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Abstract

The problem of passing from an Lx function to a Wiener-Hopf factorization is
considered. It is shown that a small /.„, perturbation which does not change the
factorization indices will lead to small Lp (1 < p < oo) perturbations in the Wiener-Hopf
factors, but can lead to large L^ perturbations, unless the derivatives are controlled
during the perturbation.

1. Introduction

The technique of Wiener-Hopf factorization, which will be defined in Section 3,
has a wide variety of applications. These include the classical applications to the
prediction theory of stochastic processes [12, 14, 15] and the solution of integral
and convolution equations [7, 9]. When applied to non-negative Hermitian matrix
functions the technique is termed spectral factorization because of its long
association with stochastic theory [12, 15], but also has other applications
including the solution of linear quadratic control problems [3]. Another sub-class
of Wiener-Hopf factorization is canonical factorization, which includes spectral
factorization. This technique has been applied to the determination of system
stability via passivity theory [5]. More recently, the general Wiener-Hopf factori-
zation technique has been applied to the identification of errors-in-variables
models [10].

A question which naturally arises is the extent to which the operation of
Wiener-Hopf factorization is continuous. It is known that if a matrix function A
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has a canonical factorization and another function B is close, in Lx norm, to A,
then the factors of A and B will be close in Lp norm, 1 < p < oo [1,2, 1].
However in many applications, particularly in control system theory, it is the Lx

norm which is most important [6]. It is therefore desirable to know conditions
which will ensure that the operation of Wiener-Hopf factorization is continuous
in Z-oo norm. This question has been tackled for the special case of spectral
factorization in [1], where it is shown that the derivatives of the matrices to be
factored must be bounded in L2 norm. Moreover an example shows that the
factors may be very far apart in LM norm when the derivative condition is not
satisfied.

It is the aim of this paper to extend these results first to canonical factorization
in Section 3 and then to general Wiener-Hopf factorization in Section 4. Further
motivation for the results in terms of their application significance will also be
given. Section 2 will contain definitions of the various norms and spaces which
will be used.

2. Spaces, norms and notation

Denote by C"x" the space of complex n X n matrices and any induced norm
on C"x" by | • |. A matrix function on the unit circle is a Lebesgue measurable
mapping M from [O,2TT] to C"x", taking a e [0,2ir] to M(eJa) e CnX". We
define the spaces Lp, 1 < p < oo of matrix functions as follows: For 1 s£ p < oo,
let

(2.1a)

\\M\\X = esssup \M(eJu) | (2.1b)

Lp is the space of matrix functions whose corresponding norm is finite, i.e.
M e Lp if and only if \\M\\p < oo. The Lp spaces are Banach spaces, and L2 is a
Hilbert space. Moreover Lj c L, for / <j and for M e Lp, 1 < p < oo we can
write the Fourier series, convergent in || • \\p

M{eJ")= £ Mke
Jwk (2.2)

k—oo

where Mk e C"Xn

The space C denotes the space of continuous matrix functions. The Wiener
algebra W of matrix functions consists of matrix functions of the form (2.2) for
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which

II A/1|= E \Mk\ (2.3)
* 00

is finite. W is an algebra under multiplication of matrix functions. It is easy to
verify that W c C c Lx.

For any matrix function M of the form (2.2), define the projection operator P+

by

P+(M)(e'a) = t Mke
j"k (2.4a)

k = 0

and the projection P _ by

P_=I-P+ (2.4b)

If Q is a linear operator on a Banach space (B, \\ • \\B), then the norm of Q,
denoted \\Q\\ is defined by

Hell = sup i ^ (2.5)
\\X\

We shall use the fact later that P+, P_ are bounded linear operators on W and
on Lp, 1 < p < oo [2, 7].

Let S be any of the spaces Lp,W,C and define S+ (resp. S~) to be the image
space of P+ (resp. P_) acting on S. Also define GS, GS+, GS~ to be the group
of elements in S, S+, S~© / which have inverses, i.e. M e GS (GS+, GS~) if M
and M"1 are in S (5+ , S~® I). The classic theorem of [13] states that if M e S,
then M e GS if and only if det M(eJ") ± 0 for all u. Furthermore, if M e S+

(resp. S~) we can regard it as the evaluation on \z\ = 1 of a matrix function of z
which is analytic in and continuous up to the boundary of \z\ < 1 (resp.
\z\ > 1 U oo), and then M e S+ (resp. S~) is in GS+ (resp. G5~) if and only if
det Af(z) =£ 0, |z| < 1 (resp. \z\ > 1 U oo).

