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A BIVARIANT CHERN CHARACTER, II 

XIAOLU WANG 

Introduction. In [Con2] Connes introduced cyclic cohomology HC*(A) for an as­
sociative algebra A. When A is a complex algebra he constructed a Chern character 
for /7-summable Fredholm modules over A taking values in HC*(A). As a very special 
case, when X is a closed C°°-manifold and A = C°°(X), this construction recovers the 
usual Chern character, which is a rational isomorphism from the AMiomology K0(X) to 
//^;R(X), the even dimensional deRham homology of X. 

For an associative algebra A over any commutative ring k, the cyclic cohomology ring 
HC*(fc) (p. 106 [Conl]) is isomorphic to the polynomial ring k[u], deg u = 2, and the cup 
product makes HC*(A) into a k[u\-module, such that the multiplication by u corresponds 
to the periodicity operator S. The A'-theory K*(A) is dual to ^-homology K*(A) over 
K*(C). The homology theory dual to HC*(A) over k[u] is the negative cyclic homology 
HC~(A) introduced by T. Goodwillie [G2] and Hood-Jones [H-J]. 

J. Jones and C. Kassel [J-K] introduced a bivariant cyclic theory. For unital ̂ -algebras, 
its relation to cyclic cohomology and negative cyclic homology is exactly analogous to 
that of Kasparov's A^-bifunctor to K-theory and A'-homology. 

The goal in [Wl] and this paper is to construct the Chern character from a certain 
class of cycles in the A^-theory group KK*(A,Af) to the bivariant cyclic theory group 
which extends simultaneously the Chern character on A -̂theory and A^-homology. 

Since cyclic theory can be defined in a purely algebraic context, such a construction 
should have a purely algebraic description. On the other hand, one wishes to work with 
A'-theory in a topological category, for example, the category of locally convex topolog­
ical algebras, or the subcategory of C*-algebras. The topological aspect is particularly 
important for applications. We shall work in a topological category with purely alge­
braic situations appearing as a special case where all topologies in sight are discrete. 

Even for the Ar-homology group K°(A)9 in general we do not even know the largest 
possible domain on which Chern character can be defined. Clearly, some restriction on 
cycles is necessary. Among other things, we shall construct the bivariant Chern character 
for 7-summable quasihomorphisms satisfying excision properties. 

For two C*-algebras A and A', following Cuntz, we call a pair of *-homomorphisms 
a, â: A —> L{HA>) an I-summable quasihomomorphism if Im(a — â) C /, where / C 
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%{HA>) is an ideal of the C*-algebra L(HA') of bounded linear operators on the Hilbert A'-
module HA< [Kaspl]. We also define /-summable quasihomomorphisms in the algebraic 
category and categories of more general types of toplogical algebras (Definition 1.1). 

Of fundamental importance in our construction is M. Wodzicki's work [Wodl], 
[Wod2] on excisions in cyclic theory. The natural question is: When does an exact se­
quence of algebras 

(e) 0 - ^ / ^ £ ^ A - + 0 

induce long exact sequences in Hochschild homology and cyclic homology? Wodzicki 
proved the following: this is true for every extension (E) with kernel / if and only if / is 
//-unital. Let K* — ker7r* where 7r*: C*(£) —• C*(A) is the induced chain map on the 
Hochschild complexes (the discussion for cyclic complexes is similar). Then Wodzicki's 
criterion ensures that the imbedding C*(/) -̂> K* induces an isomorphism on homology. 

A bivariant Chern character for quasihomomorphisms was first described in [Wl]. 
A crucial observation is the following. Let h be any /-summable quasihomomorphism 
from A into A' 0 K. Then h determines naturally a filtration F* of the Hochschild chain 
complex C*(A! ® £(//)), with the last subcomplex given by 

Kn = f£(A' 0 L(H)) = £ ( A ' 0 L(H)) ® • • • ® (A1 ® I) ® • • • ® (A! ® L(H)). 
/ = 0 i'-th factor 

We may consider F*asa filtration of K* itself as well. 
In [Wl] it was shown that a quasihomomorphism h defines a cycle /i# in 

Homs(#(A),£(#*)) . An explicit formula for the decomposition h* = (/i(/))i=o,i,... was 

given. The //-unitality of / would imply that Homs (B(A), B(K*))° and Hom5(B(A), B(I))° 
are quasi-isomorphic. Thus we could define a Chern character of h taking its value in 

HC°(A,7) = #°(Hom5(£(A), £(/))*). 

The results in each section can be briefly summarized as follows. 
In § 1 we recall Cuntz's formalism of KK and define /-summable quasihomomor­

phisms and /-summable extensions. There are the "cycles" for ^'A'-theory (we will not 
be working just in the category of C*-algebras). Then we formulate Connes' notion of 
p- summable Fredholm modules in the bi variant context. It is shown that the notions of 
/7-summable quasihomomorphisms and ̂ -summable Fredholm modules are equivalent. 

In § 2, we discuss Jones-Kassel's bi variant cyclic theory for generalized Connes cyclic 
complexes. These complexes are suitable subcomplexes of cyclic bicomplexes. The 
framework is that established by Jones-Kassel. Similar results for cyclic ^-modules, 
or d.g.-A-modules are to be found in [J-K]. Loday-Quillen [L-Q] constructed a quasi-
isomorphism from the bar complex B{M) to the total complex of the cyclic bicomplex 
C. . (M). We show that there is a quasi-inverse (which was given in Lemma 1, [Wl]) to 
the Loday-Quillen map. The weaker fact that Hom5(B{M),B(N)) and Hom5(C. .(Af), 
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C. . (AO) are quasi-isomorphic, which can be derived from only the existence of the 
Loday-Quillen map, had been proved in [J-K]. 

§ 3 is the main section. It gives the full proof of the formula for the Chern character 
for 1-summable quasihomomorphisms (Theorem 3.8, Corollary 3.9). An outline of this 
proof was given in [Wl]. Also, a construction is given of a Chern character ch2m(h) for 
any /-summable quasihomomorphism from A to A'®K, when / is //-unital (cf. Defini­
tion 3.10). 

The functorial properties of our Chern character follow easily from the naturalness of 
our construction. 

Kassel has already defined the "character of an extension" in [Kass3], when the ideal 
is //-unital. In § 4, we study the Chern character of/-summable extensions. By replacing 
A! by its suspension 1A\ the problem is reduced to the even case considered in § 3. Our 
definition of Chern character uses the long exact sequence of [Kass3] and is shown to 
agree with Kassel's character. 

In §5 we digress to clarify //-unitarity for LP(H). The study of operator spaces and 
their Haagerup tensor products [E] is generalized to //-operator spaces and Haagerup 
//-products. 

§6 spells out the details of Example 1 of [Wl]. Also it describes how the definition 
of the Chern character of an algebraic bivariant theory can be viewed as a special case 
of 1-summable quasihomomorphisms. 

We wish to point out that the condition that (/, ®) is //-unital is not at all a neces­
sary condition for a Chern character ch°(/z) G HC°(A, I) to exist, given an /-summable 
quasihomomorphism h. To get a Chern character in HC*(A, A'), we need an excision-free 
construction, such as that of the Chern character for 1-summable quasihomomorphisms 
in Theorem 1, [Wl]. 

Our construction of the Chern character using differential homological algebra may 
perhaps be viewed as part of an algebraicization of geometry. This algebraicization of 
geometry and analysis is directly in line with Cuntz's program of algebraicization of KK, 
and first appeared in Connes' quantization of the calculus of differential forms in his non-
commutative differential geometry ([Conl]), [Con2], [Con-Cun]). These two approaches 
appear to be closely related. The simple fact that the universal algebra in Cuntz's picture 
QA (=A*A) and the universal differential graded algebra QA are linearly isomorphic, 
although superficial, may indicate the tip of an iceberg. 
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0. Conventions and notation. We shall denote by k any commutative ring of char­
acteristic 0. In a (nondiscrete) topological category k = C or R. All fc-algebras are 
assumed to be projective as fc-modules. This of course is automatically true when k is 
a field of characteristic 0. By a topological algebra, we mean a locally multiplicative-
convex (ra-convex) topological algebra over C or R with continuous multiplication. If 
A is a k-algebra, then A is the algebra with a (new) unit adjoined to A. By an ideal, we 
mean a (closed) two-sided ideal. A A-module over any ring A is meant to be a left A-
module. We abbreviate "differential graded complex" as "d.g.-complex". 

The assumption that algebras be ^-projective can be removed, if we work instead with 
"allowable" categories in the context of MacLane's relative homological algebra (Chap­
ter IX, [Mac]). Allowable objects, e.g., short exact sequences of fc-algebras, complexes 
of A-bimodules (in particular, resolutions), are those which admit fc-linear splittings. 

As usual H will be a separable infinite dimensional Hilbert space. L(H) and %{H) 
are respectively the C*-algebra of all bounded linear operators and the C*-algebra of 
compact operators. For 1 < p < oo, LP(H) is the Schatten ideal [Sim]. In particular 
Ll(H) is the ideal of trace class operators and L°°(H) — %{H). All topological vector 
spaces, in particular all topological algebras, will be locally convex and Hausdorff. 

We will denote by K a generic algebra in other categories which plays the role of 
%iH) in the category of C*-algebras. For instance, in the discrete, or pure algebraic, 
category of fc-algebras, we take K = lim Mn(k). 

n 

We shall denote by M{A) the multiplier algebra of a fc-algebra A. Recall that (e.g. 
[Bus]) a pair of maps (T, S): A —> A is a multiplier if for any a,b € A, we have a • T(b) — 
S(a) • b. Such maps are automatically fc-linear. 

It is easy to check [F-W], when K = lim Mn(k), that the multiplier algebra 
n 

M(A <g) K) — {(ciij)ij>o | fly G M(A), and only finitely many 

aij / 0 for each fixed /, and for each fixed./.} 

Let p be a semi-norm of a locally convex topological algebra A. Then there is a semi-
norm on M(A) given by 

Pa(T,S) = p(T(a))+p(S(a)) 

for each a £ A. Let p vary in a fundamental defining family (P of A. The topology on 
M(A) defined by all these semi-norms is called the strong topology. With this topology 
M(A) may not be locally multiplicative convex, and thus the multiplication in M(A) is 
only separately continuous. In this paper we shall restrict ourselves to multiplier algebras 
M(A) with a locally convex topology such that 

(i) the multiplication is jointly continuous; 
(ii) the restriction to A coincides with the topology on A. This assumes implicity ; 
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(iii) the multiplication in A induces an embedding of A into M (A). 
We introduce another canonical topology on M(A) for a class of topological algebras 

so broad that it includes essentially all the complete locally m-convex algebras we en­
counter. 

Recall that a topological algebra is complete if the underlying topological vector space 
is complete, i.e. every Cauchy net is convergent. Let A be a complete topological algebra 
with a fundamental family (P of submultiplicative seminorms. Let p G î P ; then ker/? = 
{ a G A | p(a) = 0} is a closed ideal of A, and A/ ker/? is a Banach algebra. We say that 
A has no annihilators, if the Banach algebra A/ kerp satisfies the condition (iii) above, 
for every p G 2\ 

PROPOSITION 0.1. Let A be a topological algebra which has no annihilators. For 
each seminorm p G (P, let Bp(A) — { a G A | p(a) < 1}. Let (T,S) G M(A), and set 
\\(T,S)\\P=\T\P + \S\P, where 

\T\P= sup p(T(aj), \S\P= sup p(S(a)\ 
a€Bp(A) a<EBp(A) 

Then\\(T,S)\\p < oo. 

