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ON THE PRESERVATION OF ROOT NUMBERS
AND THE BEHAVIOR OF WEIL CHARACTERS
UNDER RECIPROCITY EQUIVALENCE

JENNA P. CARPENTER

ABsTRACT.  This paper studies how the local root numbers and the Weil additive
characters of the Witt ring of a number field behave under reciprocity equivalence.
Given a reciprocity equivalence between two fields, at each place we define a local
sguare class which vanishes if and only if the local root numbers are preserved. Thus
this local square class serves as a local obstruction to the preservation of local root
numbers. We establish a set of necessary and sufficient conditions for a selection of
local sguare classes (one at each place) to represent aglobal square class. Then, given
areciprocity eguivalence that has afinite wild set, we use these conditions to show that
the local square classes combine to give a global square class which serves asaglobal
obstruction to the preservation of all root numbers. Lastly, we use these resultsto study
the behavior of Weil characters under reciprocity equivalence.

1. Introduction. A reciprocity equivalence between two number fieldsis the for-
malization of the concept of a Hilbert-symbol-preserving map. Reciprocity equivalences
wereintroducedin [6], whereit was shown that number fields haveisomorphic Witt rings
precisely when they are reciprocity equivalent. One consequenceof thisisaglobal-local-
global principal for the Witt ring (see[6]).

Given a number field K and a selection {dp }pcq, Of local square classes dp, one at
each place P of K, we give necessary and sufficient conditions for the existence of a
unique, totally positive global square class d of K whose localization at every place P
is dp. Next, we give the consequences of this result for the preservation of local root
numbers. Lastly, we use this information to study how the Weil additive characters of
the Witt ring W(K) of a number field K behave under a reciprocity equivalence. Sincea
Weil character is related to a Hilbert symbol (viathe local root number attached to the
real quadratic character defined by the Hilbert symbol) onewould expect Weil characters
to be preserved by areciprocity equivalence. We show, however, that Weil charactersare
not always preserved, and describe the extent to which they can vary.

After two brief preliminary sections recalling the relevant material concerning reci-
procity equivalence (Section 2) and local root numbers (Section 3), in Section 4 we es-
tablish, with the local Lemma, the existence of alocal square class which serves as an
obstruction to the preservation of the local root numbers under reciprocity equivalence.
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In addition, we give conditions under which any selection of local square classes repre-
sent aglobal sgquare class. In Section 5, we use these results to describe a global square
class, d, which serves as an obstruction to the preservation of local root numbers by reci-
procity equivalence. Thisis translated in Section 6 into an expression of the failure of
reciprocity equivalence to preserve the Weil characters, in terms of the Witt classes of
the global square classd and the rational prime 2.

2. Reciprocity equivalence. Throughout this paper, K and L will represent number
fields.

DEFINITION  (PERLIS-SYzZMICZEK-CONNER-LITHERLAND). A reciprocity equiva-
lence between the number fields K and L is a pair of maps (t, T) where t is a (group)
isomorphism between the square class groups of K and L

t: K*/K*Z _ L*/L*Z
and T is a bijection between the sets Qx and Q, of all placesof K and L
T:Qx — QL
which together preserve the Hilbert symbols:
(2.1) (a,b)p = (ta,th)yrp Va e Kj/Ki?, VP € Q.

(Note: The archimedean places are included in Qx and Q,; K5/ K,’;z denotes the local
square classgroup of K at P.) Asa consequenceof this definition, we have well-defined
induced local mappings:

tp: Kp /K2 — Lip /L3,

K and L are reciprocity equivalent if there exists a reciprocity equivalence between
them.
We notethat in[6] the authors show that given areciprocity equivalence(t, T) between
KandL,
1) the map t takesthe square classof —1in K to the squareclassof —1inL; and
2) T mapstheinfinite placesof K to the infinite places of L.
Given aparticular reciprocity equivalence (t, T) between K and L and afinite place P
of K, [6] definesthe equivalence (t, T) to be tame at the place P if

ordp(a) = ordrp(ta)(mod 2) Va € Kj/Kp?