3. Continuity of canonical factorization

In this section we first briefly review canonical factorization, the material being
taken from [5], [7] and [9], and then present two continuity results.

A matrix function M e GW is said to admit a (left) canonical factorization in
case

M = M+M_, (3.1)

where M±&GW± and M_(oo) = /.
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Define the following linear operators:

(3.2a)

(3.2b)

(3.2c)

(3.2d)

THEOREM A. A matrix function M e GW admits a left canonical factorization if
and only if the operators TM, RM are invertible on GW. In this case TM, RM are
also invertible and the canonical factors M ± are given by

t (3.3a)

(3.3b)

(3.3c)

(3.3d)

where I is the identity matrix function.

Note that the operators used in [1, 5] are X - P+(XZ), X - P_(ZX) with
M = I — Z. These operators are entirely equivalent to TM, RM.

We can more generally, and more conveniently from a continuity point of view,
consider what is called generalized canonical factorization [4], or factorization in
L . We enlarge the space of matrix functions M which can be factored from GW
to GL^, and correspondingly enlarge the space in which the factors he from
GW± to Af+e L+, AT^e L+, A/_£ L~, MZl_<= L~, where p'1 + q~l = 1
and 1 < p < oo.

THEOREM B. A matrix function M e GL^ admits a generalized canonical
factorization M — M+M_ in Lp if and only if TM, RM are invertible on Lp, Lq and
then equations (3.3) hold. If M e GC admits a canonical factorization in Lp for
some p, 1 < p < oo, it admits a canonical factorization in Lr, for all 1 < r < oo.
That is, (M ± ) ** e Lr for all I < r < oo.

In light of Theorems A and B we need to examine the continuity of the
operators TM, RM, fM, RM.

THEOREM 3.1. Let M e GLX admit a canonical factorization in Lp for some
1 < p < oo. Then for any e > 0 there exist a 8 > 0 such that \\M - JV^ < 8
implies N has a canonical factorization in Lp and

\\M+- N+ ||? < e, \\Mll - N-J\\q < e, (3.4a)
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|| M;1 - TV;11, < e, \\M_-N_ ||, < e, (3.4b)

where p'1 + q'1 = 1.

This theorem is known [4], but we will give the proof to note some facts about the
operators T, R which will be useful later.

LEMMA 3.1. Let 7\ be an invertible operator and ||7\ - T2\\ < WT^W'1. Then T2

is invertible and

In particular, if ||7\ - T2\\ < Q.\\T{1\\)-1 then

I I T - 1 — T- 1 ! ! <- *>\\T-1\\2\\T — T I!iMl •'2 || < l\\1l || ll-'l V2ll-

PROOF. The result is standard; see, for example, [8].

LEMMA 3.2. Let M, N e GZ^ and 1 <p < oo. Then \\TM - TN\\
# II,. P m - ^JVII < ^ 2 I I ^ - ^ I L . and provided \\M - N\\M is sufficiently small,
\\tM - tN\\ < K3\\M - N\\M, \\RM - RN\\ < K,\\M - N\\x, where K,, i =
1 , . . . , 4 are constants, and \\ • || denotes the operator norm induced by Lp or Lq as
appropriate.

PROOF. We give the proof for T, f as the argument for R, R is almost
identical.

\\TM(X) - TN(X)\\p = \\P+(XM- XN)\\p\\p \\P+(XM XN)\\p

<\\P+UX(M-N)\\ \p

Just set Kl = | |P+| | and recall A\ < oo as P+ is bounded on Lp.

\\tM(X) - tN(X)\\p =|i>+

provided ||M — iVy^ is sufficiently small.

PROOF OF THEOREM 3.1. We give details only for \\Mzl- N~_}\\, the others
following almost identical arguments. Fix e > 0. By Lemma 3.1, RN is invertible
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provided \\RM - RN\\ < H^MII"1- Note RM is invertible by Theorem B. By (3.3).