PROOF. We note that (T, S) are not a priori assumed to be continuous. Both S and 
T map the closed ideal ker/7 into itself. In fact if p(b) — 0, and p(T(b)) ^ 0, then 
by the assumption on A there is some a G A with p[aT(b)^j ^ 0. But p(aT(b)} = 
p(S(a)b) < p{S(a))p{b) = 0, a contradiction. Similarly, we have S(kerp) C kerp. 
Thus, (T7, S) induce ̂ -linear maps (T, S) on the quotient Ap = A/ ker/7, which is a Banach 
algebra with the quotient norm p. Both maps (T, S) can be shown to be continuous and 

sup p(f(x)^ + sup /?(S(jt)) < oo; 
xeBp(Ap) x<EBp(Ap) 

see the proofs of Proposition 2.5 and Lemma 2.6 of [Bus]. The conclusion follows from 
the equalities 

\T\p= sup p(t(xj), \S\p= sup p(S(xj). m 
xeBpiAp) x(EBp(Ap) 

We shall call the locally convex topology on M(A) defined by the family { || \\p;p G 
fP} the fine topology, which is finer than the strong topology discussed above. 

PROPOSITION 0.2. Let A be an algebra without annihilators. With the fine topology, 
the multiplier algebra M (A) is a complete locally convex algebra with jointly continuous 
multiplication. Furthermore, if A is a Fréchet algebra, M (A) is also a Fréchet algebra. 

PROOF. Let (T, S) and (T\ Sf) be two multipliers of A. Since for x G BP(AP), 

p(tr(xj) < \T\pp(r(x)) < \t\p\r\p, 
the seminorms || ||p are submultiplicative. Thus the multiplication in M(A) is jointly con­
tinuous. 
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Recall that A is metrizable if and only if it has a countable fundamental defining family 
of seminorms. Thus A is metrizable if and only if M(A) is. It remains to show tht M (A) 
is complete. 

Let (7A , S\ ) be a Cauchy net of multipliers. Then T\ (a) and 5A (a) are Cauchy nets in 
A for any a G A. Let 

T(a) = lim Tx (a), S(a) = lim Sx (a). 

Since 

aT(b) = \imaTx(b) = \im S \(a)b = S(a)b, 

the pair (T, S) is also a multiplier. • 

A homomorphism between two involutive algebras will always be assumed to be a 
*-homomorphism. 

The discussion in the following sections will be within a certain full subcategory C of 
the category of all complete locally m-convex ^-spaces and topological homomorphisms, 
with a topological tensor product ®: C x C —> C\ namely, for any E, F G C, there is a 
locally m-convex topology on the algebraic tensor E® F with its completion E&F G C 
such that 

(i) The canonical bilinear map £ x F - > £®F is jointly continuous, 

(ii) There are three canonical isomorphisms 

a : F0(F0G) -=• {E®F)®G 

\\k®E^E, p\E®k^*E 

such that (C, <§), a, A, p) form a monoidalcategory ([Mac2], p. 158). 

Whenever 0 is used in chain complexes over C, we assume that the Hochschild 
acyclic differential has a continuous extension. If the flip map on the algebraic tensor 
product extends to a canonical isomorphism 7 : E®F —+ F®E, making C a symmetric 
monoidal category ([Mac2]), p. 180), we say <g> is admissible. Trivally, the algebraic 
tensor ® is admissible for the category of all /:-algebras with discrete topology. 

"(8)" will denote the algebraic tensor product, "(&" and " 0 " are respectively the com­
plete projective and injective tensor products as topological vector spaces. They coincide 
for locally convex nuclear spaces. When A or A' is a nuclear C*-algebra, the completed 
C*-tensor product ®min coincides with the maximum C*-tensor product <8>max, and we 
simply write A 0 A'. In particular, this is the case when A = %, 

The question arises whether we should choose some fixed topological tensor product 
for continuous cyclic homology once and for all to avoid possible confusion. The answer 
is "No". Which one to choose depends on the kind of topological algebras we are dealing 
with. As a matter of fact the crucial concept of "H-unital algebra" depends on which 
tensor product we are referring to. 
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1. Kasparov's ^T- theory and Cuntz 's quasihomomorphisms. Let A and A' be 

two separable C*-algebras. J. Cuntz has shown that Kasparov's group KK(A, A') ~ [qA, 

A' 0 %}, the abelian group of homotopy classes of homomorphisms from qA to A' (g) ^C 

([Cunl]), [Cun2]). Recall that Cuntz's universal algebra qA is the closed ideal in the 

C*-algebra free product A * A spanned by the elements of the form a°qal • • -qan and 

qal • • -qan with n > 1. Here qa — i(a) — T(a) is the difference of the two universal 

embeddings /, ï of A into A * A. One has the identity, q(ab) = qa • b + aqb — qaqb, with 

the convention i(a) = a. 

We may replace the C*-algebras A and A' by arbitrary topological algebras, even 

just abstract algebras, and such quasihomomorphisms will still generate a certain "KK-

theory" in the new category (see [W3] for details). From the point of view of Connes' 

noncommutative differential geometry, a particularly interesting category is that of 

"smooth subalgebras" of C*-algebras, i.e. Fréchet algebras which are closed under the 

holomorphic functional calculus (p. 92, [Con2]). 

Cuntz's quasihomomorphisms from A to A' ® ^C are in one-to-one correspondence 

with homomorphisms from qA to A' ® %,. The following definition (a) is more general 

and at the same time more specific. 

DEFINITION 1.1. (a) (Even case). Let A and A' be two topological algebras over C. 

Let / be an ideal of A'<g>K. An 1-summable quasihomomorphism h from A to Af(g)K is 

a pair of homomorphisms a, à: A —•»• M(Açt>K) such that Im(a — â ) C /. In Cuntz's 

notation h = ( a , â ) : A =t M(A'®K) > /. 

(b) (Odd case). An I-summable extension of A by A' is a short exact sequence 

0 —> / —• E —• A —• 0 

of algebras. Equivalently, it is a homomorphism </> : A —•* 0(1) := M( / ) / /. 

REMARK. In the category of C*-algebras, if we identify the Hilbert A'-module HA> 

as £2(A'X then A' 0 ^C and M(A' 0 90 are identified with 3C(//A') and L(HA,), the C*-

algebra of compact opertors and the C*-algebra of bounded operators on HA, [Kaspl]. 

The ideal / will be an ideal of %{HA>). In this case / is complete with respect to a certain 

locally convex topology, but not closed in the operator norm topology on L(HA>). 

When A' is a subalgebra of a C*-algebra, we replace HA> by H^,, where Â! is the en­

closure of A'. In particular, when / = Lp(H)(g)A\ where LP(H) is the/?th Schatten ideal 

of %{H) [Sim], 1 < p < oo, an L^A'-summable quasihomorphism or extension is just 

a/7-summable quasi-homomorphism or extension ([Con-Cun], [Wl]). This concept was 

originally introduced by Connes (p. 265 [Con2]), in the form of/7-summable Fredholm 

modules. 

Notice that an /-summable quasihomomorphism/* from A to A'&K induces an algebra 

homomorphism from the algebraic analogue of qA to /. When A and A' are C*-algebras, 

h usually defines a C*-algebraic homomorphism from the C*-algebraic completion of qA 

to the closure of / in A ' 0 ^C, instead of just /. 
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DEFINITION 1.2. Let A and A' be C*-algebras. A p-summable Fredholm A'-module 
over A is a triple (//, F, <f> ), where 

(i) HA> = H\~, 0 H^f is a Z2-graded Hilbert A'-module [Kaspl], with the grading 
1 0 

operators — , 

(ii) 0 is a trivially Z2-graded homomorphism of A into the C*-algebra L(HA>), so 

0(a) = hQ
+ ® ] fora G A; 

(iii) F G A # A ' X F2 = /, Fe = - e F , and [F,<£(a)] G If{H)®A'\ for all « G A. 
f 0 F1 

Writing F = j and a(a) = a+ and â(a) = P~xa-P for any a G A, 

we have that both a and â are *-homomorphisms of A into L(H) ®max A'. The 
following is easy to check. 

PROPOSITION 1.1. The relation h(a°qal) = a(a°)(a(a°) — â{a1)) defines a 
^-algebra homomorphism h from Cuntz's algebra qa into LP(H)®A'. 

As an example, consider the case (p. 272, [Con2]) that A' = C and the /?-summable 
A'-module is the Fredholm module given in Definition 1, p. 265, of [Con2]. Let m > 
p — 1 and n = 2m. For any a G A, let da = i[F,<f>(a)]. Consider the supertrace 
Trs(T) — Tr(eF[F, T]), defined for any T G L{H). The character r of the cycle as­
sociated to (//, F) is defined (see Proposition 5, p. 275, [Con2]) by r(a°9 a

l,...,an) — 
(2iTT)mfTrs(a°dal • • -dan\ for a1 G A. 

PROPOSITION 1.2. 

r ( a° , . . . , a") = m! (2/7r)m Tr(/i(^° • • • qa11)) 

= 2m! (2/?r)w Tr(a°hqal • • • / i^") . 

PROOF. We have 

r(a°9a\... ,a2m) = ml (2/7r)m T r ^ F t F , ^ 0 ) ] ^ , ^ 1 ) ] • • • [F,</>(«2w)]), 

since 

and 

[F,^(n2l"-1)][F>0(£i2l")] = 
f -(a2l'~' - Pfl?!"* F" l )(all - Pa2iP-l) 0 1 
I 0 P~l (a*-l - Pa2i~lP~l){a% _ pa2_i-1/>-1 )/> J 

A straightforward computation yields the results. • 
Recall that [rmA G HC2m(A) is the 2m-th Chern character of the Fredholm module 

(//, </>, F). It is our goal to merge Cuntz's algebraic approach to ATA'-theory with Jones-
Kassel's differential homological algebraic approach to the bivariant cyclic theory. For 
this purpose, it is convenient to extend cyclic theory to the category of generalized cyclic 
complexes. 
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2. Jones-KassePs bivariant cyclic theory and generalized Connes cyclic com­
plexes. In this section k will be any commutative ring of characteristic 0. In later sec­
tions if the discussion is in the continuous, i.e., topological, category, we shall assume 
the conventions of § 0 and replace ® by 0 accordingly. 

Connes constructed a bivariant cyclic theory in [Con3] using cyclic ^-modules. Let 
C be the Connes cyclic category. Recall that the objects in C are n = { 0 , 1 , . . . , n} and 
the morphisms are generated by the face maps dt: n + 1 —• n, the degenerating maps 
sf. n —+ n + 1, for / = 0 , 1 , . . . , «, and the cyclic permutation rn\ n —• n. A cyclic k-
module is a contravariant functor M from C to the category of ^-linear spaces. For sim­
plicity we still denote the fc-linear maps M(d;), Mfo), and M{rn) by du su and rn. If we 
denote the fc-module M(n) by Mn, then (M*,fr) and (M*,Z?') are two chain complexes, 
where the boundary operators b and b'\ Mn+\ —> Mn are given by 

i=0 /=0 

for n = 1,2,... . Since b'so + s$bf = id, the complex (M*,Z/) is acyclic. A unital k-
algebra A defines in an obvious way a functor Â  from Connes' cyclic categroy C to the 
category of Minear spaces, with A\n) = A0(n+1). Clearly ((A*)*, ft) and ((A*)*,*/) are 
just the Hochschild complex and the acyclic Hochschild complex over A. Connes defined 
a bivariant cyclic theory HC" {A, A') = Ext^A^, A^ ), where Ext is the left derived functor 
of Horn on the category of cyclic ^-linear spaces [Con3]. In particular, Exf(A^, C ^ ) = 
HCn(A), the n-th cyclic cohomology group of A. 

