial
conditions, so one has the possibility of producing turbulence with various levels
of mean velocity shear fluctuations. Furthermore, the characterization of turbulent
or nonlinear fluctuations and intermittency in complex and kinetic systems, where
dissipation mechanisms are not fully understood, is important for the ongoing study
of structure formation in nonlinear systems (Matthaeus et al. 2015). Comprehensive
analysis of intermittency in one such complex system, here the ion kinetic MCS
system, can therefore provide a valuable point of comparison for future study.

The paper is organized as follows: we first describe the simulations we have
performed and their initialization, then the results of a number of different analysis
techniques (power spectra, intermittency metrics, cancellation analysis and cross-
helicity against residual energy) are presented, and finally we conclude with some
discussion of the results of the simulations and implications for the use of multiple
current sheet systems to study plasma turbulence.

2. Simulations

We investigate the evolution of turbulence from a multiple current sheet system
using the three-dimensional hybrid simulation code HYPSI, as used previously to
study the evolution of heliospheric ion-scale current sheets (Gingell, Burgess &
Matteini 2015; Burgess et al. 2016). The hybrid method combines a fully kinetic,
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PIC treatment of the ion species with a charge-neutralizing, massless and adiabatic
election fluid. Maxwell’s equations are solved in the low-frequency Darwin limit,
with zero resistivity, using the current advance method and cyclic leapfrog (CAM-CL)
algorithm described by Matthews (1994).

The three-dimensional simulations use a grid of (Nx,Ny,Nz)= (120, 120, 120) cells
with resolution 1x = 0.5di, where di = vA/Ωi is the ion inertial length. The size
of the full simulation domain is therefore (60di)

3. All boundaries are chosen to be
periodic. Distance and time are normalized to units of the ion inertial length di and
inverse ion gyrofrequency tΩ =Ω−1

i , respectively; velocity is normalized to the Alfvén
speed vA. In order to reduce noise as far as possible given the constraints of the
available computational resources, the ion phase space has been sampled with 200
pseudo-particles per computational cell.

The simulations are initialized with eight current sheets parallel to the y–z plane,
with spacing 7.5di. We use a ‘force-free’ equilibrium which consists of a rotation in
the magnetic field with uniform density. Each current sheet therefore has the following
magnetic structure:

Bx(x)= 0, (2.1)
By(x)=±B0 tanh(x/L), (2.2)
Bz(x)=±B0sech(x/L), (2.3)

where the B0 is the background magnetic field strength. The magnetic field reverses
over a length scale L = di. In contrast to the Harris current sheet equilibrium often
used in other studies (e.g. Drake et al. 2010), both the magnetic field strength and
density are uniform over the current sheet. Ions are initialized with a Maxwellian
distribution function, with plasma beta βi= 0.5. For the plasma conditions chosen, we
have verified that evolutionary differences which arise from the use of non-Maxwellian
distribution functions required at kinetic scales (see Neukirch, Wilson & Harrison
2009; Wilson & Neukirch 2011) are negligible.

In addition to the initial conditions described above, referred to hereafter as the
‘anti-parallel’ or AP case, two variations are also described in this study. In the guide
field (GF) case a uniform Bz component is added, such that initially Bz = By and the
background field strength B2

g = B2
y + B2

z = B2
0. This corresponds to a rotation of the

background magnetic field without a change in the background field strength. In the
super-Alfvénic velocity shear case (SH), a variable bulk velocity uSH = (0, uy(x), 0) is
included between each current sheet, such that each of the current sheets is subject
to a different velocity shear. The initial bulk velocities between the current sheets in
order of increasing x coordinate are as follows: uy/vA= [6,−8, 2, 1,−2, 4,−3]. Each
velocity shear layer is initialized with the same width as the magnetic shear layer L,
such that the initial bulk velocity is given by:

uy,total(x)=
7∑

i=1

1
2

uy,i

(
tanh

(
x− xc,i

L

)
− tanh

(
x− xc,i+1

L

))
, (2.4)

where xc,i is the centre of a given current sheet. Note that the net bulk velocity in
the simulation is zero. In this case, each current sheet is subject to a super-Alfvénic
velocity shear in addition to the magnetic shear. We also discuss a ‘2.5-dimensional’
(2.5-D) version of these initial conditions (SH2d), for which all three components of
the fields and moments do not vary in the z-direction, e.g. Bxyz(x, y, t).

The full set of simulations discussed in this paper, including relevant abbreviations,
is given in table 1.
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(a) (b) (c)

FIGURE 1. Line integral convolution visualization of the magnetic structure at tΩi = 300
for (a) anti-parallel, (b) guide field and (c) super-Alfvénic shear simulations. (The plots
are produced in MATLAB with routines from Toolbox image.)

