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New proofs of some theorems

on infinitely differentiate functions

Michael A.B. Deakin

New proofs are given for the splitting lemma and two of Mather's
00

theorems in the theory of C -functions. They use a Taylor

series approach rather than the usual map-germ theory and are

more elementary than previous proofs. A geometric

characterisation of a class of degenerate functions is proved

to hold in this account but not in the usual framework.

Introduction
oo

It is well-known that C -functions (those possessing derivatives of

all orders), possess properties that make their study difficult. For

example, the Cauchy function

exp(-x" ) , x * 0 ,

(1)

x = 0 ,

has a Taylor series expansion about the origin that converges to zero

rather than to C(x) .

This has led mathematicians to study equivalence classes of such

functions. The usual equivalence classes studied nowadays are map-germs
CO

(or simply germs). Two C -functions are equivalent if they agree over

some neighbourhood of the point under study, taken to be the origin. The

germ approach is developed in {inter alia) [2], [J4]. Another approach

uses Taylor expansions as the relevant equivalence classes. This leads to

a slightly coarser structure. For example, C(x) possesses the same
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Taylor expansion as the zero function, but lies in a different map-germ.

The theorems leading to Thorn's Catastrophe Theory ([2], [13], [74],

[15], inter alia) are developed in terms of map-germs. The purpose of the

present paper is to exhibit proofs of three basic theorems in the Taylor

series context. It is believed that the proofs are simplified by this and

that this makes them more readily accessible to the non-specialist. In

keeping with this view, and to emphasize the difference of approach, we

employ a notation different from that of [2], [74], and more in keeping

with the classical sources from which the present account derives.

The theorems to be proved are two results due to Mather ([S], [9], but

see first [2], [J4]) and the so-called splitting lemma ([2], [9], [13],

[74]), for which a completely elementary proof is supplied. We further

provide a simple characterisation of a particular class of degenerate

functions and show the differences between the Taylor series and nap-germ

approaches.

1. N o t a t i o n a n d b a s i c n o t i o n s

Let fix.) = f(x., Xp, ..., x ) be a real-valued function of the n

real variables x. • We suppose fix) to be C - that is all possible
If

derivatives exist at some point, without loss of generality the origin,

near which we wish to study the behaviour of / . We write, as is usual,

(2) |x|2= I x\ •
i=l %

As fix) is C , it possesses a Taylor expansion about 0 . This is

a sum of monomials of the form

each of which will be referred to as a term. For any given term, the order

is defined as

n

A *
If <pix) is a formal expression for a sum of terms, we write
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(3) <t>(x) = 0(\x\k)

if <|>(x) contains no terms of order less than k .

Our starting point shall be the theorem that every power series

determines an equivalence class of real functions fix) containing a

member which, par abus de langage, we also term fix) , which is C ,

whose Taylor expansion about 0 is the given series, and which is the sum

of that series in the event that this converges.

This theorem follows readily from a result on asymptotic expansions

due to Bore I and van der Corput. See [5, pp. 22-2U].

As all the results that follow are directed to the study of

singularities, we assume that the constant and all linear terms in the

series vanish:

(!•) /(x) = 0(|x|2) .

2. Coordinate transformations and right-equivalence

An essential object of the theorems that follow is the use of

coordinate transformations to simplify the form of fix) . Let £,.(x) be
If

new coordinates which preserve the origin and map a neighbourhood of 0
OO

one-to-one onto itself. We require each C-(x) to be a C -function.

This leads to the equation

(5) £ = A.x + 0(|x|2) ,

where A is a non-singular square matrix.

Equation (5) may be thought of as the composition of the affine

transformation A and a "quasi-identity" - that is, a transformation of

the form:

(6) 5 = x + o(|x|2) ,

the composition being taken in either order, although with different forms

for the non-linear terms in the quasi-identities involved.

According to a classical result (see [6, pp. 388-1*06]), the

transformation (5) is invertible, the inverse being of the same form; two
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such transformations compose to give a third. The same holds for equation

(6). If the series involved converge, so do the inverses and the

compositions.

A more modern (group theoretic) account of these results is given by

Bochner and Martin [7, pp. 3-10].

Following a transformation (5), the function fix) will "become a

function g(%) of the new coordinates. Then

(7) fix) = git) ,

and we shall say that the functions /, g are right-equivalent. A useful

notation is

(8)

In the special case A = I (the quasi-identity), we shall write

(9) fix) -&> g(x) .