We shall use the standard notation for the operators N = 1 + t + • • • + tn at degree 
n and B = (1 — t)soN, where t is the signed permutation (— \)nr at degree n. Recall 
that b2 = B2 = Bb + bB = 0. Together with the degree +1 differential 5, (M*,b,B) 
was called an algebraic Sl-module in [Bur], and later a. mixed complex in [Kassl], and 
a d.g. A-module in [J-K], where A = k[e] ~ H*(Sl) is the generalized exterior algebra 
generated by a generator e of H\(Sl), with zero differential. The multiplication by e on 
M* is given by the action of B. Thus, the category of cyclic ^-modules is included into 
the category of d.g. A-modules. 

We first gather some background material from [J-K], § 1, and § 2. 
The bar construction 5(A) on the algebra A is a graded Hopf algebra isomorphic to 

H*(BSl); as a ^-algebra B(A) is isomorphic to K[v]y deg v = —2; as a coalgebra 5(A)*, 
it is isomorphic to K[u], deg u = 2. The comultiplication B(A) —• 5(A) ® B(A) is given 
by 

A(un) = 1 <g> un + w <g> i/1-1 + • • • + wn ® 1. 

Let M be a d.g. A-module. Then B(M) := 5(A) ®* M has a natural d.g. 5(A)-comodule 
structure; the differential is 

d(un ®m) = un ®bm + un~x <g> Bm. 

Dually, B(M)~ := B(A)*<g>kM is a d.g. 5(A)*-module, where (§* stands for the alge­
braically complete tensor product with respect to the inverse limit. 
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Thus, an w-chain in B{M)n has the form 

l<g)mn + u(g) m„_2 + • • • + u{nl2] ® m0 (or u[n/2] <g> ni\) 

and an «-chain in B~(M)n has the form 

10wi„ + v® mn+2 + v2 0 mn+4 + • • •, 

where nik G Mk,Wk. 
The #(A)*-comodule structure on £(M) and #(A)-module structure on B(M)~ define 

the periodicity operator S: 

S(un ® m) = wn-1 0 m, 

5(vn ® m) = v"+1 ® m. 

The category of d.g. Z?(A)-comodules and the category of d.g. B(A)--modules are 
equivalent, and are equivalent to the category of cyclic ^-modules. Moreover, for any 
d.g. A-modules M and M', the d.g. Horn complex Homs(#(M), #(M7)) of #(A)-comodule 
maps (i.e., the fc-linear maps commuting with S) is isomorphic to the d.g. Horn complex 
Homs(B(M)-,B(M')-) of 5(A)*-module maps (Lemma 2.1, [J-K]). 

The following are two trivial observations. 

PROPOSITION 2.1. Every cochain f e Homs (B(A),B(Af)) n (resp. Horns(£(M), 

#(M')) ) is given by afamily(f(l))i=n?n-i^i} where f{l) G Hom(M, Af')-2i (resp. Hom(M, 
M')-2i-\) such that 

p 

(2.1) f(up ®m)=J2 up~k ®fn~kXm). 
k=0 

PROOF. Recall ([Kass2] p. 230, Lemma 2.1 [J-K]) that 

f(uP <g> m) = J2 up'k ®fn-k\m). 
kez 

Since U[ — 0 if / < 0, we can write 

f(up ® m) = ]£ up'k ®fin-k\m). 
k<p 

We assert that/"-*) = 0 if k < 0. If not, say /^-^m) ^ 0, then S(w~* ®f(n-k)(m)) = 
u~k~l (&f(n~kXm) is the image of 5/(1 <g) m), but/S(l 0 m) = 0, a contradiction. • 

Note that under the isomorphism from Horns(#(M ), #(M')) to Horns (B(M)~, 

B(M')~\ corresponding to (2.1), the image of/ is given ([J-K], Lemma 2.1) by 

(2.2) /(v" ® m) = £ v ^ ^ / ^ - ^ ( m ) . 

In comparison with (2.1), there are infinitely many nonzero terms on the right of (2.2) in 
general. 
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PROPOSITION 2.2. Assume f E Homs(z?(A),fl(A'))n is represented by a family 

(f(i))i=n,n-K... Then Sm of e Homs (B(A\B(A'))n+2m is given by (f('Wm,«+m-i,.., with 
s(n+m) — . . . — f(n+\) __ Q 

PROOF. It is enough to show this for m = 1. By (2.1 ), 

(SfW ® m) = E / " " _ 1 ®/("~ V ) 

= P'ZuP~k®f(n~k+l\m) 
k=0 

with/(rt+1) = 0. • 
Jones-Kassel defined in [J-K] the bivariant cyclic group 

HCn(M,M') = Hn(Homs(B(M\B(M')*). 

The condition that a cochain/ = (f(l))i=n,n-\,... iscocycle (p. 204, [Kassl],p. 230 [Kass2]) 
is 

[bj{n)] = 0, 
[bj{i)] + [BJ(i+l)] = 0, i - n - l,n - 2 , . . . . 

The condition for a cochain/ = (f^X^n-i,... to be a coboundary is (see loc.cit.) that 
there exists some g = (g(/)),=n,n-i,..., where deggw = deg/ (0 + 1 such that 

[b,g(n)]=f(n\ 
[b,g(i)] + [£,g(/+1)] = / ( 0 , i = n - l,n - 2 , . . . . 

For the discussion in the following sections, it is necessary to extend the (bivariant) 
cyclic theory slightly beyond the category of cyclic fc-modules. 

Let (Cntm(M),dï), n,m > 0, i = 1,2, be the d.g. bicomplex associated to a cyclic 
^-module M (p. 955, [Con3]). Here Cn,m(M) — Mm for all n, m, the vertical differential 
^2 is equal to b if n is even and to —b' if n is odd, the horizontal differential d\ is equal 
to (1 — t) if n is odd, and to TV if n is even. 

Note that the periodicity operator S acts on C. . (M) by deleting the first two columns. 
We may write Mn,m for Cn/n{M) if no confusion arises. 

DEFINITION 2.3. A generalized cyclic k-complex (Nn,m,di), i = 1,2, «, m > 0 is 
a differential graded subcomplex of any d.g. bicomplex (M„,m, d,), / = 1,2, rc, m > 0, 
given by a cyclic fc-module, such that Nn,m depends only on m for all m and is invariant 
under the action of t. 

A generalized cyclic ^-complex is H-unital if there is a homotopy operator s: Nm —> 
Nm+\ , w > 0, such that s satisfies all the relations so has with other operators, in particular, 
sb' + b's= 1. 

For the reason for this definition, see Definitions 3.11 and 3.12. 
We note that (Nn,m) is a bihomogeneous submodule of (Mn>m) (p. 60 [C-E]), m > 0. 

It is not always possible to make TV* a d.g. A-module. Only //-unital generalized cyclic 
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^-complexes can be made into d.g. A-modules. Not every d.g. A-module comes from a 
cyclic /c-module. These three categories are all inequivalent, although some of them are 
contained in others. A typical case is 

EXAMPLE 2.4. Let / be an ideal of a unital algebra A. Let C. . (A) be the d.g. bicom-
plex given by the cyclic ^-module Â  (see e.g. [L-Q], p. 567). Let n: A —• A/1 be the 
quotient map. Set A'* = ker 7r*, where 7r* is the induced chain map 7r*: C*(A) —» C*(A/1). 
Then for £ > 0, Kt is the closure of the linear span of elements a° ® a1 <g> • • • <g) a1 with 
at least one a1 G /. 

There is a canonical filtration Fk(A,1) (for short, F*(A) or F*), & = — 1,0,1,. . . , of 
AT* defined as follows: F_i(A) = 0, F0(A) = C*(/). In general Ffc(A)£+£ is the closure 
of the linear span of a° 0 a] ® • • • ® a*" ,̂ where at least (£ + 1) { respectively, at least 
1} of of are in /, for £ > 0 {respectively for -k < £ < 0} (k = 1,2,...). Clearly 
F_i(A) C F0(A) C Fi(A) C • • • C K* C C*(A) and U ^ F ^ A ) = AT*. Each F^ defines a 
generalized cyclic complex. 

The following is easy to verify 

PROPOSITION 2.5. Both K* and the filtration Fk{A), k = — 1,0,1.. . , are invariant 

under the cyclic action t. They preserve both the Hochschild boundary b and the acyclic 

Hochschild boundary b'. 

COROLLARY 2.6. WithKn,m = Km andFk{A)n,m = Fk(A)m, for all n,m > 0, both 

(K. ., di) and (Fjt(A), dt), i — 1,2, are generalized cyclic k-complexes. 

Note that the periodicity generator S acts on a generalized cyclic fc-complex M by 
deleting the first two columns, and so also acts on the total complex Tot(M). Thus Tot(M) 
is a d.g. S-module as defined by [J-K]. 

DEFINITION 2.7. Let M, M' be generalized cyclic ^-complexes. The bivariant cyclic 

groups of M and M' are 

HCn(M,M') = //n(Hom5(Tot(M),Tot(M/))*). 

LEMMA 2.8. Let M. . and M'. . be two positively bigraded modules. Then there is a 
natural isomorphism 

T: Hom(Tot(M. . ), Tot(M')) —• Tot Hom(M. ., A/'. . ). 
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PROOF. For any n G Z, we have 

Hom(TotM,TotM')n = ]J ((TotAf)m, (Tot M,)m_„) 
m>0 

= ri( n A/W, n Kr) 
m>0 k+t=m kf+l'=m-n 

M>0 kf,t'>0 

= n IT Hom(MMX-,,*-*) 
m>0 fc+^=m 

= n Hom(M. .,M'. -Tq 

p+q=n 

= TotHom(M. .,M'. •)"• 

LEMMA 2.9. Let M and M' be two generalized cyclic k-complexes. Suppose that 
f G Hom(M. .,M'. .). Writef = (ffi)^^, where f" G Hom(Mw,M*_^_,). 77ien 
/ G Hom5(M. . ,M'. .) if and only iff^ = fp~2,£ (modulo the identification M\ = M ^ , 
etc.)forallk-p>2, £>q. 

PROOF. This follows from the commuting diagram 
fk,l 

Me =MK( -^ K-P,i-q = Mi-« 

II 4 1 * II 
rk-2,l 

Mt = Mk-2,£ ^-> M'k-p-2,i-q = Mt-q 

• 

THEOREM 2.10. Suppose thatf G Hom^(M. ., M'. . )n. Then fis determined by two 
families if^q)\ q < n+l, (f[q)), q<n-\, of maps, where (#*>) and (f^): Mt —• M ^ , 
/or «// £, are of degree 2. More precisely, iff = (f£q )%<*#<£> p-^q — n, then 

(0 fn-tq = /o(<?) k , for all2k>n-q,£> q; 

(H) fn-~qY = f\q) Wfor all2k-\>n-q,l>q. 

PROOF. By Lemma 2.9, the map of complexes/ = (fp^)p^<i satisfies/^ = 
f*-2'1 Jor k - p > 2. So / i s determined b y / ^ , for/? <k< p + 2,q~< I and k, £ > 0. 
For fixed n, p = n — q, there is a unique ko such that n — q < 21CQ < n — q + 2, and 
n - q < 2ko - 1 < n - q + 2. L e t j ^ \Ut = fëfa and/,(?> = fi*£•'. 

