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COMPLICATED BIFURCATIONS OF PERIODIC SOLUTIONS 
IN SOME SYSTEM OF ODE 

A. SOLEEV 

ABSTRACT. In a vicinity of a stationary solution we consider a real analytic system 
of ODE of order four, depending on a small parameter. We look for families of periodic 
solutions which contract to the stationary solution, when the parameter tends to zero. 
We apply the general methods developed in [2] for the study of complex bifurcations 
and in [4] for local resolutions of singularities. 

Near a stationary point we consider a real system of ODE of order four, depending 
on a small parameter. We look for families of periodic solutions which contract to the 
stationary point, when the parameter tends to zero. The computations and investigations 
in this paper are based on two methods: a method introduced in [2] to analyze complicated 
bifurcations and a method presented in [4] to compute local resolutions of singularities. 
We briefly describe these methods as follows. 

First of all, we bring the system to a normal form in a vicinity of a fixed point, then 
we compute the set A containing all the families of periodic solutions that contract to 
this fixed point. These families can be written as asymptotic power series in a small 
parameter. To obtain the first few terms of these series from the normal form, we single 
out the first approximation of the system {truncated system) and study it in detail. 

In the nondegenerate case it is the truncated system that determines character of the 
bifurcations and their asymptotics. The higher terms in the normal form allow one to 
make the asymptotic expansion of the family more precise. Thus, the computation of 
these families of periodic solutions is performed over the coefficients of the terms of 
the normal form. For concrete systems, the computation of the coefficients of terms in 
the normal form can be made only up to terms of some finite degree. In this case it is 
important to compute all coefficients of the terms of the lowest degree (that appear in 
the truncated system). 

We consider a real analytic system whose expression in complex conjugate coordinates 
is: 

dy\jdt = a(E)y\ +f\(£,yl,y2,yi,yl), 

(1) dy2/dt = a(£)y2+f2(£,yuy2,yï,y2) 

and the corresponding complex conjugate equations. We assume that a(0) = i - \f^-\ 
and the functions f\ and/2 are expanded into power series without any free and linear 

Received by the editors February 16,1994; revised June 23, 1995. 
AMS subject classification: 34C20; 34C25. 
© Canadian Mathematical Society, 1996. 

360 

https://doi.org/10.4153/CMB-1996-043-0 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1996-043-0


BIFURCATIONS OF PERIODIC SOLUTIONS 361 

terms in yj,yj,j = 1,2. We look for families of periodic solutions for (1), which contract 
to the stationary pointai - yi = y\=y2=0 when the small parameter e tends to zero 
(see [3]). 

Then the normal form of the system (1) is as follows 

du\jdt = a(e)u\ +Oi(e, u\, ui* ïï\, «2), 

(2) du^jdt = a(e)u2 + ̂ ( e , u\ *U2*u\, wj) 

and the corresponding conjugate equations, where 

a{e) = / + d\ £ + • • •, 

(3) <Dy(£, Ml, «2, «T, W2) = E % W Î ' «fW3M?4 

Ô 

with g = (^1,^2,^3,^4) and^i + ^ 2 - ^ 3 - ^ 4 = 1. 
For small [yi |, 1̂ 1 and e, all desired families of periodic solutions of the system (1) 

are in the set !A [2] which is determined from the normal form (2) by the system of four 
equations 

a(e)uj + Oy(£,u\,U2,û\,ui) - a(0)auj, 

(4) â(£)ûj + Ô/(Ê, wi, 1/2, wî", W2) = «(0)aw/, 7 = 1,2 

where a is a parameter. Eliminating a, we obtain a system of three analytical equations 
in four independent variables: 

g\ = 1/2^1 — Wj®2 = 0, 
def __ __ 

(5) g 2 = g\ = w2Oi - Ï/1O2 = 0, 

g3 = (û(^) + à(£))U2Û2 + ^ 2 ^ 2 + ^2^2 = 0. 