3. k - j e t s , ^ - c o m p l e t e n e s s , and Zc-determi n a t i o n

Our aim shall "be to seek particularly simple forms for the function

fix) . One such shall "be a suitably truncated version of the power series.

DEFINITION 1. The k-jet, kfix) , of fix) is the polynomial

consisting of all terms of order less than or equal to k in the Taylor

expansion of fix.) .

We shall give conditions under which fix) , and indeed other

functions as well, are right-equivalent (indeed right-equivalent under

quasi-identity) to their fe-jets. Heuristic considerations based on formal

p
expansion of /[x+0(|x| )) suggest a study of forms with the structure

(10) <j)(x) = £ (j).(x)f .(x) ,
i=l % ^

where / .(x) are the n partial derivatives of fix) and (f).(x) are n
<,% i

C -functions. If a given C -function <fi(x) is expressible in this form,

we shall say that it is generated by the / .(x) .

A further definition is also required.
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DEFINITION 2. If all <j)(x) such that <J>(x) = 0(\x\k) are generated

by the f .(x) and the coefficient functions cf>.(x) obey

(j).(x) =0(|x|) , then f(x) is said to be k-eomplete.

r h h
[For example, a non-degenerate quadratic form is 2-complete; x + #„

is 5-complete, but not ^-complete; x-,xn i-s n°t k-complete for any

k .)

It is clear that if fix) is fe-complete, it is also ik+l)-complete

for any natural number I . It follows that to prove the ^-completeness

of a function fix) , one need only show that all <(>(x) °f order k

satisfy

Yl

( I D <j>(x) = y <t>Ax)f Ax) + o{\x\k+1)

oo

for some suitable C -functions cj)-(x) .
Is

Of the possible power series, there will be infinitely many sharing

the same fe-jet for any given k . If progress is to be possible via a
oo

consideration of k-jets alone, the properties of the corresponding C -

functions must be determined in some sense, by those of the fe-jets. To

this end, a further definition is introduced.

DEFINITION 3. Let fix) be a C°°-function and let gix) be any

other c""-function such that fix) = gix) for some k . If for all such

functions

gU) ̂  fix) ,

then fix) will be said to be k-determined.

We now proceed to demonstrate the relationship between ^-completeness

and /^-determination.

4 . M a t h e r ' s f i r s t t h e o r e m

Clearly ^-completeness is an easier property to demonstrate than

fe-determination, as the first property involves only finitely many

calculations for its proof whereas the second does not. However, we have
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THEOREM 1 (Mather). If fix) is k-complete, then it is

k-determined.

Proof. The proof is in two parts. Define

(12) Fix, t) = (l-t)/(x) + tgix) ,

where fix) = gix) . Then, writing F .(x, t) (1 S i £ n) for the

partial derivative functions with respect to the variables x. , and

F +-i(x, i) ?or 'tlle partial derivative function with respect to t , we

have

(13) fix) - g(x) = 0{\x\k+1) ,

F (X, t) = g(x) - f(x) ,

and

(15) F .(x, t) = f Ax) + t(3 .(x)-f .(x)) ,

,t ,1. ,7- ,2-

f or 1 £ i £ n .

1. It is first shown that F ,(x, t) is generated by the other n

,n+i
functions F .(x, t) . To this end, seek functions -n.(x, t) such that

^ l
n

(16) F (x, t) = ̂ (x) - /(x) = - Y. n-(x, t)F .(x, t) .
,^+x "t=i '

Put

(17) n-(x, t) = £ n!-s)(x)ts ,

t s=o 1

and substitute into equation (l6).

Equating powers of t now yields

(18) y n(-0)(x)f .(x) = fix) - gix)

and

(19) I n(.s+1)(x)/ (x) = £ n(.s)(x)(/ .(x)-3 .(x)) ,
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where use has been made of equation (15).

Since fix) is fe-complete, it is (k+1)-complete, and the n. (x)

exist. Furthermore n.. (x) = 0(|x|) . Thus

(20) £ n^°)(x)(/ji(x)-ff ^(x)) = 0{\x\
k+1) ,

so that n- (x) exists and n- (x) = 0(|x|) .

The argument now proceeds inductively.