THEOREM 2.11. Let M and M' be two generalized cyclic k-complexes. There is a 
natural isomorphism ofd.g. S-modules: 

T: Homs(Tot M, TotM') - ^ Tot Hom5(M, M'). 

PROOF. This is a consequence of Lemmas 2.8 and 2.9 and Theorem 2.10. The cri­
terion for Sf = fS given in Theorem 2.10 is "invariant" under the isomorphism T in 
Lemma 2.8. • 

Now we have another definition of the bivariant cyclic groups. 
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THEOREM 2.12. Let M, M' be two generalized cyclic k-complexes. Then 

HCW(M, M') = Hn (Tot Hom5(M, M'j). • 

From Theorems 2.11 and 2.12 and Definition 2.17, we may just write HCn (M,M') = 
//"(HomsCM.M')). 

If M is an //-imitai generalized cyclic complex (Definition 2.13), then one can con­
struct Connes' double complex (#. . (M), £,#) as before (e.g., p. 570, [L-Q]), with 
Bm,n(M) = M2m,n-m, b = d2 | M2m, B = d,s0dx = (1 - t)s0N. 

We shall denote the total complex of (B. . (Af), b, B) simply by B(M). It coincides with 
the comodule B(M) of Jones-Kassel, if M is a cyclic /:-module. The periodicity operator 
S acts on the double complex B. . (Af ) by deleting the first column and thus acts on B(M). 

We will say two d.g. (S-) complexes (Af, d) and (N, d') are quasi-isomorphic (not to 
be confused with quasi-homomorphisms!) if there is a sequence of d.g. (S-) complexes 
(Mi, dt), i = 0 , 1 , . . . , «, such that 

1) (M0, Jo) = (M,d), (Mn,dn) = (AU'); and 
2) there is an (S-) complex map between (Af/,d;) and (Af/+i,<i/+i) which induces an 

isomorphism between the homology of the complexes. 
Such an (S-) complex map is called a quasi-isomorphism. 
We note that the obvious "projection" from Tot(Af) to B(M) is not a chain map. Al­

though in general there is no quasi-inverse to a quasi-isomorphism, we show here this is 
the case. The construction of the quasi-inverse I/J can be read off from (ii) of Lemma 1, 
[Wl]. 

THEOREM 2.13. For any generalized H-unital cyclic complex Af, there is a map of 
complexes xp.TotM —• B(M) commuting with S, which is a quasi-inverse to Loday-
Quillen 's map. 

PROOF. We define xjj by the following formula: xjj : M2n^ —• M2nj is the identity, 
while ip(m) = (1 — t)sm if m G M2n+\^, for £,« = 0,1,2,. . . . 

It is easy to check that x/j is a chain map. Let dc and dg be the differentials in Tot M 
and B(M) respectively. If m G M2nj, then xp (m) = m, dcm = (Nm, bm) and \p dcm = 
((1 — i)sNm,Bm} = ds^im). If m G Af 2,1+1,*, then xp(m) = (1 — f)ww £ M2nj+\ and 
dBip(m) = (#(1 — t)sm,b(\ — t)sm) G Af2(n-i),*+2 ® Â 2n,£- On the other hand, dc^ = 
((1 - r)w, -Z/ra) G M2n,t © M2n+i^_i, and ^d c m = ((1 - f)m - (1 - f)^*") G M2n,i. 
Since B(l - r> = 0 and fc(l - 0 = (1 - t)V, b's = 1 - sb', we get d ^ = ^dc. 

We check that T/> °<t> — 1#, so i/' is a quasi-inverse of </>. 
From our definition, xjj^im) = m + (1 — t)ssNm. Thus the decomposition of 

C0(/> - Id*) G Hom5(fl(Af),£(Af))° is (0,(1 - t)ssN,09...)9 i.e., the degree 2 map 
(\j)<i> - Idfi)

(_1) = (1 - O^N, and the rest (xjxj) - Idfî)
(-° = 0, i = 0 ,2 ,3 , . . . . We 

define/ G Hom5(B(M),JS(M))1 such that/(0) = 0 = f~2) = f(~3) = • • -, but 

/ ( - 1 } = (1 - t)sssN:Mn^Mn+3yn. 
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It is easy to check that 

= bf(-D+f(-% 

= (1 - t)b'sssN + (1 - t)sssb'N. 

Since b's — 1 — stf, we have 

b'ss = s — sb's = s — s(l — sb') — ssb\ 

so [b,f(-l)] = (l- t)ss(b's + sb')N = (1 - t)ssN = (00 - ldB)(-l). 

On the other hand, 

[BJ(~l)] = Bf(~l) +f(~])B = B(\ - t)sssN + (1 - t)sssNB. 

Recalling that B = (1 - t)sN and that iV(l - 0 = (1 - t)N = 0, we have [£ , / _ 1 ) l = 0. 
It follows that [00] - [lB] = 0 in H°(Homs(B(M),B(M)). Since we already know the 
Loday-Quillen map 0 is a quasi-isomorphism the other relation 

[00] = [l c] G //°(Hom5(Tot(M),Tot(M))) 

follows automatically. • 
From Theorem 2.13, it follows in particular that for any generalized //-unital cyclic 

complex M with ss = 0, the bar complex B(M) is a strong deformation retract of the total 
complex M. . (By définition, a complex M is a strong deformation retract of a complex 
N if there are two complex maps 0 and 0 with 0 : M —• JV injective such that 0 0 = id^ 
and 0 0 = idyv +*#" +/d for some/ G Hom(N, AO1.) 

COROLLARY 2.14. Let M and M' be two generalized cyclic bicomplexes. Then the 
two Horn complexes H01115 (B(M), #(M')) and Hom,s(TotM,TotM/) are quasi-isomor-
phic. 

PROOF. The map taking/ G Homs(B(M),B(M')) to (0M' of o 0M) G Hom5(TotM, 
Tot M') is an S-complex map. It is easy to check that it has a quasi-inverse sending g G 
Homs(TotM, Tot M') to 0M'£ O 0M G Homs(#(M), /?(M')). The notation 0M, 0M, is self-
explanatory. • 

As another corollary, we have 

THEOREM 2.15. Let M andMf be two cyclic bicomplexes. Then there is a canonical 
isomorphism (j>Mt o 0M+ 

0M, o0M+://"(Horns(£(M),£(M')) ^/ /n(Hom5(TotM,TotM')) . 
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3. /-summable quasihomomorphisms and the bivariant Chern character. Let 
A, A' be topological algebras and / be an ideal of A'®K as described in § 0. Our discussion 
is simultaneously for both algebraic and topological categories (in the discrete category, 
replace (§> by C*D; see the beginning of §2). Let h = (a,à): A =3 M(A'®K) be an I-
summable quasihomomorphism from A to A'<g>K. Let E be the completion of unitalized 
algebra generated by the ideal / and the images of homomorphisms a and â in M(A'<g)K). 
For those who do not mind working with nonseparable algebras, in the following, we may 
simply replace E by M(A'<g)K) itself. Thus, associated to h, there is an exact sequence 

(3.1) 0 - > / - + £ ^ / ? - > 0 

where by definition R is the quotient algebra E/1. Let K* = K*(E) be the kernel ker 7r*, 
where 7r* is the complex map induced by the quotient 7r* on the Hochschild complexes: 

(3.2) 0 -> K*(E) -> C*(E) ^ C*(R) -+ 0 

In example 2.4 we exhibited a filtrationFk(E) of C*(£), k = —1,0,1, . . . , and showed 
that K*(E) and Fk(E) for each k give rise to generalized cyclic complexes. 

Now we recall from [Wl] some of the crucial construction. The algebra homomor­
phisms a and cc:A —• E define canonically two cocycles a # and â # in 
Homs(C . (A), C. . (£)) ' . They are actually two bicomplex maps commuting with the 
periodicity operator S. Let hm = hn^m\ C*m(A) —> C*m(E) be the restriction of h# = 
(a # - â#) at the («,m)-chain. (Recall that C*nm(A) = &m(A) and C*nm(E) = C*m(E).) 

LEMMA 3.1. The linear map hm, m > 0, is given by the following recurrence for­
mula: ho(a°) = h(qa), and if we suppose hm-\ is defined then 

hm(a°,a\ ...,am)= (h(qa\ a{ax\..., a(am)) + (a(a\hm-i(a\... ,am)) 

PROOF. For m = 0, by the definition of quasihomomorphism 

h0(a°) = a (a0)- â(a°) = h(qa°). 

Now let us return to the notation <§) for the moment: 

a\a°®al® • • • ®am) - â*(a°®a1®- • • ®am) 

= a(cP)®ct(ax)® • • • ®a(am) - â(a°)®d(a1)® • • • ®à(am) 
(3 4) 

= (a(a0) - â(a°))®a(a1)® • • • (ga(am) 

+ « ( ^ ^ [ « ( a 1 ) ^ • • • ®a{am) - a(a1)® • • • ®â(am)]. 

Replace â(a°) by a (a0) — hqa° in the second tensor; we obtain (3.3) immediately. 
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LEMMA 3.2. The recurrence formula (3.3) can be replaced by the general formula 

hm(a°, a\ . . . , am) = (h(qa°),a(al\ a(a2\ . . . , a(am)) 

(3.5) + ( â ( A h(qal\a(a2\ . . . , a(am)) + • • • 

+ (â(a°), â{ax\ . . . , «(a"1-1), h(qam)). 

PROOF. Use induction on m > 0. The formula holds for m — 0. Suppose (3.5) holds 
for (m — 1). Then the truth of (3.5) for m follows from (3.3). • 

COROLLARY 3.3. The general formula for hm in terms of only the homomorphism a 
and the homomorphism h'.qA —y I is given by 

hm(a°,a\..., am) = (h(qa°),a(al)y a(a2\ . . . , a(am)) 

+ (a(a0) - h(qa\ h(qal),..., a(am)) + • • • 

+ (a(a0) - h(qa\ ct(ax) - h{qa\ . . . , a(am _ 1) 

-hq(am~llhq(am)). 

We conclude: 

THEOREM 3.4. An I-summable quasihomomorphism h(a, â): A =t I from A to A'&K 
defines uniquely a cocycle h* in 

Homs(C. .(A),K. .(£))°'0 C Hom5(TotC. .(A), Tot AT. .(£))°. 

The chain maps hm = hn,m are given by any one of the formulae (3.3), (3.5), and (3.6). 
We shall denote both the class of /z# in HC°(A, K*(E)) and the class of h# in HC°(A, E) 
by [h]. Which group we are referring to is usually clear from the context. 

We know that Homs(B(A),B(E)) ~ Hom5(Tot(C. .(A)),Tot(C. .(£))) (Cor­
ollary 2.15). We shall still write a# , â# , /i#, etc., for the corresponding cocycles in 
Horns(#(A), #(£)). From our work in § 2, now it is quite easy to describe /z# in terms 
of the traditional higher strong homotopies. Let a # = (aw);=o,-i,..., â # = (â(l))/=o,-i,..., 
and /*# = (h(l))i=o,-\,... be the decomposition of Proposition 2.1, where h{l) G 
Hom(C*(A),C*(£))2., etc. 

