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Strongly Extreme Points and Approximation
Properties

Trond A. Abrahamsen, Petr Hájek, Olav Nygaard,
and Stanimir L. Troyanski

Abstract. We show that if x is a strongly extreme point of a bounded closed convex subset of a
Banach space and the identity has a geometrically and topologically good enough local approxima-
tion at x, then x is already a denting point. It turns out that such an approximation of the identity
exists at any strongly extreme point of the unit ball of a Banach space with the unconditional com-
pact approximation property. We also prove that every Banach space with a Schauder basis can be
equivalently renormed to satisfy the suõcient conditions mentioned.

1 Introduction

Let X be a (real) Banach space and denote its unit ball by BX , its unit sphere by SX ,
and its topological dual by X∗. Let A be a non-empty set in X. By a slice of Awemean
a subset of A of the form

S(A, x∗ , ε) ∶= {x ∈ A ∶ x∗(x) > M − ε},

where ε > 0, x∗ ∈ X∗ with x∗ /= 0, and M = supx∈A x
∗(x). We will simply write

S(x∗ , ε) for a slice of a set Awhen A is clear from the setting.

Deûnition 1.1 Let B be a non-empty bounded closed convex set in a Banach space
X and let x ∈ B.
(i) x is an extreme point of B if for any y, z in B we have

x = y + z
2

Ô⇒ y = z = x .

(ii) x is a strongly extreme point of B if for any sequences (yn)∞n=1 , (zn)∞n=1 in B we
have

lim
n

∥x − yn + zn
2

∥ = 0 Ô⇒ lim
n

∥yn − zn∥ = 0.

When B is the unit ball, it is easily seen that this condition can be replaced by

lim
n

∥x ± xn∥ = 1 Ô⇒ lim
n

∥xn∥ = 0.
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In this case we say that the norm is midpoint locally uniformly rotund (MLUR)
at x.

(iii) x is a point of continuity for themapΦ∶B → X ifΦ isweak-to-norm continuous
at x. When Φ is the identity mapping we just say that x is a point of continuity
(PC).

(iv) x is a denting point of B if for every ε > 0 there is δ > 0 and a slice S(x∗ , δ) of B
containing x with diameter less than ε.

(v) x is a locally uniformly rotund (LUR) point of BX if for any sequence (xn)∞n=1
we have

lim
n

∥x + xn∥ = 2 lim
n

∥xn∥ = 2∥x∥ = 2 Ô⇒ lim
n

∥x − xn∥ = 0.

It is well known that LUR points are denting points and that denting points are
strongly extreme points [8]. Trivially strongly extreme points are extreme points.

_e importance of denting points became clear in the sixties when the Radon–
NikodýmProperty (RNP) got its geometric description. In particular, it became clear
that extreme points in many cases are already denting, as every bounded closed con-
vex set in a space with the RNP has at least one denting point. _e “extra” an extreme
point needs to become a denting point is precisely described in the following theorem.

_eorem 1.2 ([9]) Let x be an extreme point of continuity of a bounded closed convex
set C in X. _en x is a denting point of C.

It is well known that all points of the unit sphere of ℓ1 are points of continuity for
the unit ball Bℓ1 . So from _eorem 1.2we get that every extreme point of the unit ball
of any subspace of ℓ1 automatically gets the “extra” to become denting.

However, despite the theoretical elegance of _eorem 1.2, it is not always easy to
to checkwhether the identitymapping isweak-to-norm continuous at a certain point
of a bounded closed convex set. For this reason it is natural to look for geometrical
conditions that ensure weak-to-norm continuity of the identity operator at x when
we approximate it strongly by maps that are weak-to-norm continuous at x.