\\M-J- N1% = \\R

}} - R-j\\\\nq

- RN\\ | | / 1 | , for \\RM -

So choose

II » - l l
* " " 2 | | " A / || II * \\q \ \\KM\

For M+, N_, Af;1 we get similarly 82, 83, 84 and set 8 < m i n ^ , 82, 83, S4).

From a control systems viewpoint, Theorem 3.1 is of limited value. Consider,
for example, the problem of controller design using linear-quadratic-gaussian-
methods [3]. There is given the transfer-function matrix of a plant, and from this
one calculates a controller transfer-function matrix. The controller is imple-
mented, perhaps on a computer, and connected to the plant. Among the various
requirements on the interconnected (closed loop) system is stability (freedom
from unbounded signals). The calculation procedure leading to the controller uses
two spectral factorizations, the "spectra" being determined by the plant transfer
matrix. However, the transfer function is never known exactly, since it is only in
some way an approximation to the physical plant. It follows that the controller
can be in error.

The stability requirement for the plant-controller interconnection is one which,
at least in the scalar case (i.e. l x l case) has a graphical interpretation. One
defines from the plant and controller a loop-gain transfer function and studies,
for the purpose of assessing stability, the number of encirclements of the point -1
in the complex plane of the graph of this transfer function, viewed as a mapping
from the unit circle to the complex plane. If the overall mapping from plant to
loop gain transfer function is such that a small Lx variation in the plant can lead
to a small Lp, p ¥= oo, variation in the loop gain (but sizeable t w variation), then
a small perturbation in the plant can change a stable situation to an unstable one,
through a change in the number of encirclements of the -1 point. Because the
loop gain in part depends on two spectral factorizations, Theorem 3.1 leaves open
this possibility.

This motivates the study of Lx continuity, which is the subject of Theorem 3.2.
The example of [1] however shows that Theorem 3.1 is tight. That is, one cannot
extend to the case p = oo without assumptions on M and N in addition to those
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imposed in Theorem 3.1. The condition we impose is absolute continuity, or
equivalently that M and N are indefinite integrals (see e.g. [11]).

Let Sa be the "phase shift by a" operator on the space of matrix functions.
That is, if M is a matrix function,

(SaM)(eJa) = M{ej(u+a)). (3.5)

Now let dM be the matrix function defined by the pointwise limit, where it
exists;

" W " " ) ~ M ( g J " ) . (3.6)

If M is absolutely continuous, then dM exists everywhere, is in L1 and the
fundamental theorem of calculus holds [11].

THEOREM 3.2. Let M e GC c GLX and suppose M has a canonical factorization
in Lp, 1 < p < oo. Further suppose M is absolutely continuous and dM e Lr, for
some r > 1. Then for any e > 0 and any K < oo, there exists a 8 = 8(K, e, M) > 0
such that N e Lx and absolutely continuous, \\M — NW^ < 8, dN e Lr and
\\dM - dN\\r < Kimply M±, N±, M~±\ N^<E GC. Furthermore

| |M ± - iV ± | | 0 0 <e , | |A/ ; 1 - iV-1 | | o o<e. (3.7)

The appendix contains a straightforward proof for the scalar spectral factoriza-
tion case (i.e. M scalar and positive definite). Before proceeding to the more
"modern" and independent proof of the full result, we derive a result about the
differentiability of the factors M ±, N± which we will use in the proof.

LEMMA 3.3. Let A e GC admit a canonical factorization in Lp, 1 < p < oo and
suppose dA e Lr, r > 1. Then

dA + , dA-}, dA-}, dA_& Lr. (3.8)

Furthermore

dA}= -T;'P+{A-}dA) (3.9a)

dA~}= -RJP _{dAA-}) (3.9b)

dA+=-fA-lP+{dA-lA + ) (3.9c)

dL4_= -RA
lP_(A _dA-x) (3.9d)

PROOF. The four cases are almost identical, so we give the argument only for
A'}, i.e. for (3.9a).
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Note that (3.8) follows from (3.9), since by minor variation on Holder's
inequality A~+dA e L,, 1 < / < r, provided dA e Lr and A +1 e Lp, where p =
rt(r - t)'1. By Theorem B, A'+ e Lp, for all 1 < p < oo, P + is bounded on L,
and 7^ is invertible on Lr Thus, with dA +1 given by (3.9a), dL4 +1 e L, for any

p,

7^ is invertible on L Thus w
1 < t < r. However, this implies A +1 e Lx. Repeating the above argument allow-
ing p = oo gives dA +1 e Lr. We now prove (3.9a).