andwild at P otherwise. Theset of all (finite) placesP of K at whichthe equivalence(t, T)
iswild is called thewild set of (t, T). A tame equivalence has no wild places. According
to [1], we may assume that whenever K and L are Witt equivalent, there exists (at least)
one reciprocity equivalence between K and L which has a finite wild set. This fact will
bevital in our effort to extend the results from the local level and obtain aglobal element
(see Section 5).
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3. Areview of local root numbers. Let K beanumber field, p arational prime, Q,
the p-adic completion of the field Q of rational numbers and P a place of K lying above
p. For each square class a of K}, /K2, the Hilbert symbol (,)p can be used to define a
real quadratic character

x(@):Kp — Z°
X +— (X, d)p.

Following Tate [8, p. 94], there is associated to x(a) alocal root number rp(a) which
is a complex fourth root of unity defined on the square classes of Kp satisfying Tate's
formula: namely, given a, b in Kj /Kz?, they satisfy

3.1 re(ab) = (a,b)e - re(a) - re(b).
Moreover, settinga = bin (3.1) yields
3.2 [re(@)]? = (—1,a)p.

We also note that for a global element a € K*/K*?, rp(a) = 1 for aimost all places P
of K (see[8]). Infact, thereis areciprocity law for local root numbers. Namely, given a
global square classaof K,

[T re@ =1

PEQK
(thisis the Frohlich-Queyrut Theorem - see[8] or [3]).

4. Local root numbersand reciprocity equivalence—thelocal Case.

LEMMA 4.1 (LocAL LEMMA). Let (t, T) be a reciprocity equivalence between the
number fields K and L. Then for each place P of K, there exists a unique local square
class dp of Kp such that

(4.1) (a,dp)e - rp(a) = rrp(ta)  for eacha € Kj /K2

From (4.1) we see that an equivalence preserves local root numbers at the place P
when its corresponding local sgquare class dp equals 1. We emphasize that dp depends
upon the particular reciprocity equivalenceused. That is, different equivalencesbetween
thesametwofieldsK and L could havedifferent local square classesdp for the sameplace
P of K. Note also that this Local Lemma holds even for the “worst” equivalences, that
is, those which have infinite wild sets.

PrROCF. By the non-degeneracy of the Hilbert symbol, we have an isomorphism

Kp /K& = Hom(Kp /KE, 12)
di—f

4.2)
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where
f(a) := (d,a)p for every a € K /K2

Here u, = 1 isthe group of square roots of unity.
We would now like to define a special homomorphism from K} /K32 to u, and use
(4.2) to obtain the desired local square classdp. Namely, given a € Kj /Ki2, we define

CLAIM.
g € Hom(Kp /K&, pa).

That is, givena, b € Ki /Kz2,

_ rep(tab) _ rep(tath)
g(ab) = rp(ab) B rp(ab)

_ (@ tyre - rre(ta) - rre(th)

~ (abp-re(@) - re(b) by (3.1)
=@ e Y @D

= g(@)g(b).
Moreover, by (3.2) we have
[re(@)]? = (—1,a)p
= (—1,ta)rp by (2.1) and the fact that t(—1) = —1
=[re(ta)]* by (3.2)

which implies
re(a) = tryp(ta) sincerp(a), rrp(ta) € ua.
Hence (ta)
Itp(ta,
a) = ——= =+1€ pup.
9(a) @ 12

Soindeed g € Hom(K} / Ki2, 12), as claimed.
But then we are done; that is, (4.2) guaranteesthe existence of a (unique) local square
classdp € K /Ki2 such that

g(@) = re(td) _ (adp)p  forevery a € Kj/Kg?
re(a)
or equivalently,
(@, dp)p - rp(a) = rrp(ta)  for every a € Kj /K72 .