One such idea could be to assume that x is strongly extreme (not just extreme
as in _eorem 1.2) and that the identity map is approximated strongly by ûnite rank
operators. But this is not enough to give the extreme point the “extra” needed to be
denting. Consider x = x(t) ≡ 1 ∈ BC(K), where K is compact Hausdorò. _en x
is strongly extreme in BC(K), but the identity map I∶BC(K) → BC(K) is not weak-to-
norm continuous if the cardinality of K is inûnite (see the next paragraph). However,
limn ∥Pnx − x∥ = 0, where (Pn) are the projections corresponding to the Schauder
basis in C[0, 1]. Clearly, Pn is weak-to-norm continuous at any point of BC[0,1] (as
any compact operator is).
Actually, whenever K is inûnite compact Hausdorò, C(K) belongs to the classD2

of Banach spaces where all non-empty relatively weakly open subsets of the unit ball
have diameter 2. Naturally, in such spaces no point of the unit sphere can be a PC
point. See e.g., the references in [1] for more information about the class D2.
Assuming x is strongly extreme, we need to make stronger assumptions of the ap-

proximating sequence of the identity. One such condition thatwe impose is related to

https://doi.org/10.4153/CMB-2017-067-3 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2017-067-3


Strongly Extreme Points and Approximation Properties 451

the behaviour of the approximating mappings close to the point x (see_eorem 2.1).
In particular, we obtain as a corollary that in Banach spaces with the unconditional
compact approximation property (UKAP) (see Deûnition 2.10), every strongly ex-
treme point in the unit ball is PC and therefore denting. In particular, we have that
this conclusion holds for Banach spaces with an unconditional basis with uncondi-
tional basis constant 1. Further, we show that every Banach space with a Schauder
basis can be renormed to satisfy the conditions of_eorem 2.1.

_e notation and conventions we use are standard and follow [7]. When consid-
ered necessary, notation and concepts are explained as the text proceeds.

2 Weak-to-norm Continuity of the Identity Map

Our most general result on how to force a strongly extreme point x to be denting in
terms of approximating the identity map I∶X → X at x is the following theorem.

_eorem 2.1 Let C be a bounded closed convex set of a Banach space X and let x be
a strongly extreme point of C. Assume that there is λ ∈ (0, 1] and a sequence of maps
Φn ∶C → X , n = 1, 2, . . . (not necessarily linear) that are weak-to-norm continuous at x
and that satisfy

lim
n

∥Φnx − x∥ = 0

and

lim
n

lim
ε→0+

fn ,λ(ε) = 0,(2.1)

where

fn ,λ(ε) = sup{ dist ((1 + λ)Φn y − λy,C) ∶ y ∈ C , ∥Φnx −Φn y∥ ≤ ε} ,

_en x is a denting point of C.

Remark 2.2 Note that if (2.1) holds for some λ ∈ (0, 1], then it is also holds for any
positive µ less than λ.

_e proof follows from_eorem1.2 and the next proposition,which is an interplay
between weak and norm topology. With B(x , ρ) we denote the ball with center at x
and radius ρ.

Proposition 2.3 Let x be a strongly extreme point of a convex set C of a normed space
X and let 0 < λ ≤ 1. Assume that for every η > 0 there exist a weak neighbourhoodW
of x and amap Φ∶W ∩ C → X satisfying

Φ(W ∩ C) ⊂ B(x , η),(2.2)

sup
w∈W∩C

dist ((1 + λ)Φw − λw ,C) < η.(2.3)

_en x is PC.
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Proof Since x is a strongly extreme point, for every ε > 0, we can ûnd δ > 0 such
that

∥x − u + v
2

∥ < δ, u, v ∈ C Ô⇒ ∥u − v∥ < λε.(2.4)

Set η = min{δ, λε}/2. _ere is aweak neighbourhoodW of x and amap Φ satisfying
(2.2) and (2.3). Set Ψ = I−Φ and pick an arbitraryw ∈W∩C. Put y+ = (1−λ)x+λw .
Since x ,w ∈ C, we get y+ ∈ C by convexity. Since

Φw + λΨw − y+ = (1 − λ)(Φw − x),

we have from (2.2),

∥Φw + λΨw − y+∥ ≤ (1 − λ)η < η.(2.5)

Having in mind (2.3), we can ûnd y− ∈ C such that

∥(Φw − λΨw) − y−∥ < η.(2.6)

_is and (2.5) imply

∥x − y+ + y−

2
∥ ≤ ∥x −Φw∥ + 1

2∥(Φw + λΨw − y+) + (Φw − λΨw − y−)∥

< ∥x −Φw∥ + η ≤ 2η.