Given any unital /c-algebra A, recall that À is the algebra with a new identity 1 ad­
joined to A. For any algebra homomorphism a. A —•+ A7, denote by a:À —• A' be the 
"unitalization" of a, and by ir : A' —• A! the unital map sending \A> of A' to the "old" unit 
I A'. Then a is the composite 

(3.7) A-UÀ^Â'^A' 

where / is the inclusion. 
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LEMMA 3.5. Ifa:A—^Afisa unital homomorphism, then we may choose a(i) = 
0 for i — — 1, —2,... , while a(0) is given by the obvious map: a ( 0 )(a°, . . . , am) = 
(a (a0) , . . . , a(amj)jor any m > 0. 

Thus in the decomposition â # = (â(/))/=o,-i,... and 7f# = (7r(ï))/=o,-i,..., of the induced 
maps a # G Homs(B(Â),B(Â'j) and TT# G H o m ^ i ' ) , ^ ) ) the only nonzero maps 
are the obvious maps a(0) and 7r(0). 

PROPOSITION 3.6. In the decomposition /* = (f~i})i=:o-\,...» one may choose 71-0 = 
Ofori > 2, while ft^ — Id is the inclusion, and ft~l) — (I—t)ssN. Here the standard nota­
tion is as in § 2. The degeneracy operators s, s are given by s(a°,..., an) = (1, a°,..., an) 
ands(a°,...,an) = ( f ,a° , . . . ,an\ 

PROOF. Consider the following commuting diagram of d.g. complex maps: 

TotC. .(A) - ^ TotC.(A) 

B(A) .../*., B{A) 

where the inclusion /* is a chain map, because not all the differentials in C. . (A) and 
C. . (Â) involve the degeneracy map. Recall the Loday-Quillen map <j> and the quasi-
inverse %l) we constructed in Theorem 2.14. We get 

x/j o /* o (j) (un (g) mi ) = \jj o I^mt 0 sTVrâ  )2rt+^ 

= <*l)(mt ®sNmi)2n+t 

= ww (g) mi + un <g> (1 - f)ssNmt, 

where m^ G A w + 1 ) and (X)2«+̂  indicates that the total degree of x G Tot C. . is In + £. 
One can check [ft,/<0>] = 0, [B,/0)] + [ft,/*-1*] - 0 and [B9f~

l)] = 0, so (/(l"))/=0,-i,... 
defines a cocycle. Note that the inclusion /(0) does not commute with B: however 

[b,f-l)] = b{\ - t)ssN - (1 - t)ssNb 

= (l-t)(b'ss-ssbf)N 

= (l-t)(s-sb's-ssb')N 

= (1 -t)(s-s)N 

= B-B 

= ~[B,t0)l 

There is a parallel statement to Theorem 3.4 concerning Horns (#(A), #(£)). It requires 
a separate proof. First we notice that if we replace A' by E in (3.7), we obtain easily that 
a ( -0 = ^(0) o â(°) o f~l\ for / = 0 ,1 , . . . . Thus 

( a ( -0 _ a<-0)(a°9...,a») = £ Àfr<°> o (*«» - d ^ ) ( ^ , . . . , tf+2y); 
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in the sum in every tensor each ai, £ = 0, . . . n, appears exactly once as bfj, and the rest 
either are 1 or 1. Of course, Proposition 3.6 says that the coefficients Xl

K are 0 if i > 2. 
Every term can be expressed as a sum of (n + 2/) differences, each of them an (n + 2/) 
tensor with at least one factor being either h(qai) or h(ql) (see Lemma 3.2). We have 
obtained: 

LEMMA 3.7. The images of h(l\ i — 0, — 1 , . . . , are contained in the generalized 
cyclic complex K*(E). Thus, an I-summable quasihomomorphismfrom A to A'®K defines 
a unique element [h] G HC°(A, £*(£)). 

In conclusion, we have the main theorem of [Wl]. 

THEOREM 3.8. Let A, A! be unital k-algebras. Let h be an I-summable quasihomo-
morphisms from A to Af§t>K. Then h defines an element ch(/i) = [h] G HC° (A ,À^(F ) J , 

which is represented by either of 

(i) a cycle h* in Hom5(C. . (A),K. . (£)) ' , given by Corollary 3.4, Theorem 3.5; 

(ii) a cycle h* in Homs(B(A),B(K*(E))) , (K*(E) is H-unital), given by the family 
of strong higher homotopy maps (ft-I)i=o,i,2,...> h~~l\AE —> Ki+2i(E), -£ > 0, such 
thath(-() - 0fori>2t while 

(a) h°(a°) = h(qa\ h°(a°, ...,an)= (h(qa%a(al\ . . . , a{an)) + 
(a(a0), h°(a\ . . . , an)) - (h(qa\ h^\a\ . . . , an)). 

(b) hx = 7r(0) o ffi o (1 - t)ssN (h° is the "unitalization" ofh°). 

COROLLARY 3.9 (THEOREM 1, [Wl]). Suppose that h is a 1-summable quasihomo­
morphismfrom A to Af(g)K. Then there is a canonical element [Tr#] G HC0(ÂT*(F), A') 
which is an "HC-equivalence". Tr#: A^(F) —> Af<s>iE+l) is just given by the continuous 
extension on tensor products ofMn(A) of the ordinary trace. 

Let ch°(A) = [Tr# oh% with /z# given in Theorem 3.9 (i) or (ii). Then ch°(/z) is a well 
defined 0-cycle in HC°(A, A'). 

Now we return to general /-summable quasihomomorphisms. 
i 

The inclusion / <—• F induces an inclusion of generalized cyclic complexes /#: 
C*(f) «—• K*(E) and, further, 

f#: Hom5(Tot C*(A\ Tot C*(/)) -> Hom5(Tot C*(A), Tot K*(E)) 

induces a group homomorphism /*: HC*(A, I) —• HC*(A, ̂ *(F)). A natural question is: 
when is T# a quasi-isomorphism? 

The necessary and sufficient condition for /# to be a quasi-isomorphism was found 
by Wodzicki ([Wodl], [Wod2]). It is that / be H-unital (Definition 3.10). The filtration 
{F*(£)}jfc=-i,o,i... of K*(E) defines a filtration {Fk Hom5(A, F) : = 
Hom5(TotC*(A),TotFfc(£))}ife=_iio,i,... of Hom5(TotC*(A),Tot#*(F)), because the in­
clusion Fk-\{E) °-> Fk(E) induces an inclusion 

H01115(TotC*(A),TotF*_i(£)) ^-> Hom5(TotC*(A),TotFk(E)), 
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and the functor Horns commutes with direct limit: 

\jHoms(TotC*(A),Tot Fk(E)) = Homs(TotC*(A), Tot #*(£)). 
k 

Wodzicki's notion of //-unitality can be generalized to categories with general adress­
able topological tensor products. Let k be a unital topological ring and A a ̂ -algebra, not 
necessarily unital. Write A = A 0 k. Given an admissible topological tensor product 0 , 
the reduced torsion group Tor* ' (k, k) is the homology group of the reduced bar resolu­
tion (C*(A), fr') with respect to the topological tensor product 0 , where Cb(A) = 0, and 
Cn(A) = A®\ n > 0. 

DEFINITION 3.10 (SEE [WODI]). A ^-algebra A is called H-unital with respect to 0 , 
04 C§>) ~ 

if Tor* ' (&, k) = 0. We may simply say that (A, 0 ) is //-unital. 
A is said to be algebraically H-unital, if (A, 0) , is //-unital where 0 is the algebraic 

tensor product. We simply say A is H-unital. 

REMARK 3.11. If A is an //-unital ^-algebra, then (C*(A), b'^j is acyclic. Since A is k-
projective, the complex (C*(A), bf) is contractible (Theorem 5, p. 164 [Span]). Thus there 
is homotopy s of degree 1 such that sb' + b's = 1. So one can still define B = (1 — t)sN 
on C*(A) and make B(M) a #(A)-comodule. 

PROPOSITION 3.12 ( [WODI] , PROPOSITION 1). (i) If there is a right or left A-linear 
splitting of the multiplication map A® A —• A, then A is H-unital with respect to 0. 

(ii) If for any finite number a\,...,am of elements A there is e G A such that a\ = 
ea\,...,am — eam, or a\— a\e,... ,am — amey then A is algebraically H-unital. 

COROLLARY 3.13. If a locally convex (C orK) algebra A is algebraically H-unital 
then A is also H-unital for any complete topological tensor product 0. 

REMARK 3.14. Wodizicki has given a variety of examples of //-unital topological 
algebras in § §4-8, [Wod2]. For any C°°-manifold X and closed subset 7, the algebra 
C°°(Z, Y) of smooth functions "flat" (i.e. vanishing with all derivatives) along Y is //-
unital. In particular, the algebra of Schwartz functions 5(R") is //-unital. The algebra 
(D(X, Y) of smooth differential operators "flat" along Y is //-unital. On a regular affine 
variety V, every (one-sided) ideal in the algebra îî>alg(V) of algebraic differential opera­
tors is //-unital. Every Banach algebra A with left or right bounded approximate unit is 
algebraically //-unital. 

EXAMPLE 3.15. The algebra of nuclear operators in a B anach space with the approx­
imation property is //-unital [Wod2]. In particular, the algebra of trace class operators 
L{(H) is //-unital with respect to the projective tensor product 0 . The algebra of com­
pact operators L°°(H) = %{H) on a Hilbert space is //-unital. For any complete locally 
convex topological algebra B, the projective tensor products B0L1 (//) and B<£> XiH) are 
//-unital with respect to 0 . 

The Schatten ideal LP(H) are not //-unital for 1 < p < oo (see § 5). 
//-unital algebras are characterized by the excision property: 
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THEOREM 3.16 (THEOREM 3, [WODl]). For any algebra A over afield k of charac­
teristic zero, the following two conditions are equivalent: 

(a) every extension ofk-algebras 0—>A—+E—>R—+0 induces the long exact 
sequence in cyclic homology 

• UCq(E) — UCq(R) ^ HC<_i(A) -+ nCq-X(E) — • • • ; 

(b) A is H-unital. 

Let Tot AT* be the chain complex defined by the short exact sequence 

O^Tottf*—>TotC. . (£ ) -» TotC. .(fl)->0. 

REMARK 3.17. The chain complex Tot K* is identical to Tot(K. . ), where K. . is the 
bicomplex associated to the generalized cyclic complex K*\ (see Definition 2.3). 

THEOREM 3.18. Let k be afield of characteristic zero. An algebra (/, ®) is H-unital 
if and only if for every extension 0 —• / —> E —• R —• 0 of k-algebras the natural 
inclusion Tot C. . (/) c—• Tot A'* is a quasi-isomorphism. 

PROOF. We define a filtration Fp Tot K* as follows: 

F-i TotK* = 0, F0 Tot K* = Tot C. . ( / ) , . . . 

Fk Tot AT* = Tot(FkK). ., where {FpK)m/l = (FpK)n, m, n > 0, p > 1. 

We notice 

E?M(FTotK.) ~ ( T o t ( F ^ . . ^ / ( T o t ^ . , * ) . .)p+(? 