These local square classes {dp}peq, Satisfy several useful properties which we will
need later. In particular,
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LEMMA 4.2. Let(t, T) beareciprocity equivalence between two number fieldsK and
L and denote by {dp}pcq, the set of local square classes which satisfy the Local Lemma
(Lemma 4.1). Then for each global squareclass o € K*/K*?, we have

(O’, dp)p =1
for almost all placesP of K and

H (U! dP)P =1

PeQg

PROOF. Fix o € K* /K*2, By (4.1), for each place P of K we have
(0,dp)p - rp(o) = rp(to).
Multiplying both sides by rp(c) and using (3.2) we obtain
(0,dp)p - (—1,0)p = rp(0) - r1p(to).
Since [(—1, 0)p]? = 1, multiplying both sides by (—1, 0)p yields
4.3) (o,dp)p = (=1, 0)p - rp(0) - r1p(to).

We now want to compute the right hand side of (4.3). To do so, we define the following
sets of places of K:

Sl(U) = {P € Qx: I’p(O’) 7£ 1}
S(0) = {P € Qk : rp(to) # 1}
Sg,(O') = {P € Q: (—l, O')p 7£ l}

Note that each of the sets S(0),i = 1,2, 3, is afinite set of places since each of rp(o),
rre(to) and (—1, o)p isequal to 1 for almost all placesP of K. Let S(o) = Si(0) US(0)U
Ss(0). Then (o) is also afinite set of places of K. Fix P ¢ o). Then we have

(4.4) (0,dp)p = (—1,0)p - rp(0) - rp(te) =1 sinceP ¢ o).
That isto say, (o, dp)p = 1 for aimost all places P of K. Moreover,

II (,dp)p = ]I (=1,0)p - rp(0) - rrp(to)

PeQg PeQg

= [I (Lo re(0) -rre(te) by (4.4)
PeSo)

= [ (<Lo)p- I] re(e)- JI rre(to) since (o) isfinite
PeS(0) PeS0) PeSo)

= II (~Lo)p- I] re(0)- II rre(ts)  againby (4.4)
PeQx PeQg PeQy

=1 by reciprocity of Hilbert symbols and root numbers. ]
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Now we pause to prove an independent lemma about local and global square classes.
(J. Hsia has mentioned that this result generalizes). A necessary condition for the exis-
tence of aglobal square classd € K* /K*2 which behaves stitably at each place P of K
(that is, for whichd = dp in Kj/ K,*;,2 for some selection of local square classesdp, one
at each place P of K) is that

ordp(dp) = 0 (mod 2) for almost all finite places P of K.

Moreover, given any global squared of K, d satisfies the Hilbert symbol reciprocity law.
Namely, for every global square classa of K,
1] (& d)p = 1.

PeQg

Asit turns out, these two conditions are in fact necessary and sufficient to guarantee that
any selection of local square classes, one at each place P of K, represents aglobal square
classd of K.

PrOPOSITION 4.3.  Let K be a number field and {dp}pcq, denote any selection of
local square classes dp in Kj /K2, one at each place P of K. Then there exists a (nec-
essarily unique) global squareclassd € K* /K*2 such that d = dp in Kj /K2 for each
place P of K if and only if

1) ordp(dp) = 0(mod 2) for almost all finite places P of K, and
2) for all global squareclassesa € K* /K*2,

H (a’ dP)P =1

PeQg

PROOF. The necessity is clear. We prove the sufficiency. First, we observe that the
assumption in statement 2) above can be made, since for aimost al P in Q, P isfinite,
nondyadic and 1) holds. That is, (a,dp)p = 1 for amost all P € Q.