By Theorem B, TA(A'}) = /. Also, since &„ is a rigid rotation of the unit
circle,

Subtracting and using (3.2a) we obtain, after a trivial manipulation

P+[(SA«A+1-A+1)S*uA] + P4sAaA-+
1-A-+

1] = -P+lA'XS

or equivalently

( T ^ ) ^ ; 1 - ^ ; 1 ] = -P+[A-+
l(shuA -A)].

Hence

S A ~A~ i

provided Ts A is invertible. However, by Lemma 3.1 we know that for \\TS A —
TA\\ sufficiently small, TS^A is invertible, and

) --1 I
Now by Lemma 3.2, 117^ - TA\\ < C\\SAuA - A\\x -* 0 as Aw -> 0 by the
continuity of A (recall A ^GC). Thus I|(7V. ,YX - (T4Y

l\\ -> 0 as Aw -» 0, and
letting Aw -» 0 in (3.10) we obtain (3.9a).

REMARKS.

1. If A~+ is differentiable, we can obtain (3.9a) by differentiating the equation
TA(A~+) = I. The main task of the proof is to show A~+ is differentiable. This
amounts to showing IK^^)" 1 - T^1!! -» 0 as Aw -» 0.

2. The restriction r > 1, rather than r > 1, is because P + is not bounded on
Lx, and 7^ is not invertible on Lv

PROOF OF THEOREM 3.2. By Theorem 3.1, we know that for S sufficiently small,
iV has a generalized canonical factorization in Lp, for all 1 < p < oo. Applying
Lemma 3.3 to M and N we find that their canonical factors are in GL^ (indeed
GC).
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Again, the argument is almost identical for M+) M_, etc., so we give the details
only for | |M;J - N ^ .

Let W = M+1 - N+\ By the equivalence of norms on C"Xn, there are constants
Kv K2 such that

(\/K2)\.x[w{eJu)W{eJU)*] ^\W(eJ")f *s KY tT[w(eJU)W(eJU)*]. (3.11)

Hence

\W(eJU)\2 < K1 \r[w{eja)W{ej")*}

< #! t r j " -^[w(ejr)W(eJry] dr + KY tr W((ej8)Wej9)*,

since W is absolutely continuous. Now let / e (1, r) and p'1 = 1 — t~l. Choose
0 such that

tr [w{e^)W(e^Y} < K2\W{eJ
e)\2 < K2\\W\\2

p.

It is trivial to verify by contradiction that such a 6 exists. Hence we obtain

\2\W(eJu)\2 < Kxj
U it\(dW(ejT)Wejr)*] dr

^y) dr + K&Wwf,. (3.12)

Now dW, dW* e Lr, hence G L, and W e L^, V^ > 1, so by Holder's in-
equality applied to (3.12) we obtain, with p~l = 1 — t'1,

\W{ej")\2 < 2J Y'

+ KlK2\\W\\2
p

D (3.13)

Provided ||</W||, is bounded, the result will follow from Theorem 3.1 by choosing
8 such that \\W\\p is small enough to make the right hand side of (3.13) less than
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e. The boundedness of ||</W||, follows from Lemma 3.2 as follows:

\\TjP+(M?dM) I + \\T^P+{N-+
ldN) I

I M I \\P+ II1 M&M||, + | |T^ | | | |P+ || \\NlW\l
I! TJ 11! p+1! I M:1 y | </M IL +1 r,;1 || II P , II || AT 71 |M| dN \\r,

< C,
by Theorem 3.1. Note C depends on HM;1^, HM;1 - A ;̂1!!, (bounded by
Theorem 3.1), \\dM\\, and \\dM - dN\\r (< K by hypothesis).

REMARKS.