Abbreviation Description Guide Field, Bg/B0 Velocity Shear, uy/vA

AP Anti-parallel 0 0
GF Guide field 1 0
SH Super-Alfvénic velocity shear, 3-D 0 [6,−8, 2, 1,−2, 4,−3]
SH2d Super-Alfvénic velocity shear, 2.5-D 0 [6,−8, 2, 1,−2, 4,−3]

TABLE 1. Summary of simulations discussed in this paper.

3. Results

The evolution of the simulations in time can be summarized as follows (Burgess
et al. 2016): (i) linear growth of the tearing instability from the symmetric, highly
ordered initial state; (ii) nonlinear growth of the tearing instability, characterized by
island merging and reconnection across several current sheets; (iii) saturation of the
tearing instability, and relaxation towards a chaotic, ‘turbulent’ state. The magnetic
structure at the end of the simulation for the AP, GF and SH cases is shown in
figure 1. These figures visualize the field line topology (but not field strength or
direction) using a line integral convolution, for which a randomly generated field of
noise is smeared out over magnetic field lines. This provides a dense representation
of the most important features we discuss in this paper, i.e. the development of
magnetic islands of varying scales, without the clutter of following multiple field
lines in three dimensions. The time evolution of the tearing instability and associated
magnetic structure for these multiple current sheet systems is described in detail by
Burgess et al. (2016). Discussion of the effects of other instabilities on the evolution
of single three-dimensional ion-scale current sheets, including the drift-kink, firehose
and ion cyclotron instabilities, can be found in Gingell et al. (2015).

We find that growth and merging of magnetic islands by reconnection in the AP
case generates an apparently three-dimensional and isotropic cascade of magnetic
vortices. In the GF case, the magnetic structure remains largely two-dimensional, and
the x–z and y–z planes in figure 1(b) are therefore dominated by the z-directed mean
field.

The introduction of super-Alfvénic shear in the SH case stabilizes the tearing
instability (e.g. Chen & Morrison 1990; Cassak & Otto 2011; Landi & Bettarini
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(a)

(b)

FIGURE 2. (a) Magnetic power spectra for the AP run, at different times, with the power-
law fit. (b) The time evolution of the spectral index α obtained from the fits for the three
runs. The horizontal line marks the scaling exponent value 8/3.

2012; Doss et al. 2015), leading to persistence of some of the initial current sheets
longer than in the zero shear, anti-parallel case. Thus, the inverse cascade by merging
of magnetic islands is less advanced in the super-Alfvénic shear case, and the scales
of the magnetic islands are consequently smaller in figure 1(c) than in figure 1(a).
From other simulations (not shown) we note that the reconnection rate is significantly
reduced only when super-Alfvénic shear velocities are imposed. This dependence
of the reconnection rate on shear velocity therefore enables local modulation of the
magnetic structure by introducing significant differences in the shear at each current
sheet. For example, including a single super-Alfvénic shear layer with a set of zero or
sub-Alfvénic shear layers leads to a magnetic structure in which a single, persistent
current sheet is embedded within a background of magnetic islands.

In order to characterize the apparent cascade seen in the magnetic structure in
figure 1, we examine the time evolution of the spectrum of magnetic fluctuations.
These spectra are shown for the anti-parallel case in figure 2(a). Each spectrum shown
is the trace power spectrum of the full three-dimensional box, integrated over shells
of constant k. At early times, strong peaks in the power spectrum are associated with
spatial harmonics of the current sheet separation scale. The evolution from t = 0 to
tΩi≈ 150 consists of in-filling of the spectral peaks, generating a power-law spectrum
approximating EB(k) ∼ k−8/3. For inertial magnetohydrodynamic (MHD) turbulence,
one might expect a Kolmogorov power-law exponent −5/3. Here, the steeper slope
may be a consequence of the inverse cascade associated with merging of magnetic
islands.