Following [6] and [1], we choose a finite set S of places of K satisfying each of the
following conditions:

(i) Scontainsall infinite places of K;

(ii)y Scontainsall finite dyadic places of K;

(iii) the S-class number hS(K) of K is odd;

(iv) ordp(dp) =0(mod 2) foral P & S
(to accomplish (iii), add generators of the 2-Sylow subgroup of the ideal class group to
theset S). Let Uk (S) represent the group of S-units of K and define the direct product of
the spaces (K3 /K2, (,)p) overal P € S

G(9 = [ Kp/Ke?and (,)s= 1(.)e
Pes Pes
where (,)p represents the Hilbert symbol at the place P. Note that (G(S), (, )s) forms
a non-degenerate F,-inner product space. As in [6, Lemma 5.6], we can assemble the
localizations
ip:Uk(9)/Uk(9® — Kp/Ks*, P€S
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into a single monomorphism which diagonally embeds the group of S-units modulo
squaresinto G(S):

is: Uk(S)/Uk (9% — G(S
y—y

wherey € Uk(S)/Uk(S)? denotes the square class of the elementy € K* andy € G(9
is the tuple (y, .. .,y) whose P-th coordinate represents the image of the global square
classy in Kj/Kg? (note that this map is an embedding because of conditions (i)—iii)
above—see[6]). To simplify notation, we will identify Uk (S)/ Uk (S)? with itsimagein
G(S). Now the subspace U (S)/ Uk (S)? of G(S) is ametabolizerin (G(9), (, )s). That s,

Uk(S)/ Uk(9? = (Ux(9)/ U(S?) "
where L denotes the orthogonal complement. Namely,
UK(9)/Uk(S? € (Uk(9/Uk(9?)"

by Hilbert reciprocity; #Ux (S) / Uk (S)? = 2° by the unit theorem; #11pcsKp /Ki2 = 45 =
2% asin [5, page 178]. Thus, by the non-degeneracy of (, ),

#(Uk(9/Uk(9?) " = 2%/2° = 2° = #Ux(9 / Uk(9*.
Moreover, in [6] the authors show that, givena € K* /K*2,
(4.5) ae UK(S)/UK(Q2 <= ordp(a) = 0 (mod 2) fordlP ¢S

(this uses the fact that hS(K) is odd).
Letd = {dp}pes € G(S)

CLAIM. d & (UK(Q/UK(S)Z)L.
Takeu € Uk(S)/Uk (92 Then VP ¢ S we have

ordp(u) = ordp(dp) = 0 (mod 2)
or (udp)p =1 VP ¢S Thus,

1= ] (udp)p by assumption

PeQg

= [I(u.dp)e - [](u,dp)p
PeS P¢S

= [](u,dp)p since (u,dp)p = 1foral P& S
PeS

= <U,d>5.

Hence we have

de (UK(S)/UK($2)L = Uk(9)/Uk(9?,
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asclaimed. Thatis, thereexistsaglobal squareclassd € K* /K*2withd € Ux(S)/Uk(S)?
andip(d) = dp € Kp/Kp2 foral P € S

It remains to show ip(d) = dp for al P ¢ Sand the uniqueness of d.

Fix Py € S Then ordp,(dp,) = 0(mod 2) by choiceof S. Let S, = SU {Pg}. Then
the set S satisfies conditions (i)—(iv) above. Hence, by the above argument, there exists
aglobal squareclassd; € Uk(S;)/Ux(S1)? such that

ip(dy) = dp fordl P e S,
in particular
ip,(d1) = dp, and ordp,(d;) = ordp,(dp,) = 0 (mod 2).
But, by (4.5), d; € Uk(S1)/Uk(S1)? and ordp,(d;) = 0 (mod 2) implies
di € Uk()/Uk(S S Uk(SD)/ Uk (S,
Thuswe haved, d; € Uk(S)/Ux(S)? and
ip(d) = ip(ch) iNK3 /K2  fordl PeS

Henceis(d) = is(dy). Sinceisisamonomorphism, wemusthaved = d; inU(S;) /U(S1)2.
But then ip,(d) = dp, or, more generally,

ip(d) = dp € Kj/Kg? fordlP&ZS
as desired. Clearly d must be unique, for if d, d’ € K* /K*? satisfy
ip(d) = ip(d) for all placesP of K,

thend = d’ in K* /K*2 by the global squares theorem (see [5, page 182]). ]

5. Local root numbersand reciprocity equivalence—the global case.
Reciprocity equivalences between number fields do not, in general, preserve the local
root numbers of the equivalent fields. Our goal here, then, isto describewhen reciprocity
equivalencepreservesor failsto preservethe local root numbers of equivalent fields. We
want to use the Local Lemma (Lemma4.1) and Proposition 4.3 to obtain aglobal object
which we can view as an obstruction to the preservation of the local root numbers.