From (2.4) we get ∥y+ − y−∥ < λε. On the other hand, using (2.5) and (2.6), we get

∥y+ − y−∥ = ∥ y+ − (Φw + λΨw) − y− + (Φw − λΨw) + 2λΨw∥
> 2λ∥Ψw∥ − 2η.

Hence,
2λ∥Ψw∥ < ∥y+ − y−∥ + 2η < λε + 2λε = 3λε.

_is and (2.2) imply

∥w − x∥ ≤ ∥Φw − x∥ + ∥Ψw∥ < 2ε.

Since w is an arbitrary element ofW ∩ C, we get that W ∩ C ⊂ B(x , 2ε).

Remark 2.4 If x is PC forC,we get that x satisûes the hypotheses of Proposition 2.3
just taking Φ = I, λ ∈ (0, 1].

Proof of_eorem 2.1 Let {εn} be a sequence of positive numbers tending to 0.
SinceΦn ∶C → X , n = 1, 2, . . . isweak-to-norm continuous at x, there is aweak neigh-
bourhood Vn of x such that

Φn(Vn ∩ C) ⊂ B(x , εn), n = 1, 2, . . .

_us, the conditions of_eorem 2.1 imply that for every η > 0, we can ûnd n = n(η)
such that (2.2) and (2.3) hold for W = Vn and Φ = Φn . _eorem 1.2 concludes the
proof.

Recall that every linear compactoperator isweak-to-norm continuouson bounded
sets. _is together with _eorem 2.1 gives the following corollary.
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Corollary 2.5 Let (X , ∥ ⋅ ∥) be a Banach space and let ∣∣∣ ⋅ ∣∣∣ be an equivalent (not
necessarily symmetric) norm on X with corresponding unit ball C . Let x be a strongly
extreme point of C. Let λ ∈ (0, 1] and let Tn ⋅X → X , n = 1, 2, . . . be linear compact
operators such that

lim
n

∥Tnx − x∥ = 0,(2.7)

lim
n

lim
ε→0+

sup{ ∣∣∣(1 + λ)Tn y − λy∣∣∣ ∶ ∣∣∣y∣∣∣ ≤ 1, ∥Tn(x − y)∥ ≤ ε} = 1.(2.8)

In particular, the above is satisûed if

(2.9) lim
n

∣∣∣(1 + λ)Tn − λI∣∣∣ = 1.

_en x is a denting point of C.

Remark 2.6 If ∣∣∣ ⋅ ∣∣∣ is a non-symmetric norm in X and T ⋅X → X is a bounded
linear operator, we get a non-symmetric norm ∣∣∣T ∣∣∣ = sup{∣∣∣Tu∣∣∣ ∶ ∣∣∣u∣∣∣ ≤ 1}.

Proof It is enough to prove that (2.8) implies (2.1)with Φn = Tn . Indeed, since there
exists k > 0 such that ∥ ⋅ ∥ ≤ k∣∣∣ ⋅ ∣∣∣, then for every u ∈ X ∖ C, we have

dist(u,C) = inf {∥u − v∥ ∶ v ∈ C} ≤ k inf { ∣∣∣u − v∣∣∣ ∶ v ∈ C}

≤ k
���u − u/�u�

��� = k(∣∣∣u∣∣∣ − 1).