In order to quantitatively follow the time evolution of the spectral properties, it is
possible to use the value of the exponent α of the isotropically integrated magnetic
power spectra, obtained through a fit with the power law EB(k) ∼ k−α. Examples of
such a fit over an appropriate range of wave vectors are shown in figure 2(a), at some
different times in the simulation, highlighting the variation of the scaling exponent
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with time. The range of wave vectors is chosen to approximate the inertial range.
Given the ion kinetic scales and the constraints of the size of the simulation domain,
the inertial range is therefore limited to approximately half a decade in k-space. We
note that at high-k, close to the grid scale, the apparent rise in power is an artefact
of the isotropic integration of the full three-dimensional magnetic spectra, and is
not associated with particle noise. The evolution of the spectral index for different
simulation cases is shown in figure 2(b). The initial values are estimated by fitting
the envelope of the spectral peaks observed at early times, and do not carry any
significance in terms of nonlinear energy cascade. At tΩi ' 25, the spectral peaks
have already merged and the spectrum is flat. At following times, it starts to broaden
and steepen, with the spectral index increasing from zero to approximately α ' 3
at tΩi ' 150 for the AP run, or to α ' 2.7 for the SH and GF runs. At later time,
tΩi & 250, an approximate steady state is reached at α' 2.6 for the AP and SH runs,
while α ' 2.1 for the GF run.

Although the magnetic spectra have been isotropically integrated over the
three-dimensional k-space, the initial conditions may introduce sources of spectral
anisotropy. The multiple current sheet system is itself anisotropic, however in the
AP case fast growth of the tearing instability and associated fluctuations evolve
the system towards an approximately isotropic state by tΩi & 25. However, the
guide field is known to introduce anisotropy in the magnetic spectrum of an MCS
system (Burgess et al. 2016). In the GF case, a relative reduction in the power in
the parallel direction compared to the perpendicular direction, visible also in the
magnetic structure in figure 1(b), leads to an effective reduction of the spectral
index for the isotropically integrated spectrum. This difference is reflected in the
reduced α of the GF run compared with the AP and SH runs at late times, visible in
figure 2(b). Velocity shear is also known to introduce spectral anisotropy (Wan et al.
2009). However, in the SH case presented in this study, for which we have a set of
oppositely directed velocity shear layers with a range of magnitudes and net zero
bulk velocity, the system nevertheless evolves towards an isotropic state over a time
scale determined by the saturation of the tearing instability, approximately tΩi & 150.
Hence, towards the end of the simulation for the AP and SH cases, spectral anisotropy
is not expected to affect any statistics for which isotropy is assumed.

The description of turbulence requires a more detailed description than simply the
spectral analysis. In fact, fully developed turbulence is characterized by intermittency
(Frisch 1995), or lack of scale invariance of the field fluctuations, which in turn leads
to non-uniform distribution of energy dissipation at small scales. For this reason, it
is customary to estimate the scale dependence of the statistical properties of the two-
point field increments 1B(x, l) = B(x + l) − B(x), where l is the scale parameter. A
complete description is provided by the probability distribution functions (PDFs) of
the scale-dependent, standardized field increments. In turbulent flows these are usually
Gaussian at large scale, and have increasing tails as the scale decreases, because of the
formation of large amplitude structures that concentrate on smaller and smaller scales.
This is the signature of intermittency, a process naturally and universally arising in
fully developed Navier–Stokes or MHD turbulence (Frisch 1995). PDFs of longitudinal
magnetic field increments of the x component are shown in figure 3 at two times
(tΩi ' 150 and tΩi & 300), and for three different scales. It is evident that PDFs at
different scales collapse on a roughly similar (Gaussian) shape, shown with a dashed
line, with weak deviation of the tails. At large scale, the PDF is slightly leptokurtic,
i.e. tails are lower than Gaussian, while at smaller scale they progressively increase
toward weakly hyperkurtic values. This is an indication of weak scale dependence, or
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FIGURE 3. Examples of the PDFs of the longitudinal field increments of the x component,
1Bx, at three different scales (different colours), estimated at two times in the simulation,
for the anti-parallel case. The weak scale dependence is highlighted by the comparison
with a reference Gaussian (dashed lines). A similar behaviour is observed at all times, for
all the field components, and for all simulation cases (not shown).

intermittency, so that the field is nearly self-similar. Similar behaviour is observed for
all times, for all field components, for all simulation cases. However, we note that for
small scales at tΩi ' 150, the tail regions of the PDF are more hyperkurtic than at
tΩi' 300, as a remnant of the fluctuations generated by the tearing instability during
the period of fast, nonlinear reconnection, which saturates at t∼ 100.