=* [(Fp**)0 + • • • + ( F ^ W / [ F ^ , A : » ) O + • • • + (Fp_,/^)p+„] 

~ (F p£,/ Fp_,^)o + • • • + (FpKt/ Fp.xKt)p+q 

~ © F^FAT.). 
0<k<q 

By Corollary 2 of [Wodl], if A is //-unital, the F^^(FK^) is acyclic. Wodzicki's proof 
shows that /^(FTotK*) is acyclic Up > 1. Thus the spectral sequence Er

p^ collapses 
at the El -term and we have 

4*(FTot#*) ~ ££(FTot**), for/7 > 1. • 

LEMMA 3.19. Let P,Q C—+Qf be d.g. S-modules, where the inclusion is a quasi-
isomorphism. Then the induced map 

Homs(P,Q)^Homs(P,Qf) 

is also a quasi-isomorphism. 

PROOF. There is an isomorphism of d.g. S-modules: 

HomsOP, G7)/ i#(Hom5(P, Q)) ~ Hom5(P, Q'/ Q). 
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Since Q c-^ Q' is a quasi-isomorphism, the above d.g. module is acyclic. Thus in the 
long exact sequence 

• //„(Hom,(P, Q)) Î //n(Hom,(P, g')) — • • • 

the induced maps /* is an isomorphism. • 
As a consequence we Have 

THEOREM 3.20. If I is H-unital, then the natural inclusion induces isomorphisms 

HC*(A,/) ~ HC*(A,FiK*) ~ HC*(A,F2tf*) ~ • • • ~ HC*(A,#*). 

DEFINITION 3.21. Suppose that h = (a, â): A —» Af(A'®A) is an /-summable quasi-
homomorphism from A to Af®K, such that / is //-unital with respect to 0 . Let [/z#] G 
HC°(A,^) be the class of h defined in Theorem 3.5. The the Chern character of h in 
HC2m(A,/), m = 0,1,2, . . . , is defined to be the image of Sm[h*] under the natural iso­
morphism from HC*(A, K*) to HC*(A, /), denoted by ch2m(/i). 

REMARK 3.22. Consider the universal quasihomomorphism 

i 

A =t A * A D> gA, 

which we denote by #: « i—• ga = i(a)—T(a). Suppose that Cuntz's algebra qA (completed 
or algebraic) is //-unital. The the exact sequence {QA = A * A is completed or algebraic 
according to qA) 

0^qA-^QA->A->0 

has the excision property. Let K*(QA) be the kernel of C*(QA) —> C*(A). Then HC*(A, 
#*((?A)) and HC*(A,#A) are isomorphic. The universal quasihomorphism q defines an 
element [q*] G HC°(A,#*), and thus an element chm(q) E HC2m(A,#A) under this iso­
morphism. For any /-summable quasihomomorphism h: qA —> /, we may define the 
Chern character ch2m(h) = [/z#] o ch2m(^) G HC2m(A,/). For instance, when A is a sub-
algebra of a C*-algebra, gA the C*-algebraic completion (of qA), then qA is //-unital. 
Thus for any /-summable quasihomomorphism h from A to A' <g> K, the Chern character 
ch0(h) e HC°(A,7) is defined. 

If, in addition, / is also //-unital. this definition clearly coincides with Definition 3.21. 
This definition does not offer less restriction than Definition 3.21. The algebraic ver­

sion of qA is actually never //-unital (for instance, q\ cannot be written as finite linear 
combinations of products of elements in qA). When we complete it with a certain locally 
convex topology so that qA becomes //-unital, we have to complete / accordingly so 
that the Cuntz homomorphism qA —• 7 is defined. Such a completion usually makes 7 
//-unital already. 
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4. /-summable extensions and the bivariant Chern character—the odd case. 
Now we turn our attention to the construction of a bivariant Chern character for the 
odd dimensional Kasparov group KKl, or rather, generators of "KK{ -type" invariants. 
Given the instruction in § 3 of a Chern character for generators of KK^iA, A'), we need 
only replace A or A' by its suspension algebras IA or IAf. Then use the AX-periodicity, 
KKl(A,A') ~ KK°(LA,A') ~ #£°(A,IA'), and we get the corresponding construction. 
This is precisely the idea behind the first definition of the Chern character (Definition 4.4, 
also in [W2]). 

A natural question arises here: what is a suspension of an algebra? Just like the ques­
tion of which topological tensor product to choose (see § 0), the answer depends on what 
category of algebras we are dealing with. For a given category of algebras, the suspen­
sion may not be unique. In the category of C*-algebras, according to Kasparov (Theo­
rem 7, p. 547, [Kasp2]), Co(R)®A plays the role of IA. For other categories of locally 
convex topological algebras, primarily dense smooth subslgebras of C*-algebras, we re­
place C0(R) by its various dense subalgebras, e.g., Çg°(R), Q°(R), Q'"(R), Schwartz 
functions 5(R), just to name a few. In the category of pure algebras, one may choose 
IA = C 0 A, where C is the Karoubi-Villamayor algebra (p. 319, [Conl]), or choose 
IA = k[t] <g> A, etc. 

Due to the work of [B-D-Fl, fKasp21, we know that for C*-algebras, A, A', the Kas­
parov groups KKl(A.Af) are generated by short exact sequences: 

(4.1) 0-^A®K-+E-+A^0. 

(4.1) corresponds to a *-homomorphism (the Busby invariant [Bus]): 

(4.2) fE: A -> 0{A'®K) = M(Af®K)/ A'®K. 

Thus the (nonseparable) Calkin algebra of A, 0{A'c£>K), plays the role of a "AT-homo-
logical universal suspension algebra" of A. For dense subalgebras of A, we may replace 
9C by its dense ideals and change the minimal C*-tensor product to other appropriate 
topological tensor products. For discrete, or "pure" algebras over a field /c, replace 2£ by 
K = lim Mn(K) in (4.2). Recall that the same notation K stands for "the abstract algebra 

n 

of compact operators" in the general sense. 

PROPOSITION 4.1. Let 1 be a dense ideal in A'&K and a closed ideal in E. Any I-
summable extension E from A toA'&K, 

T4.3) 0 - > / - > £ - + A - > 0 , 

induces a Busby invariant 

fE: A -+ M(A'®K)/ A'®K. 
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PROOF. Given an 7-summable extension E from A to A'®K, there is a commuting 
diagram 

0 -> / -+ E -> A -+ 0 

1 1CT£ 1T£ 

0 - • A®K —• M(A'®K) - • O(A'(g>/0 - • 0 

Since / is a dense ideal of A0£, there is a canonical quotient map M(7) —• M(A®K). 
Thus, the homomorphism 7T/:Af(/)// —* 0(A'0A) is well defined and onto. Any /-
summable extension from A to A'&K induces r^: A —+ M(1)/1. We define rE — TE • 7T/. • 

REMARK 4.2. In the category of C*-algebras, if # = ^KSH) and 0 is the projective 
tensor product, the HC* (A 03Q = O,#*(A03O = 0 for any unitalC*-algebra A [Wod3]. 
The long exact sequences associated (since Aç*D Ĉ is #-unital) to the universal short exact 
sequence 

0 -> A03C - • M(A^^C) -> O(A0X) - • 0 

then imply that 
H C * ( M ( A 0 3 Q ) ~ HC*(O(A03Q) 

and 
H*(M(A&70) = H*(O(A<ê>70). 

This is not exactly what we want. In general, 0 is not 0 . We prefer the dense ideal / 
to A '0^0 and the lift f£ to TE. AS a consequence of this preference we need to assume 
(/, 0 ) to be //-unital, and so this will be a standing assumption throughout this section. 

Therefore the extension (4.1) defines an element ch0(r£) G H C O ( A , 0 ( / ) ) . We are 
looking for a natural transformation 3/: HC°(A, 0(1)) —• HC^A, /); then the CTiera char­
acter c h 1 ^ ) of (4.1) is 3/(ch°(T£)). The following fact is an easy extension of Theo­
rem 3.15 to the bivariant situation. 

THEOREM 4.3 (THEOREM 3.1 [KASS3]). Suppose that 0—+I-^E-+A—>0isan 
extension such that I is H-unital. Then for any algebra B there are natural long exact 
sequences 

(4.5) • HCn(B,I) —• HCn(5,£) —• HC"(£,A) - ^ HC"+1(fl,/) —>••> 

and 

(4.6) • • • —> HCn(A, B) —y HC"(£, B) —• HCn(7, B) - ^ HCn+1 (A, B) —• • • • . 

PROOF. Recall Example 2.4. There is a short-exact sequence of generalized cyclic 
complexes. 

0 - • K* -> C*(£) -+ C*(A) -+ 0, 
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which induces an exact sequence of d.g. S-modules 

(4.7) 0 -> Hom5(C*(£), K*) -+ Hom5(C*(£), C*(£)) -+ Hom5(C*(£), C*(A)) -+ 0. 

Now apply Theorem 3.20. The long exact sequence of (4.7) is (4.5). The proof of (4.6) 
is similar. • 

DEFINITION 4.4. The Chern character of the 7-summable extension (4.1 ) from A to 
A'®K is ch2m+1(r£) = Sm o chl(rE), (Proposition 2.2), m = 0 ,1,2, . . . , with chl(rE) = 
aM/)(ch°(T£)). 

We shall write 3/ = 3M(/)> V = TAf(/), etc. There is a classical concept which can 
be traced back to Cartan and Eilenberg (p. 226, [C-E]). Let A be any ring. Consider the 
category of d.g. A-modules. Let id/ G HoniA(/, I) = Ext^(7,1) be the identity map. Given 
an exact sequence 

(4. 8) 0 -» / -> Eq-i -> • E0 -> A -> 0 

of left A-modules, there is an iterated connecting homomorphism 

^:HomA(/,/)->Ext*(A,/). 

The image dq[id/] is the characteristic element of the sequence (4.8). The bivariant 
cyclic theory HC*(-, •) can be defined as the right derived functor Ext of the left exact 
functor HoniA on the category of cyclic complexes [J-K] where A = k[e] is the algebra 
of dual numbers (see the beginning of § 2). So the notion of characteristic element makes 
sense. 

DEFINITION 4.5 [KASS3]. Under the assumption of Theorem 4.3, the character 
Ch1^—+ A) of an extension (4.1) is ^(id^), (see (4.5)). 

THEOREM 4.6 (THEOREM 3.1, [KASS3]). In Theorem 4.3 

3£(idA) = -a^(id7). 

The reader may consult p. 308, XIV. 1, [C-E] for the idea of a proof. Not surprisingly, 
the two characters defined in Definition 4.4 and Definition 4.5 coincide. 

PROPOSITION 4.7. Assume that (/, 0 ) is H-unital. Then chl(jE) = Chl(E —• A). 

PROOF. Consider the commuting diagram (4.4). 
Because of the naturality, there is a morphism between the two associated long exact 

sequences: 

• HC°(A,0(/)) -?U HC^A,/) — • • . . 

K II 
y HC°(A,A) — - HC^A,/) • • • • . 

at 

Thus 3/[ch°(T£)] = 3/ o TE* O [idA] = 3^[idA]- • 
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5. Topological tensor products of LP -operator spaces. Given the results in § 3 and 
§4, an inevitable question is to decide the //-unitality of LP(H) with respect to various 
tensor products. Recall (Proposition 5 and Example of [Wodl]) that L°°(H) = %(H) 
is //-unital with respect to all tensor products and Ll(H) is //-unital with respect to the 
projective tensor product. Here it is shown that 

(a) with respect to the algebraic tensor product, LP(H) is not //-unital for all 0 < 
p < oo. 

(b) with respect to the projective tensor product, LP(H) is not //-unital for 1 < p < 
oo. 