We are now in a position to establish the existence of a global square class d which
satisfiesthe Local Lemma (Lemma4.1) at every place P of K; that is, for whichd = dp
in K /K32 for all places P of K. Notethat, asin the local case, the global square classd
will depend upon the particular reciprocity equivalence used.
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THEOREM 5.1 GLOBAL THEOREM. Given K and L number fields and (t, T) a reci-
procity equivalencebetween K and L which hasa finitewild set, then thereexistsa unique
totally positive global squareclassd € K* /K*2 such that

(5.1) (a,d)p - re(a) = rre(ta)
for each a € K} /K2 and for each place P of K.

Asinthelocal case, areciprocity equivalence preserveslocal root numbers precisely
when its unique global sgquare classd is equal to 1. We remind the reader that requiring
the equivalence (t, T) to have a finite wild set does not create a problem in the sense
that whenever K and L are reciprocity equivalent, there exists (at least) one reciprocity
equivalence between them which has afinite wild set (see[1]). It does mean, however,
that only equivalenceswhich are tame outside afinite set can globally preserve all local
root numbers.

PrROOF. By the Local Lemma (Lemma4.1), there exists a collection of local square
classesdp € K /Kp?, one for each place P of K, for which (4.1) holds. By Proposi-
tion 4.3, there exists a unique globa square classd € K*/K*? suchthat d = dp in
Kg /K for all places P of K if and only if

1) ordp(dp) = 0(mod 2) for almost all finite places P of K, and
2) for all global squareclassesa € K*/K*?,

H (a7 dP)P =1

PeQg
Condition 2) holds by Lemma 4.2. Hence, it remains to show

CLAIM. ordp(dp) = 0(mod 2) for almost al finite places P of K.
First werecall that, given afinite nondyadic place P of K and the local nonsquare unit
up at P, we have
ordp(dp) = 0(mod 2) <= (up,dp)p = L.

Thuswe will show (up, dp)p = 1 for amost all finite places P of K. To accomplish this,
we will evaluate rp(up), rtp(tup) and use the Local Lemma (Lemma4.1).

Choose afinite set Sof places of K such that S contains

(1) alinfinite placesof K;

(2) al dyadic placesof K;

(3) al placesP of K at which the equivalence(t, T) iswild,

(4) dl placesP of K for which either P or TP dividesthe local absolute different ideal

Dk, or D, of Kp, L1p respectively

(notethat P ¢ Simplies P is afinite, nondyadic place of K).

Fix P ¢ Sand choose agenerator 7 of P. Let up denote the local nonsquare unit at P.
We want to consider the local characters

x:Kp— Z".
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Recall that these are defined by the Hilbert symbols; namely, given alocal character vy,
there exists alocal square classb € Kj /K32 suchthat x = xp is defined by

xo(€) = (b,c)p  foralce K.

In particular, we have a character y,, associated with the local nonsquare unit up. Since
P ¢ S Pisnondyadicandy,, isunramified (that is, Kp (@) isthe unique unramified
quadratic extension of Kp). Thus x,(w) = 1 for all unitsw of K.

Tate ([8]) evaluatesrp(up) asfollows:

re(Up) = xus(9)

where g is a generator of the local absolute different ideal Dk, (note x,, = 1 on units
implies rp(up) isindependent of the choice of the generator g). Thus, let ustakeg = 7
for somej € Z. Then

rp(Up) = Xue(0) = Xup(m') = (Up, m)p = (—1)% e,

Thatis,
- -1 j=1(mod 2)
iy —
e, ™) =11 j=0(mod 2)
or we have _ _
(up, ) = (=1)".