A more quantitative estimate is given by means of the PDF structure functions,
i.e. the high-order moments of the PDFs, Sq(1B) = 〈|1b|q〉, with the brackets
indicating spatial averages (Frisch 1995). In turbulent flows, it is expected that
the structure functions scale as power laws of the separation l, Sq(l) ∼ lζq , in the
inertial range. The behaviour of the scaling exponents with the moment order q
is indicative of the presence of intermittency. In particular, the linear dependence
ζq ∝ q indicates self-similarity, while deviation from such linearity indicates
intermittency. Due to the limited extension of the inertial range in the numerical
simulations, extended self-similarity (ESS) (Benzi et al. 1993) has been used, as
customary. In this case, the structure functions Sq are plotted as a function of the
second-order moment S2. The corresponding extended-range fit with the power law
Sq(S2) ∼ Sξq

2 gives the scaling exponents ξp ∝ ζp, which can therefore be used to
measure deviation from self-similarity. Intermittency models can be used to fit the
function ξq, providing a quantitative estimate. Here we use the p-model (Meneveau
& Sreenivasan 1987), whose prediction for the structure functions anomalous scaling
is ξq = 1 − log2

[
phq + (1− p)hq

]
. Here p ∈ [0.5, 1] is the parameter that quantifies

deviation from self-similarity, with p = 0.5 indicating absence of intermittency and
p > 0.5 indicating increasing intermittency. Figure 4(a) shows one example of ESS
structure functions for AP case at the end of the simulation, for the Bx component.
Power-law fits are also indicated. Figure 4(b) shows the order dependency of the
scaling exponents ξq, along with the p-model fit, for the same case as in the
figure 4(a), again taken the end of the simulation (tΩi= 300) and at earlier times. In
figure 4(c), the time evolution of the parameter p obtained from the fit is shown, for
the x component, and for all three cases. For the AP and GF cases the intermittency
parameter reaches a stationary value p' 0.6 at early times in the simulation, around
tΩi ' 50. Such value indicates a very weak degree of intermittency, in agreement
with the observation of the scale-dependent PDFs. On the contrary, no intermittency
(p' 0.5) is observed for the SH case.
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(a)

(c)

(b)

FIGURE 4. (a) One example of structure functions (ESS is used), for the Bx increments
in the AP run, at the final time of the simulation. Power-law fits are indicated. (b) The
anomalous scaling of the structure functions exponents ξq at three different times, along
with the p-model fit, for the Bx increments in the AP run. (c) The time evolution of the
parameter p for the Bx components, for all three runs.

An alternative use of the structure functions to determine intermittency is to
evaluate the kurtosis, or the normalized fourth-order moment K(l)=S4(l)/S2(l)2, which
describes the scale-dependent flatness of the distribution functions. For Gaussian field
increments PDFs (e.g. at large scale) the kurtosis has a definite value KGauss = 3.
Again, for intermittent fields the kurtosis increases as the scale decreases, indicating
the presence of enhanced tails of the distributions. Conversely, constant kurtosis is
found for self-similar, non-intermittent fields. An example of scaling dependence of
the kurtosis is shown in figure 5(a), where the weak increase towards small scales
is visible. At large scales, a value K < 3 is observed, confirming the presence of
low-tailed PDFs. This is consistent with the observation of low-tailed PDFs for large
scales at mid and late times in figure 3. These sub-Gaussian statistics are generally
associated with large-scale, coherent equilibria. In our case, this indicates that a
remnant of the initial current sheet configuration is still present. At smaller scales,
after an approximately steady increase in the inertial range, the kurtosis reaches values
slightly larger than the Gaussian value K= 3, indicating the presence of weakly higher
tails, although the bulk of the PDF remains Gaussian. The differences among the
three runs are recovered in the kurtosis values, again showing a less developed
turbulence in the SH run. In the figure 5(b), the time evolution of the maximum
value of the kurtosis over the whole range of scales is shown. This indicates the time
of maximum deviation from Gaussian, which was confirmed as occurring at small
scales. The deviation from K = 3 is weakly variable after tΩi = 100, and reaches a
steady value close to Gaussian at tΩi = 250.

The full dependence of the kurtosis K on both scale and time is shown for the AP
and SH cases in figure 6. For the AP case, the regions of high kurtosis K > 6 during
the earliest period of significant reconnection, tΩi ∼ 20, are associated with multiples
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(a)

(b)

FIGURE 5. (a) The scale dependence of the kurtosis for the Bx increments for all three 3-
D simulations, at the final time of the simulation. (b) The time evolution of the maximum
of the scale-dependent kurtosis across all scales, again for the Bx increments.