Remark 2.7 _e functions fn deûned in _eorem 2.1 can be discontinuous at 0.
Indeed, let X be a Banach space, and let e ∈ BX and e∗ ∈ SX∗ be such that
e∗(e) = ∥e∥ = ∥e∗∥ = 1. Deûne a (norm one) projection P on X by Px = e∗(x)e and
put

f (ε) = sup{∥Py − Ry∥ ∶ ∥y∥ ≤ 1, ∥P(e − y)∥ ≤ ε} ,
where R = I − P. Now, if the norm ∥ ⋅ ∥ on X is either strictly convex or Gâteaux
diòerentiable at e∗ , then f is discontinuous at 0. Indeed, let ε = 0, ∥y∥ ≤ 1, and
P(e− y) = 0. We get e∗(e− y)e = 0. Hence, e∗(y) = e∗(e) = 1. By the strict convexity
of the norm or the Gâteaux diòerentiability of the norm at e∗ , we have y = e. _is
implies Ry = Re = 0, so f (0) = 1. In order to prove that f is discontinuous at 0, we
simply apply Corollary 2.5 with Tn = P. Since e is strongly extreme, but not denting,
we get limε→0+ f (ε) > 1.

Remark 2.7 shows that one cannot replace the limit condition (2.8) of Corollary 2.5,
with

lim
n

sup{ ∣∣∣(1 + λ)Tn y − λy∣∣∣ ∶ ∣∣∣y∣∣∣ ≤ 1, Tnx = Tn y} = 1.

_e conditions in Corollary 2.5 (and thus _eorem 2.1) are essential. Let us illus-
trate this by example.

Example 2.8 Recall from the introduction that x = x(t) ≡ 1 ∈ BC(K) is a strongly
extreme point in BC(K) for any K compact Hausdorò.
Consider the space c of convergent sequences endowed with its natural norm. Let

e = (1, 1, . . . ) ∈ Sc and let Pn be the projection on c that projects vectors onto their n
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ûrst coordinates. Now e is a strongly extreme point of Bc that is not denting. More-
over, it is evident that the condition limn ∥Pne − e∥ = 0 fails and that condition (2.8)
(even (2.9)) holds for λ = 1 (and thus for all λ ∈ (0, 1]). It follows that the approxima-
tion condition in Corollary 2.5 is essential.

Example 2.9 Consider again c endowed with its natural norm. Let e ∈ c be is as in
Example 2.8. Deûne a projection P on c by Px = limn x(n)e and put Pn = P for all
n. By construction, Pne = e . For z = (0, 1, 1, . . . ), we have Pnz = Pz = e . Now, for any
λ ∈ (0, 1], we have

∥(1 + λ)Pnz − λz∥ = ∥(1 + λ)e − λz∥ = 1 + λ.

_us,

lim
n

lim
ε→0+

sup{∥(1 + λ)Pn y − λy∥ ∶ y ∈ BX , ∥Pn(e − y)∥ < ε∥} ≥ 1 + λ.

It follows that condition (2.8) in Corollary 2.5 is essential.

We now present our results in terms of an approximation property introduced and
studied by Godefroy, Kalton, and Saphar.

Deûnition 2.10 ABanach space X is said to have the unconditional compact approx-
imation property (UKAP) if there exists a sequence (Tn) of linear compact operators
on X such that limn ∥Tnx − x∥ = 0 for every x ∈ X and limn ∥I − 2Tn∥ = 1 (see [6]). If
the operators (Tn) are of ûnite rank, then X is said to have the unconditional metric
approximation property (UMAP) (see [2]).

For examples of Banach spaces with theUKAP (in fact,UMAP) see [4, 5]. In [4] a
complete description of spaceswith theUMAP is given. In that paper it is also proved
that Banach spaces with UMAP actually have the commuting UMAP.
Clearly Banach spaces X with the UKAP satisfy condition (2.9) for λ = 1. Clearly

also Banach spaces with an unconditional basis with basis constant 1 have the UKAP
(simply put Tn = Pn the projection onto the n ûrst vectors of the basis). _us, we
immediately have the following corollary.