Then we generalize the study of operator spaces and their Haagerup tensor products 
(see [E] and its references) to LP -operator spaces and Haagerup LP -tensor products 0/^ 
for all 1 < p < oo. We show that LP(H) is //-unital with respect to 0 ^ for all 1 < 
p < oo, although 0/^ is not admissible. This result is sharp because it is then shown that 
LP{H) is not //-unital with respect to any admissible tensor product. 

In this section all algebras and vector spaces are over C or R. "Unitary" is understood 
as "orthogonal" when k = R. 

Let V\ and V2 be Banach spaces. Recall [Grol that for x G V\ 0 V2, the projective 
tensor norm is 

Ml = inŒINIilNl2 

where the infimum is taken over all finite sums JC = £ a^bi. It defines the finest topology 
such that the canonical bilinear map V\ x V2 —-> V\ 0 Vi is jointly continuous. 

PROPOSITION 5.1. For 0 < p < oo, the Schatten class LP{H) is not H-unital, with 
respect to the algebraic tensor product. For 1 < p < oo, the Schatten class LP(H) is not 
H-unital even with respect to the projective tensor product. 

PROOF. For any T,S e LP(H), by the Holder-Horn inequality (p. 10, Chapter 2, 
[Gro]), one has | | r % / 2 < | | r y | S | | p . Thus the multiplication b':LP(H) 0 LP(H) -+ 
LP (FT) has its image contained in Lpl2{H). Therefore, with respect to the algebraic tensor 
product, LP{H) is not //-unital for all 0 < p < oo. 

Now consider the projective tensor product. Any element JC G LP{H)&LP(H) has 
an expression x = £/ 7/05/ such that £/1| îlUH /̂llp < °°- Thus, £/1| Z/5,|||/,/2 — 
Ei || ^lUI^'llp < °°- There are two cases: 

(a) If 2 < p < oo, then || E , - 7 i % / 2 < £/ | | 7 /S4 / 2 < oo. Again, imaged) C 
Lpl\H). 

(b) If 1 < p < 2, then 

IIE T&IU < EIITiSth < EI I^%/2 < oo. 
/ / / 

Thus, imaged) CLl(H)C LP(H). 
In both cases (a) and (b), it follows that LP(H) is not //-unital with respect to the 

proj ective tensor product 0 . • 
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Recall [E] that a vector space V is called a matricially normed space if norms are 
provided on the matrix spaces Mn(V), n G N, and for any a G MN(V) and v G M„(V), 
one has 

(5.1) | | H | <l |a | I IM| , ||va|| < | | a | | | | v | | , 

where Af„(C) is equipped with usual operator norm. For 1 < p < oo, if in addition 

(5.2) live HI ^OMK + IMK)1^ 

for any v G Mn(V) and w G M„(W), then V is called an LP-matrically normed space. 
When /? = oo, (5.2) is replaced by its limit, 

(5.3) | | v0 HI <max(| |v| | , | |H|). 

A linear subspace of B(H) is called a (matricial) operator space. Analogously, we 
shall call a linear subspace of If (H) a (matricial) LP-operator space, for 1 < p < oo. 
We always identify L°°(//) with £(#). Let Mn(B(HJ) act on / / 0 • • • © H (n-times). Then 
in an obvious way //-operator spaces are LP -matricially normed spaces. Ruan has shown 
that any L°°-matricially normed space is completely isometric to an operator space [R]. It 
is very probable that the same statement holds for all 1 < p < oo, i.e., an Z/-matricially 
normed space is completely isometric to an //-operator space. 

The Haagerup tensor product for operator spaces is introduced by Effros and Kishi-
moto ([E-K], [E]). Now we extend naturally their definition to all //-operator spaces. Let 
V\,..., Vm be //-operator spaces. Let v, G Mn.„i+1 ( V,-), / = 1, . . . , n— 1, with ni ~ nm~ n. 
Following Effros, we denote vi 0 • • • 0 vm in Mn(V\ 0 • • • 0 Vm) by 

(5.4) ( v i 0 - 0 v f f l ) ( i , / ) = E V!(/,Â:)0v2(/:,£)0...0ym(r,7). 
k,l,...,r 

DEFINITION 5.2. Let V\,..., Vm be L^-operator spaces, 1 <p<oo.lfye Mn( V\ 0 
• • • 0 Vm), then the (weak) Haagerup L^-tensor norm || \\hP is defined by 

(5.5) IbH^, = inf{X) II vu-||2p - • • IIvmy||2p : y = Z) vv © . - - © v^-}. 

where v,y G Mni„.+1(V/), w, varies, but n\ — nm — n. 
The strong Haagerup LP-tensor norm \\ \\shp is also obtained from (5.5) after replacing 

all || 112p by || \\p. We introduce j| H^ only for comparison. 
When taking || ||p of a rectangular matrix, we add appropriate rows or columns of 

zeros to make it a square matrix and use the matricial norm. 
Clearly both || \\hp and || | | ^ are seminorms. When p = oo, the two coincide and 

reduce to the usual Haagerup norm || \\h for operator spaces of fE-K]. Since || H^̂  > 
II \\hp > || ||/i9 both seminorms have zero kernel and are actually Banach norms. The 
completed tensor products with the corresponding norms are called the ( weak) Haagerup 
LP-tensor product and the strong Haagerup LP -tensor product, denoted by 0/jp and 0 ^ , 
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respectively. It is easly to see that the projective tensor norm || ||, is at least || \\SHP. Thus 

the canonical multilinear map from V\ x • • • x Vm into LP <g)hp • • • ®hp LP (m-times) and 

LP ®shP ' ' ' ®shp Lp (m-times) are jointly continuous. 

In general, for S, T G LP {H), if 1 < p < oo, then 

||S<s> r||^ < ||ssr*||^2||7*y||^2 < HSIUH^IU = ||S<s> r||^. 

so || \\siip is a cross-norm and || \\hp is not. 

When m = 2, the definition (5.5) can be simplified. 

PROPOSITION 5.3. Let Vh V2 be Lp-operator spaces. Let y G Mn(V\ <g> V2), and 

(5-6) lb l l^ = mf{||vi| |2p||v2 | |2p:y = v i © v i } , 

where v\ G Mrhk(V\) and v2 G M^n(V2). Then 

(a) || \\'h is a submultiplicative norm; 

(b) \\y\\'hp = \\y\W-

PROOF, (a) We shall verify the two inequalities 

(5.7) Ih+^lli^lbill^ + INlip 

and if both Vj and V? are algebras, 

(5.8) l b U 2 | | ^ < | b i | | ^ | | v 2 | | ^ 

To check (5.7), let y, = ut © v/, ut G MnMi(V\), vt G Mnhn(V2), i = 1,2, be such that 

I N I ^ > ||M,-||2p||v/||2P-e, i = 1,2. 

We may rescale w; and v* so that || Ui\\2p = \\ V(\\2p, i = 1,2. Since y\ +y2 — (u\,u2) © 

Ibl +y2\\hp = ||(Wl,"2)||2/i|| f M||2/7 < H WiW* H- M2"2llp II V1V1 + v2V2||p/2 

1 

< ~( | |MIM] 1 + M2MÎ||P + | |VÎVI + V 2 V 2 | | P ) 

1 1 
< 2 ( l l W l M î l l p + l l V î V l | l p ) + 2 ( l l M 2 M 2 | | ^ + | | v ^ V 2 | | p ) 

To verifv (5.8), it is enough to check that, in Mn(L
p(HJ), 

(5.9) || WiW2W2W*IU < HMlMllWlM2W2ll/>-

Applying Theorem 2.7 of [Sim], we have 

( 5 . i o ) i imi i2 i i ; i i î l ip<l l"i i l i i l"2M;i ip . 
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Since 
^i Ijoo ^ l| M\ Up, the inequality (5.9) follows. 

(b) It is enough to check that 
(5.H) \\y\\HP>\\y\\f

hr 

Write y = £ ï Uj 0 v,- with 

n 

\\y\\hp>T,\\uj\\2p\\vj\\2p-e-
1 

aince 
n n 

T^hjhphjhp >T,\\uj ^ vj\\hp 
i i 

>lle"y0v;||^=||y||^, (by (a)) 
1 

the inequality (5.11 ) is immediate. • 

PROPOSITION 5.4. The acyclic Hochschild boundary b'\ LP{H) ®shp LP{H) —> LP{H) 
is a contraction, with the image contained in LP I2{H) ifp > 2 and in U (//) if I < p < 2. 

PROOF. We may assume that 

X = Y,SV ® *ij = E S * © Ti" 

where 
Si = foi,...,5|„.), r, = fei,..., tini)

T. 

Then, if/? > 2, 

ll*'wil„/2 = I I E f e ^ k / 2 < E I I ^ 4 / 2 <ZWSiïïpimip < oo. 

Similarly, if 1 < p < 2, then 

IÎ Wlll < E I T r ( ^ ) | <EHS/Il2||^l|2< 00. 
/ S 

Write Lp(H)^n = IT(H) ®hp • • • ®hp L
P(H) («-times). 

THEOREM 5.5. Let n > 1. The linear map 

bn Lp(H)®hp{n+l) -+ Lp(Hfh?\ i = 1, . . . , n, 

defined by multiplying the i-th tensor factor to the (i + \)-st factor is well defined, onto 
and completely contractive. With respect to the Haagerup LP-tensor product, LP(H) is 
H-unit ah 

PROOF. Let y G Mn(L
p{H)®m) and \\y\\whp < 1. Then y = £,• vy 0 v2/ 0 • • • © vmj 

with £/ \\vXj\\2p • • • ||vmj\\lp < 1. Since bt{y) G Mn{Lp(H)^n'^) with 

IIbi(y)\\hp < Y, II viy-||2p * ' • II vz/Vi+ulta ' * ' II Vm/H 

<Ellvull2p--'llv(/ll2p||v/+ll/||2p---|lv;m/|| < 1, 
7 
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we see that b[ is completely contractive. 
To show that [11(H), ®hp) is //-imitai, we use Wodzicki's criterion (Proposition3.1.2). 

There is a linear splitting T of the multiplication \i 

(5.12) Moo(C)0Moo(C)^=?Moo(C). 
r 

If we write e$ — (e?.-)ei< then 

ij 7 ij 

We claim that T is a Moo(C)-bimodule map, i.e., for any P, Q,x G Moo(C), one has 
T(PxQ) = PT(x)Q. Let P = (ptj\ Q = (^) , and x = (xy). Then 

Peij = 12pki^kj, eijQ = YsQikeik 
k k 

for all i>j> 1. Thus 

(5.13) TiPetj) = Y.Pktnekj) = J>*«*i ® <?i/ = (P^/i) ® ey = PT(^-) 
A; * 

and 

(5.14) r(é?iyQ) = Y,qjkT(eik) = X)«/*^i ® *i* = ft«'i ® K G ) = ( r^)G-
A: A; 

So 

(5.15) r(P*g) E ^ n ^ y G ) = FT(x)Q. 

By definition, ||x||p = (EMnC*)̂ ) ^ f° r any •* € £p(#) with canonical expansion 
* = EM«W(0n,-)V;n» where {(/>«} and {i/>n} are orthonormal families and n\(x) > 
M2 W > • • • > 0. For any unitary operators P and G- one has 

So 

(5.16) \\PxQ\\p=\\x\\p. 