(a) (b)

FIGURE 6. Time dependence of the scale-dependent kurtosis for the AP case (a) and SH
case (b). Note that at early times in the AP case high kurtosis is associated with multiples
of the sheet separation scale.

of the current sheet separation scale 7.5di. This is consistent with the growth of a
tearing instability on each current sheet. In contrast, for the SH case we find that
the breaking of the symmetry due to variable velocity shears between current sheets
removes the peaks associated with the separation scale, and instead high kurtosis
is found at the smallest length scales. This case is consistent with a turbulent state
with high intermittency. However, as also shown in figures 4 and 5, this state is not
maintained beyond tΩi ∼ 50.
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Even in those cases where the turbulence is not fully developed, the properties
of the flow can be described in terms of the chaotic nature of its fluctuations
using the so-called cancellation analysis. This was first introduced in the framework
of fluid turbulence and for the magnetohydrodynamic dynamo (Ott et al. 1992).
Subsequently, it has been used to describe the scaling properties of MHD structures in
two-dimensional simulations (Sorriso-Valvo et al. 2002; Graham, Mininni & Pouquet
2005; Martin et al. 2013) and for solar photospheric active regions (Abramenko,
Yurchishin & Carbone 1998a,b; Sorriso-Valvo et al. 2004; Sorriso-Valvo et al.
2015; De Vita et al. 2015). It was pointed out that the cancellation analysis could
represent a phenomenological measure of the fractal dimension of the field structures
(Sorriso-Valvo et al. 2002). In analogy to the fractal singularity analysis of the
measure of a positive defined signal, cancellation analysis is based on the study of
the singularity of a signed field. In particular, if a suitably defined measure of a field
changes sign on arbitrarily fine scale, then the measure is said to be sign singular
(Ott et al. 1992). The quantitative description of such a singularity gives information
on sign changes, which is relevant in the presence of sign-defined, smooth coherent
structures, such as the ones that arise in a turbulent cascade.

For a scalar field f (r) with zero mean, defined on a d-dimensional domain Q(L)
of size L, its signed measure is the normalized field across scale-dependent subsets
Q(l)⊂Q(L) of size l,

µ(l)=

∫
Q(l)

dr f (r)∫
Q(L)

dr |f (r)|
. (3.1)

Performing a coarse graining of the whole domain, the sign singularity of the measure
can be quantitatively estimated through the scaling exponent of the cancellation
function (or cancellation exponent) κ , defined as

χ(l)=
∑
Qi(l)

|µi(l)| ∼ l−κ, (3.2)

the sum being over all disjoint subsets Qi(l) covering the domain Q(L). In a turbulent
field, cancellations between positive and negative fluctuations occur when integrating
over large-size subsets, thus providing a small contribution to the signed measure.
Conversely, for a subset of the typical size of the structures, the increasing presence
of sign-defined patches of field reduces the cancellations. The cancellation exponent
can thus provide an effective measure of the way the field cancellations change
through the scale. For example, for a smooth field the cancellation function does
not depend on the scale, and κ = 0; on the other hand, a homogeneous field with
random discontinuities (like a Brownian noise) has κ = d/2. Exponents between
those two values indicate the presence of smooth structures embedded in random
fluctuations. Moreover, their values can be related to the geometrical properties of
structures, through the phenomenological relationship κ = (d −D)/2, where D is the
fractal dimension of the typical structures of the field (Sorriso-Valvo et al. 2002).
Conversely, exponents κ > d/2 indicate cancellations that are more efficient than for a
random field, suggesting the presence of pairs or groups of structures that efficiently
cancel each other. In this case, the phenomenological relationship for the fractal
dimension D does not hold.

Cancellation analysis has recently been used to track the time evolution of
turbulence in a two-dimensional numerical simulation of the hybrid Vlasov–
Maxwell equations (De Vita et al. 2014), showing its ability to highlight the
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(a)

(b)

FIGURE 7. (a) The cancellation functions of the jz component, χ(l), at three different
times, for the AP run. Power-law fits are indicated in two ranges of scale above and below
the break at l?. (b) The time evolution of the fractal dimension Dsmall (upper window, thin
lines) and Dlarge (lower window), for all three runs.

transition to turbulence. Moreover, could accurately describe the formation and
the geometrical characteristics of the main structures generated by the nonlinear
interaction, independent of the type of turbulence. Here we adopt a similar approach,
and use the current components ji (with i = x, y, z) to estimate the cancellation
function (3.2) at each time in the three simulations, obtaining a time-dependent
estimate of the fractal dimension D of the structures that form in the system.

The figure 7(a) shows three example of scaling of the cancellation function χ(l)
for the component jz in the AP run, at three different times. Cancellation functions
computed for the other current density components show similar features for all
runs (not shown). At early times, an apparent break in the slope suggests that a
double power-law scaling range may be identified, roughly covering the inertial range.
Interestingly, the break between the two scaling laws is located near l?' 7di, i.e. close
to the initial current sheets separation. This feature is confirmed by the analysis of
a run with only four current sheets (not shown), for which the cancellation function
has a break again near the initial current sheets separation scale 15di. For the four
current sheet case, this break much more clearly persists at late times. Given the
apparent break, the cancellation functions have been fitted with two power laws,
in the small-scale and large-scale ranges, respectively below and above l?. The
exponents κ obtained from the fit have been used to estimate the corresponding
fractal dimensions Dsmall and Dlarge, whose time evolution is shown in the figure 7(b)
(thin and thick lines, respectively), for the three runs (different colours and line style).
Observing the time evolution of D, the following features can be highlighted in the
large- and small-scale ranges.