Sincej = ordp Dg,, we obtain
re(Up) = (—1)°%P% =1

asP ¢ Sdoesnot divide Dg,. We claim this also gives us rrp(tup) = 1. Namely, the
equivalence (t, T) istameat P since P ¢ S. Hence by definition,

ordp(up) = ordrp(tup) = 0 (mod 2).

Since P ¢ Sis nondyadic, turp = vrp, where vrp is the nonsguare unit in Ltp (note
TP isfinite, nondyadic by tameness of P). An argument analogous to that above shows
rre(tup) = 1.
Thusrp(up) = 1, rrp(up) = 1 for almost all finite places P of K. By the Local Lemma
(Lemma4.1),
(Up, dp)p - re(Up) = rrp(tup)

yields (up,dp)p = 1 for almost al finite places P of K or ordp(dp) = 0 (mod 2) for
amost all finite places P of K, as claimed.

To seethat d is totally positive, let P be areal infinite place of K (if there are none,
then the claim is vacuously true). Then, aswe noted earlier, TP must be an infinite place
of L. Takinga = —1in(5.1), we have

(=1,d)p - re(—1) = rre(—1),
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since, as we observed, t aways takes —1 to —1. Tate showsin [8, p. 94] that the local
root number of —1 at areal infinite place is always equal to —i, hence

re(—=1) = rrp(—=1) = —i.

By (5.1), that forces
(-Ldp=1

at every real infinite place of K. Thus, d isindeed atotally positive global square class
of K. n

6. Weil charactersand reciprocity equivalence. We are now in a position to ex-
amine the behavior, under reciprocity equivalence, of the Weil characters. Recall that
these are additive characters from the Witt ring of anumber field K to the multiplicative
group of complex numbers.

First we examine the behavior of a particular shifted Weil character (defined in [3]
and referred to as a Tate character), then state the desired result concerning the behavior
of the Weil characters themselves.

Fix a number field K. We will define the shifted Weil characters in terms of scaled
Fourier transforms for the local root numbers of K. Thus, fix a place P of K. Given the
local root number function

rp:Kp /Kp? — pia
we define the scaled Fourier transform for rp, following [2, page 3]: for a € Ki /K52 we

set:
1

(@) = ——= >
#K;/K;Z bEKE/KEZ

It is not difficult to prove that these scaled Fourier transforms satisfy the following iden-
tities (see [2, pages 3 and 4]): for a € Kj /K2,

(& b)e - re(b).

fp(@) = (=1,a)p - rp(a) - fp(1)

and
tp(1)? = rp(—1).

We note that this implies that fp(a) is always an eighth root of unity, sincerp(—1) isa
fourth root of unity.

LEMMA 6.1. Let K and L be number fields and (t, T) a reciprocity equivalence be-
tween K and L. Fix a place P of K. Given a € K} /K2 we have

fre(ta) = Tp(dea)
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wheredp € K} /Kp? satisfiesthe Local Lemma (Lemma 4.1).

PROOF. Since K} /Kg2 = L%, /L%2 (by definition of the reciprocity equivalence
(t, T)), we can write

1
) = ——— ¥ (@t re(h)
VALie /LB ek k2

1
=——— Y (tathbyp rre(th).
VK /K22 beke iz
Since the reciprocity equivalence (t, T) preserves Hilbert symbols between K and L, we
have

1
— 1 S (@b rie(ih).
VHKE [ K52 bk K2

By the Local Lemma (Lemma4.1), we can rewrite ryp(tb) to obtain

frp(ta) =

+ J— 1 . .
Pre(ta) = \/Wbe%K;Z(a’b)P (de, b)p - rp(b)
-1 % (dabe b

VHKE /K2 bek k2

= fe(dra),

as desired. -
Following [2, page 5], we define the shifted Weil character

P! W(K) — g

asfollows: takeaWitt classX € W(K) and let (V, b) be arepresentative of the class X; fix
an orthogonal diagonalization (ay, ..., am) of (V,h). Then, again following [2, page 5],
we define

(X) = ﬁl Pr(@).
J:

Clearly 7p(X) € us. In[2, pages5-6], the author verifiesthat thisisin fact awell-defined
additive character on W(K).