2. We now solve for H(x, t) the system of differential equations

(21) -^f- = ̂ (HU, t), t)

with

(22) H.(x, 0) = x. .

This system possesses a solution by a well-known existence theorem in

the theory of differential equations. (See, for example, [3, pp. 57 st

seq-1-) The solution is C

It follows that equation (l6) may be written

(23) F (H(x, * ) , t) + £ F (H(x, t), t) jrH.ix, t) = 0 ,(H(x, t), t) JTHA
£=1 '

that is

^F(H(x, t), t] = 0 ,

from which it follows that f(H(x, t), t) is independent of t .

Thus, for a range of values of t about some tQ ,

F(H(x, t), t) = F(H(x, t Q ) , tQ) and ?(x, t) ̂  F{X, tQ) . This process

may be continued, using equation (l6) from t = 0 to t = 1 if for all

7z(x) °f order k + 1 , the set of functions generated by the f .(x) and

the set of functions generated by / .(x) + h .(x) are identical. As
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fix) i s fc-complete, th is follows immediately.

We now have

(2U) F(H(x, t), t) = F(H(x, 0), 0) = Fix, 0) = fix)

by equations (22), (12).

But also,

(25) F{ti(x, 1 ) , l) = ff(H(x, 1)) ,

so that, setting

(26) H(x, 1) = C(x) ,

we reach

(27) f{x) =

(28) f{x) ~&- gix) ,

the desired result.

As a matter of fact, elementary order considerations or use of equation

(22) show that the stronger result

(29) f(x) ~£~ gix)

has "been proved.

We have in fact proved a version of the theorem due to Stefan [71].

fix) is k-determined if it is (fc+l)-complete and if for all hix) of

order k + 1 , f .(x) and f .(x) + h .(x) generate the same set of

functions. Siersma's theorem [)0] that /(x) is fe-determined if it is (fe+l)-

complete and if fix) is homogeneous of order k is a ready corollary.

Proofs of Theorem 1 are given in [2], [8], [9], and [14] as well as by

S+efan [II]. The above account differs in Part 1 but essentially repeats

the others in Part 2, which is included here for completeness.

We may also note that if fix) is (/c+l)-complete so is fix) and

h
conversely. Also, fix) is fe-determined if and only if fix) is.

The proofs of these statements are quite trivial.
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5. Mather's second theorem

Mather's second theorem may usefully be thought of as a "semi-

converse" of his first. It states:

THEOREM 2 (Mather). If fix) is k-determined, then it is

ik+1) -complete.

Proof. It will suffice to show that every homogeneous polynomial of

order (k+1) is generated by the / .(x) . Let (j>(x) be such a
»̂

k+1
polynomial. Form fix) + <J>(ix) = /(x) + t (j)(x) , where £ is a real

variable.

By hypothesis

(30) fix) + tk+\ix) = /(5(X, *)) ,

where £(x, t) is C° in x . As /(£) is C in £ and

fix) + t (J)(x) is C° in X, t , we may, without loss of generality,

assume £(x, t) to be C in t • In fact, the parameter t appears on

k+1
the left as t and so we may assume that £ depends only on X and

tk+1 . Thus

(3D 5(x, *) = CC0)
 + tk+hik+

where £ is a function of x only for each I . By continuity of

k+1
fix) + t <)>(x) at t = 0 , we may, without loss of generality, set

£ = X . Then

fix) + tk+\ix) = f[x + t
k+1^k+^ + ...)

If we now differentiate k+1 times with respect to t , and then

set t - 0 , there results

(32) $(x) = I f .
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It remains for us to show that £. = 0(|x|) . Suppose otherwise

and recall that by the remark at the end of the previous section fix) may

without loss of generality be taken to be a polynomial of degree k . We

then have

la.f Ax) = 0
Is )I<

for some non-zero a. , and the solution of this partial differential

equation involves us in non-independence of the x. . Thus a. = 0 , for
Is Is

all i , and the theorem is proved.

This result was first proved by Mather [S], [9], and accounts are also

given by Brocker [Z, p. 100] and Wassermann [14, pp. 1*1-1*3]. These differ

considerably from that given above.

The proof of Theorem 2 allows us also to deduce the

COROLLARY. If

fix) J~ kfix) ,

then

fix)

for some suitably chosen quasi-identity.