(i) In the small-scale range (thin lines), the field is initially smooth (Dsmall= d= 3).
Successively, the parameter Dsmall gently decreases during the onset of turbulence,
indicating the formation of small-scale structures. In the AP run, for tΩi & 100
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structures reach a steady, quasi-2-D geometry (Dsmall ' 2.2), corresponding to the
formation of current sheets. A similar behaviour was observed in the small-scale
evolution of two-dimensional Vlasov–Maxwell turbulence (De Vita et al. 2014),
where a 3-D-extrapolated dimension Dsmall ' 1.5 was measured. In the SH run, the
presence of velocity shears accelerates the nonlinear transfer, favouring an early
appearance of small-scale structures, which eventually reach a steady geometry
around the same time as for the AP run. On the contrary, in the GF run saturation
is reached at a much later time, tΩi ' 250, showing that the guide field effectively
slows down the small-scale nonlinear interactions. However, the fractal dimension
settles at Dsmall ' 1.8, so that slightly disrupted current sheets are formed.

(ii) In the large-scale range (thick lines), the early stage of the simulation is
characterized by the presence of the initial current sheets. Because of the alternation
in the current sign, cancellations are enhanced (κ > d/2) on those scales, and the
fractal dimension cannot be estimated. For the AP run, at tΩi & 100 nonlinear
interactions and magnetic reconnection progressively disrupt the initial current layers,
eventually forming quasi-2-D large-scale structures (Dlarge' 1.9 at tΩi' 300). This is
also visible in figure 7(a), where the difference between small-scale and large-scale
scaling exponents decrease with time. This is again the signature of the transition
to turbulence. However, at the final time of the simulation the dimension seems to
be still increasing, and has not reached a clear saturation. Moreover, structures in
the two ranges of scales reach different dimension, Dsmall 6= Dlarge, so that a scale
separation due to the initial conditions is still present. The GF and SH runs show
similar features. However, in these cases the formation of structures is even slower
than for the AP run, so that at the end of the simulation Dlarge' 1 and the difference
between large- and small-scale structures is more evident. This is in agreement with
the slower evolution of magnetic islands in the presence of super-Alfvénic shears (as
described previously) and the two-dimensional nature of the turbulence in the GF
case.

The above observations suggest that, although the spectral indexes reach steady
values around tΩi ' 250, the turbulence has not fully developed yet, and the
large-scale signature of the initial current sheets is still affecting the formation
of the structures. This is even more evident when guide field or velocity shears slow
down the nonlinear interactions and large-scale magnetic reconnection.

Finally, we can characterize the magnetic fluctuations present in the simulation by
examining the distribution of the cross-helicity and residual energy of fluctuations as
described by Bavassano & Bruno (2006), and utilized more recently for solar wind
turbulence by Wicks et al. (2013). We calculate the increments in magnetic field B
and bulk velocity V from 1-D trajectories through the simulation domain with constant
y and z such that

δb(x, l)= B(x)− B(x+ l)√
µ0min0(x, l)

(3.3)

δv(x, l)= V(x)− V(x+ l), (3.4)

where l is the spatial lag. The local mean field and density are given by

B0(x, l)= 1
l

∫ x′=x+l

x′=x
B(x′) dx′, (3.5)

n0(x, l)= 1
l

∫ x′=x+l

x′=x
n(x′) dx′, (3.6)
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(a) (b) (c)

(d) (e) ( f )

FIGURE 8. Distribution of fluctuations as a function of residual energy σr and
cross-helicity σc, for the cases AP (a,d), SH (b,e) and SH2d (c, f ). Distribution functions
have been calculated for the periods tΩi = 40–60 in (a–c) and tΩi = 280–300 in (d–f ),
with lag l= 10di.

and the Alfvénic part of the fluctuations are therefore given by:

δb⊥(x, l)= δb(x, l) · (1− b̂0(x, l)b̂0(x, l)), (3.7)

δv⊥(x, l)= δv(x, l) · (1− b̂0(x, l)b̂0(x, l)), (3.8)

where b̂0= B0/B0. We can therefore calculate the scale-dependence, normalized cross-
helicity and residual energy respectively as follows:

σc(x, l)= 2δv⊥(x, l) · δb⊥(x, l)
|δv⊥(x, l)|2 + |δb⊥(x, l)|2 , (3.9)

σr(x, l)= δv⊥(x, l)|2 − |δb⊥(x, l)|2
|δv⊥(x, l)|2 + |δb⊥(x, l)|2 . (3.10)

The combined distribution functions of the cross-helicity and residual energy
are shown for the anti-parallel and velocity shear simulations in figure 8. We
have selected a scale l = 20, within the apparent inertial range of the magnetic
spectra. The figure shows the combined distributions for every available time step
during the period tΩi = 40 − 60, during the period of peak intermittency. For all
simulations, we find that the power is distributed along the outer edge of the circle.
Here σ 2

c + σ 2
r = 1, and therefore |δv⊥||δb⊥| = |δv⊥ · δb⊥|. Hence, the magnetic field

and velocity fluctuations are closely aligned. In the anti-parallel case, there is much
greater power in the lower half of the circle, σr < 0 and the fluctuations are therefore
strongly magnetically dominated. Additionally, the fluctuations are found in the region
σc≈ 0, which implies that forward and backward propagating Elsasser fluctuations are
balanced; unsurprising for a simulation which is initialized with zero cross-helicity.
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The fluctuations present in the guide field case at the same time have the same
distribution as for the anti-parallel case in figure 8(a).

In the 3-D super-Alfvénic velocity shear case at early times, shown in figure 8(b),
we find high power along the full circumference of the circle σ 2

c + σ 2
r = 1. This

implies that simulation contains regions in which fluctuations are velocity dominated
σr > 0, and strongly unbalanced σc ≈ ±1. This is consistent with the persistence of
super-Alfvénic flows in the simulation, where velocity dominates the energy partition.
As with the anti-parallel case, there is little power in the central region σc,r ≈ 0, for
which magnetic field and velocity fluctuations are unaligned.

At the end of the simulation, tΩi = 300, the distribution of fluctuations in the
3-D SH case shown in figure 8(e) more closely resembles the anti-parallel case in
figure 8(a,d), i.e. with very little power in the velocity-dominated σr > 0 region
compared to the magnetically dominated region. Hence, mixing of the super-Alfvénic
bulk flows is more efficient than reconnection of magnetic flux. However, if the
velocity shear simulation is performed in two dimensions, as for the SH2d case
shown in figure 8(c, f ), we find that the full ring of fluctuations seen in figure 8(b)
persists even to tΩi = 300. The extra degree of freedom in the 3-D simulations
therefore allows for more efficient mixing of the bulk flows, and structures which
generate velocity-dominated fluctuations are less prevalent in the end state.

In the solar wind, analysis of turbulent magnetic fluctuations present in data from
the Wind spacecraft have shown significant power in the region σc ≈ 1 and σr . 0
(Wicks et al. 2013). Fluctuations in this region are strongly unbalanced, with very
pure outward propagating Elsasser fluctuations, are Alfvénically equipartitioned (δb⊥∝
δv⊥) and aligned. Hence, the character of the fluctuations generated by a system of
reconnecting current sheets is significantly different from that observed in the near-
Earth solar wind.

4. Conclusions
In this study we have presented, using several methods of analysis, the first

comprehensive analysis of an apparently turbulent or disordered system which has
evolved by the relaxation of an ordered system with magnetic and velocity shear.
We have presented results for a set of three-dimensional hybrid simulations of a
multiple current sheet system, relevant to Kelvin–Helmholtz driven turbulence in the
flanks of planetary magnetospheres (Stawarz et al. 2016), and the bunching of the
heliospheric current sheet in the outer heliosphere (Burlaga & Ness 2011). Previous
studies (Burgess et al. 2016) have shown that the MCS system evolves from an
ordered equilibrium towards a disordered state of interacting magnetic islands (see
figure 1). The evolution in all the simulations presented here is driven principally by
the ion kinetic tearing instability, leading to reconnection across several current sheets
as magnetic islands grow to scales larger than the sheet separation. We find that
the rate of reconnection is reduced in the guide field and super-Alfvénic shear cases
(compared to the anti-parallel AP case) due to stabilization of the tearing instability.

Indeed, the trace power spectrum of magnetic fluctuations, shown for the
anti-parallel case in figure 2, demonstrates that power is distributed from the initial
sheet separation scales in an apparent cascade to both smaller and larger scales. The
inverse cascade is consequence of the rapid merging of magnetic islands during the
nonlinear phase of the tearing instability, and slower coalescence of magnetic islands
between adjacent current sheets in the later phase of the evolution. This second phase,
in particular, is similar to the inverse energy cascade observed for 2-D fluid turbulence
(Biskamp 2003). For all the simulations discussed here, the spectrum saturates by
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tΩi ∼ 150. The power-law exponent α = 2.6 in the AP case, falling between typical
solar wind values of α = 5/3 in the fluid range and α ∼ 2.8 at ion kinetic scales.