Corollary 2.11 If X has theUKAP, in particular, if X has an unconditional basiswith
unconditional basis constant 1, then all strongly extreme points in BX are denting points.

Let us mention that the global condition (2.9) is much stronger than the local con-
dition (2.8), even in the case when it holds for all x in SX . _is will be clear from the
discussion below and, in particular, from Example 2.14, that shows that the condition
(2.9) is strictly stronger than (2.8). For that example we will use the following result.

Proposition 2.12 Let X be a Banach space and x a locally uniformly rotund (LUR)
point in SX . Let (Tn) be a sequence of linear bounded operators on X,with limn ∥Tn∥ = 1
and satisfying condition (2.7) in Corollary 2.5. _en condition (2.8) holds for λ = 1 (and
thus for all λ ∈ (0, 1]) and C = BX .
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Proof First we show that for every sequence (εn) with εn > 0 and limn εn = 0

lim
n
diamDn = 0,(2.10)

where Dn = {y ∈ BX ∶ ∥Tn(x − y)∥ < εn}. To this end, note that it suõces to show
that

yn ∈ BX , lim
n

∥Tn(x − yn)∥ = 0 Ô⇒ lim
n

∥x − yn∥ = 0.(2.11)

Indeed,

∥Tn∥∥x + yn∥ ≥ ∥Tn(x + yn)∥ = ∥2Tnx + Tn(yn − x)∥
≥ 2∥Tnx∥ − ∥Tn(yn − x)∥.

Hence, lim inf n ∥x + yn∥ ≥ 2. Since ∥yn∥ ≤ 1 we get limn ∥x + yn∥ = 2. Since x is
a LUR point, we get that (2.11) holds, and thus (2.10) holds. In order to prove (2.8)
for λ = 1, it is enough to show that limn dn = 1, where dn = sup{∥Tnx − Rn y∥ ∶ y ∈
Dn}, Rn = I − Tn . Since x ∈ Dn , we have dn ≥ ∥Tnx − Rnx∥. So we get from (2.7) that
lim inf dn ≥ 1. Now, pick an arbitrary y ∈ Dn . _en we have

∥Tnx − Rn y∥ ≤ ∥Tnx∥ + ∥Rn y∥ ≤ ∥Tnx∥ + ∥Rnx∥ + ∥Rn(y − x)∥
≤ ∥Tnx∥ + ∥Rnx∥ + ∥Rn∥∥y − x∥
≤ ∥Tnx∥ + ∥Rnx∥ + (∥Tn∥ + 1)diamDn .

Hence, lim sup dn ≤ 1.

Proposition 2.13 Let (Tn)∞0 be a bounded sequence of linear compact operators on
X, T0 = 0, Rn = I−Tn , and let ( fn)∞0 ⊂ SX∗ be a total family for X. _en the equivalent
norm

∣∣∣u∣∣∣ = (
∞

∑
n=0

2−n(∥Rnu∥2 + f 2n (u)))
1/2

is LUR at x ∈ X provided limn ∥Rnx∥ = 0. Moreover, if the operators (Tn)∞0 commute
and limn ∥Tn∥ = 1, then limn ∣∣∣Tn ∣∣∣ = 1.

Proof Pick a sequence (xk) ⊂ X with limk ∣∣∣(xk + x)/2∣∣∣ = ∣∣∣x∣∣∣ = ∣∣∣xk ∣∣∣. By convexity
arguments ([3, Fact 2.3 p. 45]), we have

lim
k

∥Rnxk∥ = ∥Rnx∥, n = 1, 2, . . . ,(2.12)

lim
k
fn(xk) = fn(x), n = 1, 2, . . . .(2.13)