6. The splitting lemma

The splitting lemma enables further simplification of a function fix)

under right-equivalence. It states

THEOREM 3.

1 2 n 1 2 i r

where g[x±, x^, ..., xp) = 0(|x|
3) and <?fcr+l'

 xr+2' "•' X J is a non~

degenerate quadratic form.

2
Proof. Since, by equation (1»), fix) is of second order, fix) is

a quadratic form. This may be reduced by a linear transformation to the

canonical form
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2
±x

2
± x ± +

2
n

where n - r is the rank of the associated matrix (r is the corank).

In these new coordinates

where q is the form given above and g, <J>, lj; are of third order; (|>(x)

2 2 2
is the sum of all terms divisible by x ., x ? ) •••, x ; ^(x) is the

sum of all terms involving x . , x _,..., x only once.

Now

(35) *

where ^ (x) does not contain x , , ^?(x) contains neither x ,

x + 2 , and so on.

We now form

that is,

±{xr+l ?

and set

(36) Cr+1 = ̂ + 1 * ̂ ( x ) .

Proceeding in this way, we absorb the whole of ljj(x) into the quadratic

form, g, <)> are altered in the process, but we reach in any case the form

(31*) except that the term ij)(x) is absent. For notational convenience,

replace £. by x. .

Now

(37) <O(X) = 4+l*l
(x) + V 2 * 2 ( X ) + ••• + V W X ) '

for suitably chosen <}>.(x) .
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We now form

and set

(38) V n =

and so , by proceeding in t h i s way, absorb the whole of cf>(x ) into the

quadratic term. We thus reach the required form. Transformations (37) ,

(38) a r e , in f ac t , q u a s i - i d e n t i t i e s .

Thorn sketches [ J 3 , p . 59] a proof of t h i s r e su l t and Mather [ 9 ] ,

Wassermann [74, pp. 120-123] and Brocker [ 2 , p . 125] provide proofs.

Gromoll and Meyer [7] prove a Hilbert space analogue.

The above proof proceeds from a more elementary point of view than

these o the rs .

7 . A g e o m e t r i c c h a r a c t e r i s a t i o n

There exist fix) which are not finitely determined - that is they

are not ^-determined for any finite k . Such functions are also

described as being of infinite codimension. This section gives a new

characterisation of such functions.

Our starting point is a lemma due to Thorn [!2],

LEMMA (Thorn), fix) has infinite codimension if and_only if there

exists an i such that x. is not generated by the f . (x) for any k .

In order to give a geometric characterisation of this result, we

introduce the concept of an e-neighbourhood.

DEFINITION 4. By the e-neighbourhood of the singular point 0 of

fix) , we shall mean that connected neighbourhd of 0 for which

(39) l / , ( x ) | < E

for a l l i .

We now have

THEOREM 4. fix) has infinite codimension if and only if the
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e-neighbourhood of 0 is unbounded.

Proof. First suppose fix) to have infinite codimension. Then, by

the lemma, there exists an x. such that x. is not generated by the

/ .(x) for any k . In this case, inequalities (39) do not suffice to

bound x. .

Now suppose fix) to be finitely determined. Then for some suitable

k , x. is generated by the / .(x) for all i , and hence is bounded by

the inequalities (39).

The result follows.

In Theorem h, e may be arbitrarily small and so there exists as an

intersection of all e-neighbourhoods a continuum of singular points, so

that 0 is not an isolated singularity. Conversely if 0 is isolated,

its e-neighbourhood must be bounded for suitable small e . We thus have

the

COROLLARY, fix) is finitely determined if and only if 0 is an
isolated singularity of fix) .

It should be noted that Theorem h and this corollary are not true on

the usual map-germ accounts. Cix) , as defined in equation (l), provides

a ready counter-example.

8. A conjecture

The following conjecture would allow an elementary proof of the

uniqueness of unfoldings [2, Chapter 16], would allow a very ready proof of

the splitting lemma and would somewhat simplify existing proofs of Thorn's

classification theorem. It appeared first in [4, p. 193].

CONJECTURE. Let fix) be a finitely determined polynomial and

n
suppose that gix) = Y g.ix)f .(x) , where g.(x) = 0(\x\ ) . Then

(1*0) fix) ~&- fix) + gix) .

This may be regarded as an extension of Theorem 1.
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