1. The Theorem does not impose a smallness assumption on ||^M - dN\\r.
That is, K is not dependent on e. Naturally a smaller K will lead to a more
generous 8. In other words, for a given e, S(e, ^T) is a decreasing function of K.

2. If M, TV are positive definite Hermitian, it is easy to show [9] that M+= M*,
and then Theorems 3.1 and 3.2 specialize to the corresponding spectral factoriza-
tion results in [1].

3. Any rational matrix function with no poles on the unit circle is absolutely
continuous on the unit circle and has Lr derivatives for all 1 < r < oo.

4. Continuity of Wiener-Hopf factorization
In this section we generalize, as far as is possible, Theorem 3.2 to Wiener-Hopf

(W-H) factorization. We first however, review briefly this factorization and note
some properties which will limit the generalization. The review material comes
from [4, 9].

A matrix function M e GW is said to admit a (left) Wiener-Hopf (W-H)
factorization in case

M = M+DM_, (4.1)

where M ± e GW±, M_(oo) = / and either

k, > kk+l, (4.2a)

with | z + | < 1, \z_\ > 1 arbitrary and kt integers, called the partial indices of M,
or

\ / = 1, . . . ,H), (4.2b)

in which case the factorization is called standard.
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1111 Continuity of Wiener-Hopf factorization 453

THEOREM D. Every M e GW admits a W-H factorization, and the partial
indices are unique.

We can also discuss generalized W-H factorization in Lp of matrix functions in
GLX or GC, where D is as in (4.2) and M± satisfy the same conditions as for
canonical factorization in Lp.

THEOREM E. Every M e GC admits a generalized W-H factorization in Lp for
every 1 < p < oo.

A matrix function M £ GC will be said to have stable indices if there is a
8 > 0 such that for any N e GC satisfying \\M - N\\x < 8, M and N have the
same partial indices.

The major difficulty in extending the theorems of Section 3 to W-H factoriza-
tion in Lp is the following result [4, 9].

Let Sn denote the set of ordered sequences {k,} of n integers with kt > ki+1,
/ = 1,..., n. Suppose {&,} and {k't} £ Sn. Define a partial order > by

{kt)> {k[} if t f e ; > E * ; , « = l B - 1 (4.3a)
j=l 7 = 1

and

tkj-tk'j. (4.3b)

Further, define the "average" of an element {kt} of Sn, denoted { kf}

k( = q + \, i = l,...,r, (4.4a)

kt = q, i = r + l , . . . , n , (4.4b)

where
n

Y, kj = nq + r, 0 < r < n. (4.4c)
y-i

The average has the "minimality" property that if {k[\ e Sn and {&,} > {&,'},
then {k>} > {A:,}.

THEOREM F. Let M e GLX (or GC) admit a generalized W-H factorization in
Lp, some 1 < p < oo. Then there exists a 8 > 0 such that for any N e GLX,
\\M ~ # I L < s the following "inequality" holds:

(4.5)
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where [kj(A)} denotes the partial indices of a matrix function A. Conversely, let
{kt} be arbitrary in Sn with { fc, (A/)} >- {kt}. Then, for any 8 > 0, there exists an
N G GLX(GC), such that \\M - N\\ < 8 and k,(N) = k,, i = 1 , . . . , n.

The difficulty in extending the theorems of Section 3 to the general W-H
factorization is because of the extremely undesirable properties of partial indices
—c.f. the converse statement in Theorem F.

It is very easy to deduce the following corollary.

COROLLARY G. M G GLX has stable indices if and only if kt(M) = kt(M),
i = 1 , . . . , n. Equivalently, Â  < kn+ 1, i.e. there is a difference of 1 or 0 between
the largest and smallest indices.

REMARKS. If all the indices of M are zero (i.e. M has a canonical factorization)
then obviously M has stable indices.

In the light of Theorem F, it is unreasonable to expect the factorization
operation to be continuous (in any norm) unless one has a matrix with stable
indices. Note that by Theorem F, there is a matrix function with stable indices
arbitrarily close (in LM norm) to any factorizable matrix function. Stable indices
are the generic case, indeed matrix functions with stable indices are dense in GLK,
with Lx norm. Thus we generalize below Theorem 3 to matrix function M e GC
with stable indices.