First we show that (xk) is norm relatively compact. Given ε > 0, we can ûnd n
with ∥Rnx∥ < ε. Using (2.12), we can ûnd kε such that ∥Rnxk∥ < ε for k > kε . _e set
K = {x1 , x2 , . . . , xkε} ∪ ∣∣∣x∣∣∣Tn(C), where C is the unit ball corresponding to ∣∣∣ ⋅ ∣∣∣, is
norm relatively compact. We show that K is an ε-net for (xk). Indeed, pick xk , k > kε .
_en ∥xk − Tnxk∥ = ∥Rnxk∥ < ε and Tnxk ∈ ∣∣∣x∣∣∣Tn(C). So (xk) is norm relatively
compact. Since ( fn) is total,we get from (2.13) that limk ∥xk −x∥ = 0. _us, the norm
∣∣∣ ⋅ ∣∣∣ is LUR at the point x ∈ X.
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Now let us prove themoreover part. As (Tn) commute, we have

∣∣∣Tmu∣∣∣2 =
∞

∑
n=0

2−n(∥RnTmu∥2 + f 2n (Tmu))

=
∞

∑
n=0

2−n(∥TmRnu∥2 + (T∗
m fn(u))2)

≤
∞

∑
n=0

2−n(∥Tm∥2∥Rnu∥2 + ∥T∗
m∥2 f 2n (u)) = ∥Tm∥2∣∣∣u∣∣∣2 .

Hence, ∣∣∣Tm ∣∣∣2 ≤ ∥Tm∥2 for all m = 1, 2, . . . , so lim supm ∣∣∣Tm ∣∣∣ ≤ lim supm ∥Tm∥. Since
limm ∣∣∣Tmx − x∣∣∣ = 0, we get lim infm ∣∣∣Tm ∣∣∣ ≥ 1, and so limm ∣∣∣Tm ∣∣∣ = 1, provided
limm ∥Tm∥ = 1.

It is now easy to give the announced example showing that condition (2.9) can fail,
as condition (2.8) holds for every x in SX .

Example 2.14 Consider c0 endowed with the norm ∥ ⋅ ∥ deûned by

∥x∥ = sup
i , j ≥1

(x(i) − x( j)) ,

where x = (x(k)) ∈ c0 . Clearly, ∥ ⋅ ∥ is equivalent to the canonical norm on c0. Let Pn
be the projection onto the n ûrst vectors in the canonical basis (ek) of c0 and let ∣∣∣ ⋅ ∣∣∣
be the norm on c0 given in Proposition 2.13 where fn = 0 for every n. _en (c0 , ∣∣∣ ⋅ ∣∣∣)
fulûlls the conditions of Proposition 2.12 and thus satisûes condition (2.8) for every
x in Sc0 . Nevertheless, we have ∣∣∣Pk − λRk ∣∣∣ > 1 for any λ ∈ (0, 1], so condition (2.9)
fails. For the latter, just consider (Pk − λRk)(∑k+1

i=1 e i).

From the two preceding propositions we also get the following corollary.

Corollary 2.15 Let X be a Banach space with a Schauder basis. _en there exists
an equivalent norm ∥ ⋅ ∥ on X for which the sequence of projections Pn onto the ûrst n
vectors of the basis satisfy (2.8) for λ = 1.

On the other hand, we have the following proposition.

Proposition 2.16 _ere exists an equivalent norm ∥ ⋅ ∥ on C[0, 1] such that (2.8) does
not hold for any λ > 0 and any sequence (Tn) of compact linear operators on X when
x ∈ C[0, 1] with ∥x∥ = 1 and limn ∥Tnx − x∥∞ = 0.

Proof _e norm on C[0, 1] constructed in [1,_eorem 2.4] is midpoint locally uni-
formly rotund and has the diameter two property, i.e., all non-empty relatively weakly
open subsets of the unit ball have diameter 2. In particular, in this norm all points on
the unit sphere are strongly extreme, but none are denting. _us, the conclusion fol-
lows from _eorem 2.1.
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