These shifted Weil characters behave rather nicely under reciprocity equivalence;
namely, they are preserved up to the local square class dp from the Local Lemma
(Lemma4.l).

LEMMA 6.2. Let K and L be reciprocity equivalent number fields and (t,T) a
reciprocity equivalence between them. Fix a place P of K. Let the local square class
dp € K5 /Ki? beasin the Local Lemma (Lemma 4.1). Given X € W(K), we have

TTp(t*X) = Tp(<dp>X)
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where t.: W(K) = W(L) is the ring isomorphisminduced by t: K* /K*2 = L* /L*2 and
(dp) € W(K) representsthe image of the square class of dp € Kj /Ki2.

Note that the use of (dp) here is well-defined here. Namely consider the sequence
K*/K*2 — Kp /Ke? — 1.

Given any pullback 6p of dp, it differs from dp by at most a local square class o« €
Kg/Kg2. But

fp(dp) = Tr(0pe)

1
=——— 3 (%pa,b)prp(b)
VARE TR peiTic
1
=——— > (bp,b)p-(a,b)p-rp(b)
VRS JKZ beilTic
1
=———— > (6p,b)p-rp(b)
‘/#K;/KEZ beKs /K2

since « isalocal square at P
= Tp(0p),

henceTp(<dp>) = ’/"p(<5p(X>).

Thus dp serves as an obstruction to the preservation of the shifted Weil characters at
P by reciprocity equivalence. In the case that the given equivalence is tame outside a
finite set, the global square class d from the Global Theorem (Theorem 5.1) measures
how close the equivalence comes to preserving all of the shifted Weil characters (i.e.,
when d = 1, they are preserved at every place P of K).

PrOOF. Choosearepresentative(V, b) for Xandlet (ay, .. ., an) beadiagonalization
of (V,b),a € Kifori = 1,...,m Then (tay, ..., tan) serves as adiagonalization of a
representative of t, X, so we can write

me(tX) = [ trta)
L

m
= ] Pp(dpay) by Lemma6.1
=1

= 7p((dp)X)

asdesired, since (dpay, . . ., dpam) also serves as adiagonalization of (V, b). n
We will define the Weil characters of K as follows (for aformal definition, see [7]).
Fix aplace P of K and let X € W(K) be a Witt class of K. The Weil character vp can be
defined on W(K) by
Yp((2)X) = 7p(X)

where (-) denotes the corresponding 1-dimensional form in the Witt ring of K (see [3]).
We now see how equivalencerelates to the Weil charactersthemselves.
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THEOREM 6.3. Let K and L be reciprocity equivalent number fields and (t, T) an
equivalence between them. Fix a place P of K. Let dp be as in the Local Lemma
(Lemma 4.1). Thenfor X € W(K) a Wt class of K, we have

Yp({2dp)X) = Y1r({2)tX)

where (-) denotes the class of the corresponding 1-dimensional formin the appropriate
Wtt ring.

Again, we note that when the equivalenceis tame outside afinite set, the correspond-
ing global square classd can be used at each place P. Unfortunately, however, the local
square classes {dp }pcq, alone are not enough to completely determine when an equiv-
alence preserves the Weil characters. This aso depends on the square class of 2, which
need not be the same in both fields.

PrROOF. By definition we have

Te((2dp)X) = Vp((2)(dp)X)
= p((dp)X)
= 77p(t. X) by Lemma6.2
= Y1r((2)t.X),

as desired. n
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