By way of motivation, let us note an application in system theory. Errors-in-
variables identification [2] is the name given to a class of procedures for passing
from noisy measurements of the input and output signals of a linear system
characterized by an unknown convolution operator, to a description of that
system (convolution operator or transfer function). The procedure of [10] uses
W-H factorization of a matrix function, which is a sub-matrix of the power
spectrum matrix associated with the measured signals, to calculate the convolu-
tion operator. The determination of the power spectrum matrix can never be
totally error free, and so the factors resulting from the W-H factorization will be
in error. Since these factors are used to determine the unknown convolution
operator the calculated convolution operator will inherit errors. It is important
that these errors be controlled in an Lx sense, particularly if a controller is
subsequently to be connected to the identified system, as noted previously.

The next theorem provides conditions for the Lm continuity.

THEOREM 4.1. Let M e GC be absolutely continuous and suppose dM e Lr for
some r > 1. Further suppose M has stable partial indices. Then for any e > 0 and
any K < 00, there exists a 8 = 8(K, e, M) such that if N is absolutely continuous,

dN <= Lr, \\M - JV|L < 8> and WdM ~ dNWr < K> then M±> N±> Ml*(= GC.
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1131 Continuity of Wiener-Hopf factorization 455

Furthermore

\\M±- N± \\x < e, IMJ1 - N ^ < e. (4.6)

To prove Theorem 4.1, we shall make use of the following result of [4].

THEOREM H. Every element A e GC can be factored in the form A = D0A0,
where AQ e GC admits a left canonical factorization in Lp, 1 < p < oo, and
D0(t) = diag(zTi, / = 1, . . . ,«) with T, a permutation of the set {kt(A)} of partial
indices of A. Moreover if A = A +DA _, AQ may be factored as Ao = A+A_.

PROOF OF THEOREM 4.1. That N has a factorization for 8 sufficiently small
follows from Theorem E, since N e C and \\M - N\\x sufficiently small imply
iV e GC. Also, since M has stable partial indices, we can choose 8 small enough
for TV to have the same indices as M, by Theorem F. Then

M = M+DM_= D0M+M_= D0M0,

N = N+DN_= Z)1^+7V_= D ^ .

We must now show that for 8 sufficiently small, Dr = Do. This depends on an
analysis of the proof of Theorem H (see (see [4], pp. 128-131). Briefly, the indices
are reordered in going from D to Dx (or Do) on the basis of certain minors of
iV+(oo) (resp. M+(oo)) being non-zero, and on the solution of linear equations
derived from M+(oo) (resp. N+)). Thus if 8 is sufficiently small, the reordering
can be chosen to be the same for N and M, i.e. we may choose Do = Dx provided
8 is sufficiently small. Then

< ATJIM - N\\x, since WD'1^ =K,< oo.

Thus we can make ||Af0 - JV0|| as small as we like. Moreover, Mo and No are
clearly absolutely continuous, since M, N and Do are, and their derivatives are in
Lr. Thus by Theorem 3.2 applied to Mo, No, for 8 sufficiently small,

\\M_-N_\\x<e, | | M : 1 - i v : 1 | | o o < e .

Furthermore,

\\M+- N+ L = \\{MM-J -

<[\\M(M-J- N-
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and it follows that ||M+— N+\\x < e for 8 sufficiently small. Also

||Af;1- Nl1\\ = \\DM_M-1- DN_M'l\\x

= \\D[(M_-N_)M-1 + iV

so jjAf+1 — A'+'jj^ < e for 3 sufficiently small. The theorem is proved.

REMARK. Let S be an algebra of functions. If every F e GS has a W - H
factorization, with the spaces containing the factors F± subsets of S, the
factorization is called proper (this is called canonical factorization in [7]).
Factorization in W is proper, since W±c W. Generalized factorization of GLX

or GC functions in Lp is not proper (Lp q <£ Lx, q~l + p'1 = 1, 1 < p < 00). If
we define C = {A e C such that A is absolutely continuous and dA e Lr,
r > 1}, then Lemma 3.3 and Theorem H give the following:

COROLLARY 4.2. Factorization of matrix functions in GC is proper.

PROOF. Reduce to the canonical case using Theorem H and the result follows
from Lemma 3.3 and elementary manipulations. Remember D ± 1 e C.