Let y G / / ( / / ) ®hP LP(H) and P, g G £(//). From (5.6) one may assume that y = uQv 
with ||yH^ > ||w||2/7|| v||2p — £. By (5.10) one has 

I I^Gl l^<l l^ -"Vl lp / 2 | |G*v*ve | |p / 2 

<l|P||oo||G!|oo||^1|p/2||v*vi|p/2 

^H^IloollÔlIoodblk + e). 
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Thus 

(5.17) \\PyQ\\hp<\\P\\oo\\Q\\oo\\y\\hP. 
Any x G M^C ) has form x = PAQ, with P, A, Q G M ^ C ), where A = £ A,<?„ is 

diagonal with A, > 0, \\P\\oo < 1, ||Ô||OO < 1- Notice that 

ïïwhp = ii £ vv.1 ® vvi/ii^p < ii E vu1" = IIAIU 
From (5.15), (5.16) and (5.17), 

| |rW||„ = \\PT(A)Q\\hp < ||r(A)|| < HAH, = \\x\\p. 

Thus T is a contraction. • 

REMARK 5.6. All the Haagerup //-tensor products 0 ^ , for 1 < p < oo are non-
symmetric, i.e., the flip map A (g> B —+ B ® A is unbounded with respect to the norm 
|| \\hP. Thus ®hp is not admissible. Is there any admissible topological tensor product (g) 
such that (lJ(H), ®) is #-unital for 1 < p < oo? The answer is "No". In a certain 
sense Theorem 5.5 provides the best possible result. Any tensor product making LP{H) 
//-unital has to be non-symmetric. 

To see this, let || ||_ be a tensor norm on LP(H) ® LP{H) and let <g> be the complete 

tensor product such that the multiplication 

b':Lp(H)®Lp(H)-+Lp(H) 

is bounded and onto. 
Note that H is self-dual, and recall Grothendieck's formulation of LP(H) as the corn­

er 
plete tensor product H <g> H (see Chapter 2, [Gro]). Thus 

LP(H)®LP(H) = Hx ® H2)®(H3 <g> H4). 

where all Ht = H. 
Observe that (a) For fixed £i G H\ and £4 G H4, \\ ||_ assigns a tensor topology on 

Hi 0 H3 which is no coarser than the projective topology, because the multiplication U 
corresponds to taking the trace on Hi^Hv, 

(b) for fixed £2 G H2 and £3 E//3, || ||_ assigns a tensor topology on H\ 0 H4 which 

must be strictly coarser then the projective topology, because LP(H)®LP(H) is strictly 
"larger" than LP(H)®LP(H). In fact, b'(Lp(H)®Lp(H)) is a proper subspace of LP(H) 
(Proposition 5.1). 

Comparing (a) and (b), one concludes that the flip map induced by 

(Ci ® 6) ® (6 ® £4) ^ (6 ® $4) ® (€1 ® 6 ) 
is unbounded with respect to |j |j_. 

If one denotes Aop the algebra A with the reversed multiplication, then the reversed 
flip map A ®hp B —» #op ®^ Aop is an isometry. This is possible because the reversed flip 
map 

(£i ® 6) ® (6 ® U) ^ (U ® 6) ® (6 ® 6) 
is an isometry. 
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6. Applications and examples. 
EXAMPLE 6.1. Let us derive the Hood-Jones formula for the normalized complex 

(p. 380 [H-J]) in the context of §3. It follows as a special case of Theorem lfWl] 
(see Theorem 3.9). This observation was pointed out in Example 1 [Wl]. Let A = L 
any scalar field. Then the unitalization Â can be identified with the polynomial algebra 
k[x] with*2 = x. The inclusion A —• Â is given by 1(1) = x. Clearly A 0 (A/ k)n = 
{(a + f3x) 0 x*1 | a , f3 G k}. An easy calculation shows that 

*U®(Â/it)-=o i f w i s odd. 

while 

2 n - l 
b(a+(3x)®x®2n = 2(a+p)x®x®2n + £ (-!)*(<* + (3x) ®x®2n~l 

(6.1) k=\ 
l 

Similarly 

= ((2a+(3)x-a)®x®2n 

B \Â®(ÂIky2n~v= 0> n= 1,2,... 

while 

(6.2) B(a + /?JC) 0 x02n = (2n + 1)0 ® JC0(2"+1). 

Let 7<-n)(l) = (a2w + ^2n )̂ ® *®2n, n = 0 , 1 , . . . . Obviously, /<0>(1) = JC. The condition 
that [bj(-n)] + [BJ(-n+l)] = 0 is reduced to fc/*"^ + Bfi-n+l) = 0. Thus, (6.1) and (6.2) 
yield 

f 2a2« + b2n = 0 
}a2« = ( 2 « - l)^2(n-i> w = 1,2,... 

so a2„ = (-2)(n-1}(2« - l)(2n - 3) 3 - 1 = (-2)(n-1}(2« - 1)!!, and fc2/i = 
(-2)"(2/i-l)!!.Thus, 

(6.3) fi-n\\) = (-2)(n-l\2n - l)!l(l®x®2n-2x®2n+l). 

Assume that a(l) = e € Af <g> K and â = 0. We get the Hood-Jones formula 

(6.4) cho(e) = R(a* - â#)(l) = e + X)(-2)(n_1)(2n - 1)!! (1 0 e®2n - 2é?®2w+I). 

Note that there is a sign difference with [H-J]. 

EXAMPLE 6.2. (Hood-Jones forumula for the unnormalized complexes). In Propo­
sition 3.6, again let A — k and A = k[x]. As in Example 6.1, we get an embedding 
7 = (p\fl-l\0,...) such that p\\®(n+») = x®

(n+l) while the degree 2 map T*"1* = 
(1 — t)ssN gives 

5) jr-i)Q®(«+ik _ I (n + 1)0 0 x® (ft S^ f\ — i)(iQ9{n+i)\___ i \n T l jyi vy JI — X 0 1 ) i f tl C V e n , 

if n odd. 
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REMARK6.3. To compare with the Hood-Jones formula for the normalized complex, 
we compute the decomposition /# = (/(0), /c_1),...) of the map f: B*(k)nOTm —• B*(k). As 
in Example 6.1, we get 

id, n even, n ^ 0 
0. n odd 

and 
i f 2(n+ 1), «even 
"^ 10. ?! odd 

Thus the condition bi(~n) + BiK~n+l) = 0 implies 

(6.6) i (-n \ l ) = (-2)"(2n-l)!!l® ( 2 w + 1 \ n = 1,2,... . 

Let 7r#: 5(A) —+ 5(Â)norm be the quotient map, so that 7r# = (7r(0), 0,...) where 7r(()): 
Â0n+1 —• A ® (A/ A:)0" is just the projection. Then the relation between the normalized 
and unnormalized Hood-Jones formula is 

/<-») = 7r<0) o F» o i<-»> + 7r(0) o f-1) o ,'<-"+1>. 

From (6.5) and (6.6) we get 

7<-">(l) = ( -2 ) n (2n- 1)!!JC®2W+1 + ( - 2 ) n - 1 ( 2 n - 1)!! \®2n. 

This is iust (6.3). 

EXAMPLE 6.3. The definition of bivariant Chern character for the algebraic bivari­
ant ^-theory ([Kass3]), [Kass4]) can be viewed as a special case of that of the Chern 
character for 1-summable quasihomomorphisms construced in [Wl]. 

Recall the definition of algebraic bivariant ^-theory K(A, A') [Kass3]. Let A and A1 

be two unital algebras over k. Let Rep(A, B) be the category of A-B-bimodules which are 
finitely generated as a ^-module. Then K(A,A') is the Grothendieck group of the exact 
category Rep(A, B). 

Let P G Rep(A,A')- The A action on P defines an algebra homomorphism <f> : A —• 
EndA'(^)- Since P is a finitely generated projective A'-module, there is an embedding 
e\ End^/(P) —• Mr(B) as a choice of a projection from A,r —> P. The 0-cycle ch(P, e) 
(Definition 2.1 [Kass 3]) in Hom5(C. . (A), C. . {A')) is defined by 

ch(P,e) = Tr#oé?#o<î>*. 

In Theorem 2.2 [Kass3], it is shown that the class ch(P) in HC°(A, A') of ch(P, e) is 
independent of e and only depends on the isomorphism class of P. ch(P) is then defined 
as the Chern character of the module P. 

If weassociatedtoPaquasihomomorphism/zfromAtoA^ATby h — ( a , â ) , â = 0, 
a = e o O, then the Chern character ch°(/i) constructed in Corollary 3.9 is ch(P) defined 
above. 
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THEOREM 6.4. When A — k, the bivariant Chern character constructed in Theo­
rem 3.8 and Corollary 3.9 is reduced to the Chern character from KQ{A') to HC^A') as 
defined in [H-J]. 

PROOF. Example 6.1 above or Example 1 in [Wl]. • 

REMARK 6.5. Let h = (a, â) : k =t A1 ® K be an quasihomomorphism. Then the 
algebra homomorphisms a and â are determined by the two projections e = a (I) and 
ë = â ( l ) . Example 6.3 shows that the Chern character ch°(/z) is uniquely determined by 
the formula 

oo 

ch°(/0(l) =(e-ë) + "£(-l)n-\2n - 1)!! [1 ® {e®2n - e^2n) - 2(e®2n+l - e^2n+x)} 

for the normalized complex Homs(B(k)norm, B(A 0 AT)norm)-

REMARK 6.6. For geometers who are used to defining the Chern character of vector 
bundles in terms of connections and curvatures, some explanation may be helpful. This 
would supply some intuition lost in the algebraic construction of the bivariant Chern char-

[ 0 P 
[Q 0 . 

[<t>\(a) 0 

acter. Let (\<\>, F = MA1), be a Kasparov generator (p. 533, [Kasp2]) defining 

an element in KK^iA^A'), where <j>(a) = is a degree zero homomor-0 fcia) J 
phism of A into L(HA>), HA> — H\, 0 HA, is a Z2-graded Hilbert A'-module satisfying 
[(f) (a), F\, (F2 — \)4> (a), (F— F*)(j) (a) all in %{HAi), the algebra of compact operator on 

We may assume that F is normalized so that Q = P~l. To define the Chern character 
on the K-theory K°(M) of a compact manifold M, let [E+] — [E~] be a virtual bundle 
over M. Then A' = C(M), A = C. The Hilbert C(M)-module HA> is the space of cross 
sections of a bundle (perhaps trivial) in which E* 0 ET is embedded, and operator F 
plays the role of a connection. Since the image of 1 G A under <j> in L{HA>) has to be 

a pair of projections e = on recalling Connes' quantization of differential 
calculus ([Conl], p. 265), in which de = i[F,e], the operator edede is the quantized 
curvature form. Under the formulation of KK in terms of Cuntz's quasihomomorphisms, 
the virtual bundle [E*] — [E~] defines a homomorphism h — (a,â):qC —• A! <g> K by 
a ( l ) = e+, â ( l ) = Pe~P~x and/z(<7l) = (a — â)(l) (see Proposition 1.2 for the general 
case). The "curvature" eded^ is equal to (e, e, e) as a chain in cyclic homology. 

REMARK 6.7. As an extremely interesting example of applications, we note that the 
explicit formula of bivariant Chern character in Corollary 3.9 may be applied to Dirac 
operators along smooth flows to get a possible bivariant proof of the important results 
of Elliott-Natsume-Nest [E-N-N] and (the 51-bundle case) of Douglas-Hurder-Kaminker 
[D-H-K]. Since the torsion part in the universal coefficient theorem of the bivariant cyclic 
theory usually does not vanish, the bivariant Chern character of the Dirac fields should 
yield more information, possibly about secondary invariants. 
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