However, despite the apparent forward and inverse cascade visible in the evolution
of the magnetic topology and spectra, none of the simulations discussed in this
study have evidence of intermittency after the period of fast reconnection, tΩi & 100.
For example, at late time the kurtosis of the PDF of magnetic fluctuations for all
simulations K(l). 3 over all scales l, indicating a Gaussian or slightly sub-Gaussian
PDF. The lack of intermittency is also supported by analysis of the scaling of the
structure functions in figure 4. Due to this lack of intermittency, we can conclude,
that the chaotic state observed at late times is not strictly a turbulent state.

During the period of active reconnection, tΩi < 150, Burgess et al. (2016) found
that the tearing instability is able to generate regions of local temperature anisotropy,
in agreement with recent observations (Hietala et al. 2015). These regions of local
temperature anisotropy may lead to the localized growth of micro-instabilities (Gingell
et al. 2015), and therefore act as a source of intermittency. Although the results
presented in this paper demonstrate that the system is intermittent during the early
reconnecting phase, we can conclude that any intermittency associated with ion kinetic
micro-instabilities is transient, i.e. does not persist once the source of significant
temperature anisotropy has become inactive.

Cancellation analysis reveals a clear break in the behaviour of the system at scales
above and below the initial sheet separation scale, particularly in the SH and GF
cases. In the GF case, the fractal dimension for scales below the separation scale
Dsmall ' 1.8, indicative of a slightly disrupted current sheets. Above separation scales
Dlarge ' 1, indicative of quasi-1-D structures (i.e. flux ropes within the magnetic
islands). That Dsmall 6= Dlarge in all cases at tΩi = 300 suggests that signatures of the
ordered initial conditions are still present in the simulation, and hence we have not
yet reached a saturated state. This leaves the possibility that a truly turbulent (i.e.
intermittent) state may still develop at much later times. However, the significant
computational resources necessary to run a hybrid simulation over these time scales
leads to the conclusion that the MCS configuration may not be as useful for generation
of turbulence as those based upon decay of a superposition of wave modes. However,
the system remains important to studies of turbulence arising from an initially ordered
state, or those focused on the comparison of these systems to decaying turbulence.

The set of simulations presented in this paper also allows a direct comparison to
be made of the turbulent or chaotic state in a system which includes super-Alfvénic
velocity shear to the zero shear case. In the SH case, the later saturation of the
magnetic spectrum and the slower growth of magnetic islands are consistent with a
reduction in the reconnection rate. However, during the period of fast reconnection
tΩi ∼ 40 − 50, the anomalous scaling of the structure functions, the higher kurtosis
of magnetic fluctuations at small scales, and the lower fractal dimension at small
scales all demonstrate that the super-Alfvénic shear drives fast, nonlinear structure
formation below the sheet separation scale. During this period, we also find that
the PDF of Alfvénic fluctuations in the SH case shows significant power in the
velocity-dominated and strongly unbalanced regions of (σc, σr) space (see figure 8).
However, we can conclude that this clear difference between the character of the
turbulence in the SH and AP cases is not persistent; by tΩi = 300 the analyses
presented in this paper show similar results for the AP and SH cases, or a trend in
that direction. We further note that the differences observed in cases which include
velocity shear layers are only significant if the shear is super-Alfvénic. Variations
upon the SH initial conditions with reduced intra-sheet bulk velocities show neither
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reducing in the reconnection rate, nor velocity-dominated Alfvénic fluctuations in
(σc, σr) space.

In combination, these results are a clear demonstration of both the current
limitations of simulations of turbulence, and the caution required in their analysis.
We reiterate that a power law in the magnetic spectrum is not a sufficient measure
of turbulence, and particular attention must be paid to quantitative measures of
intermittency. The difference between the power-law exponent α of the magnetic
spectra measured here and previous measurements in the solar wind observation
or more traditional turbulence simulations may be due to the limitation of the
box size and grid resolution of our hybrid simulations. Likewise, we may find a
more intermittent state over much longer time scales than the simulations discussed
here. Finally, clear differences between otherwise identical 2-D and 3-D runs, such
as those shown in figure 8, underline the importance of the application of fully
three-dimensional simulations when studying the transition to turbulence from an
ordered equilibrium.
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