It is known that if A c C is a Banach algebra, then factorization in GA is
proper if and only if A is decomposing, or equivalently if P + is bounded on A [4,
7]. W is decomposing, since W = W+® W~, but C and Lx are not (P + is not
bounded in Lx). In a decomposing algebra, the continuity of the factorization
follows directly from the boundedness (hence continuity) of P+. However Cr is
not decomposing and P+ is not bounded on C (in Lx norm), even though
factorization is proper in C. The problem is that C, with Lx norm, is not a
Banach algebra. In fact it is a non-closed sub-algebra of the Banach algebra C.
The bound \\dM — dN\\r < K in Theorems 3.2, and 4.1 is to counter the
non-closed nature of C . It prevents the situation of a sequence {TV,,} in C such
that \\M - JVJI^ < 8 for all n, but \\dM - dNn\\r -> 00 as n -> 00 from being
considered by Theorems 3.2 and 4.1. In this case { #„} is escaping from C: it has
a limit point in Lx but not in C. This is the situation in the example in [1]. If C
is equipped with the norm ||Af|| = ||AfH,,,, + \\dM\\r, it becomes a Banach algebra.
Hence it is decomposing and P+ is bounded, since factorization is proper in Cr.
This leads to a different continuity result, namely:

COROLLARY 4.3. Let M e GC, some r > 1, have a W-H factorization with
stable partial indices. Then for any e > 0 there exist a 8 > 0 such that if N G C
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and \\M - N\\ < 8 then

\\M±-N±\\<e and \\M±l - iV^|| < e,

where for A e C\ \\A\\ = \\A\\M + \\dA\\r.

PROOF. (C, || • ||) is a Banach sub-algebra of C. Factorization is proper in Cr.
Thus P+ is continuous on (C, || • ||) and consequently so are the operators T, R,
f, R defined in Section 3. The result follows.

REMARKS.

1. This result requires the derivatives dM and dN to be close, and implies that
dM + and dN+ are close. It thus has more restrictive assumptions and a stronger
conclusion than Theorems 3.2 and 4.1.

2. The continuity of P+ on C can be proved without reference to factorization
ideas. However, the essential ideas for an independent proof are contained in the
proofs of Lemma 3.3 and Theorem 3.2.

5. Conclusion

The key conclusion of this paper is that small Lx perturbations in a matrix
function will lead to small Lx perturbations in its Wiener-Hopf factors provided
the factorization indices are stable and the matrix functions (i.e. the original and
perturbed) have derivatives in Lr, for some r > 1. This condition is seen to be
tight by consideration of the example in [1].

The result is seen to be important in assessing the continuity (error contain-
ment) properties of the many procedures in system and control theory which use
Wiener-Hopf factorization. These include spectral factorization, LQG controller
design [3], multiplier theory [5], and errors-in-variables identification [10].

A more desirable property for the above applications would be a "local Lx

continuity property", or "localization principle" for Wiener-Hopf factorization.
That is, that small perturbations of a matrix function "mostly" on a subinterval
of [0, 2IT] will produce perturbations of the Wiener-Hopf factors "mostly" in that
subinterval. This property is conjectured on the basis of scalar spectral factoriza-
tion evidence (see appendix). Such a result would be extremely desirable for
system theoretic applications since it would mean, for example, that the often
significant high frequency errors of a measured power spectrum matrix, arising
because of sensor limitations, would not produce large low frequency errors in the
calculated Wiener-Hopf (or spectral) factors.
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Appendix

The purpose of this appendix is to provide what may be a more intuitive proof
of Theorem 3.2 for an important special case. The special case is scalar spectral
factorization, where one can use the Bode gain/phase relationships to construct
the spectral factors. The conditions imposed in Theorem 3.2 are related to
properties of these gain/phase relationships which we will derive. This method of
proof also leads to the conjecture of a localization principle for scalar spectral
factorization, as was mentioned in the conclusion.

THEOREM Al . Let 4>1(e
Ju) = Iflxake

Jka, ak = a_k, real, k = 0 , 1 , . . . be a
positive definite scalar spectrum which is absolutely continuous with derivative d<j>1 in
Lr[-w, IT], some 1 < r < oo. Now let F1(eyu) be the stable minimum phase spectral
factor of <j>lt that is Vx(e

ju) is the evaluation on \z\ = 1 of a function Vx(z) which is
analytic and non-zero in \z\ < 1 and satisfies

For any e > 0 and any K < oo, there exists a 8 = 5(0!, K, e) > 0 such that for
any real spectrum <J>2 such that

then

\\Vi-V2\\x<e,

where V2 is the spectral factor of 4>2-

Note that this is a very special case of Theorem 3.2. Since the proof by
"classical" methods is lengthy in detail, but straightforward, we will give an
outline of the main ideas.

OUTLINE OF PROOF. Let V^e1") = .R1(
eJ'w)exP{.//,(<?J">>)} where Rt, /, are real

valued and

It is easy to verify that

\\v, - v2\\x <!!*! - R2\\x +||JR1||00||/1 - / 2 | L .
So we want to choose 5 such that ||/?! - R2\\M < e /2and p ^ l H^ - I2\\x < e/2.

Observe the formula VtV* = </>, implies <£, = R*. Hence
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since
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11*1 -
asRltR2>0

The problem is thus the \\I1 — I2\\x term. Observe In Vt = hi R, + //,-. Now we
use the Bode gain/phase relation to construct /, from In Rt = 1/2 In <f>,.

da>_w cos c o - cos 8

or, since <J>, is differentiable with integrable derivative, we may integrate by parts
to obtain

do.

Formula (A.I) has the advantage of not requiring derivatives, but the serious
disadvantage that it is not a bounded operator from Lx to Lx, i.e. small <>( will
not necessarily give small /,. An example is given in [1]. Fortunately, (A.2) is a
bounded operator from Lr to LM (for any r > 1). To prove this, one must show
that

sup /
0e[-7r, if) -w

In
sin(fl + u)/2

du < Mr < oo. (A.3)

This is not completely trivial, but is straightforward using the fact that

sin(fl +
In - w)/2

- u\\6 + u\ -» 0 as w -» ±9 for any r > 1, q > 0.

Then use Holder's inequality to show /_"„ du)/[\6 - u||«|0 + w|9] is bounded for
some 0 < q < 1 (take q = | ) . This proves (A.3).

We now break the integral in (A.I) up into three parts: one integral over
[8 - 8^6 + 8^, one over [-6 - 8V -6 + 8J, and the rest. The rest is easy, since
so long as w is bounded away from 8 (as we have just made sure) the integrand in
(A.I) is bounded, so we can choose 8 small enough so that this term is small (say
less than e(6||/?1||00)-

1).
For the small intervals near ±8, we integrate by parts to get the integral in

(A.2), but over the small intervals [±8 - 51; ±6 + 8J, plus the end point
evaluation term. The bound (A.3) means that we can choose Sx small enough for
the integral term to be small (say less than e(6||/?1||)"

1), since by hypothesis
H^^! — d<t>2\\r < K. Finally, we need to consider the integrated term (from the
integration by parts). This causes no problem except when 8 is near zero (in fact,
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when 0 e [-8X, SJ), or m or -m. This is because the singularity ±0 can coincide
with an end point. However, we now simply increase the interval of integration to
[-381,38J to avoid the problem.

Notice that because we can use formula (A.I) except over the small intervals,
we do not need the derivative bound K to be small. It can be any finite number,
and need not tend to zero as e tends to zero.

The conjecture of a "local Lx continuity" result, or "localization principle"
derives from ihe observation that since the integrands of (A.l), (A.2) have
singularities at 6, the value of the spectrum <j> at 6 will have a much greater effect
on the value of V at 0 than will values of </> away from 6. That is, the value of $
at 0 is "overweighted" in (A.I), (A.2), and consequently in V(6).

Consequently "localized errors" in </> should lead to "localized errors" in V.
This is what we mean by "local continuity".

From an applications viewpoint the desirability of such a result is obvious. In
fact it is required if many practical applications of spectral or other Wiener-Hopf
factorizations are to be justified—otherwise (for example) high frequency model
errors could lead to completely erroneous low frequency LQG controller be-
haviour. The fact that this does not appear to happen provides circumstantial
evidence for the localization principle.
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