In a small vicinity near the stationary point u\ = ui = û\ - ui = 0, the set of solutions 
of system (5) have branches. We shall find all these branches by means of the method 
developed in [4] (see also [1]). Taking into account the first terms of the power series 
(3), we find the supports of the polynomials g/ for the system (5): 

£>(£i)= { $ = (2 ,1 ,1 ,0) ,$ = (1,2,0, 1 ) , $ = (1 ,2 ,1 ,0 ) ,$ =(2,1,0,1). 

$ = (0,3,0,1), $ = (0 ,3 ,1 ,0) ,$ = ( 3 , 0 , 1 , 0 ) , $ = ( 3 , 0 , 0 , 1 ) , - - } ; 

D(gi)= { $ = (0 ,1 ,0 ,2) ,$ = (0 ,1 ,1 ,2) ,$ = (i ,o. 1 .2) .$ = (0,1,2,1), 

$ = (0 ,1 ,0 ,3) .$ = (1 ,0 ,0 ,3 ) , $ = (1 ,0 ,3 ,0 ) , $ =(0.1,3,0),-••}; 

D(gi)= { $ = (1 ,0 ,0 ,1) ,$ = (2 ,0 ,1 ,1) ,$ = (1 ,1 ,0 ,2 ) .$ = (1.1.1,1), 

$ = (0 ,2 ,0 ,2) ,$ = (0 ,2 ,1 ,1 ) . $ = (2 .0 .2 ,0 ) . $ =(1,1,2,0) ,---}. 
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For the supports D(gj) obtained above, we can compute the corresponding Newton 
polyhedra and normal cones (see [4]). The computation shows that the system (5) 
has only one truncation whose normal cone is R+Cl, where Q = (— 1. — 1. — 1. — 1 ). 
(R+ = {t G R, t > 0}). The truncated subsystem associated with the cone (R+Q consists 
of 

def , 

(6) 

gT== b\uxuiu\ +b2U\u2ui + b^u\U2U\ + b4u\ii2ii2 

+b5u\~Û2 + bbu\~û\ — b-ju\ïT\ — bgu]ïÏ2 = 0 

and its conjugate equation gi = 0. Considering the vectors T\ - Q\ — Q\ = ( 1 . - 1 . 0 , 0), 
Ti = Q2

7 - Q] = (0,0, 1, - 1 ) and h = Qj - Q] = (0, 1.0, 1 ), we construct a unimodular 
matrix (by adding on an extra vector T4 = (1,0,0,0)) 

a = 

/ l 0 0 0 \ 
1 - 1 0 0 
0 0 1 - 1 

\ 0 1 0 1 / 

with inverse a 

I 1 0 0 0 \ 
1 - 1 0 0 

-1 1 1 1 
\ - l 1 0 1 / 

The power transformations corresponding to these matrices are 

(7) U\ - « i , 

Z = U\U2 

z = û\û2
l 

. r - U2Û1, 

and 

Under the power transformation (7) and the reduction by u\u2 in the first equation, by 
ïi\Û2\n the second one and by U2Û2 in the third one, the system (5) can be converted into 

(8) 

where 

def 
G\ = i/>i(£,z,z, r) — i/>2(£,z,z, r) = 0, 

G2 — V;i — ^2 = 0, 
def G3 = (a(e) + à(ej) + ( V ^ , z, z, r) + ̂ 2(éf, z, z, r)) = 0, 

Oy-(£, u\,U2,u\, ui) - Uji>j(£i z, z, r). 

After the reduction by u\ii2Z~xr in the first equation and by û\Ù2Z~lr in the second one, 
the truncated system (6) is translated into 

, def , (9) G = b]Zzz + b2z + b3zz + b4z
2 + 65 + £<£ - 6 7 ^ - è8z

3 = 0 

and its conjugate equation. From the first equation of system (9) we find 

b5 + b2z + b4z
2 - b$z3 

(10) 
bjz3 — b\z2 — b?>z — Z?6 

If we substitute z into the second equation of system (9) we obtain an algebraic equation 
of degree 10 in z. Consequently, system (9) has ten complex roots (zo, z\ ), but not for all 
of them zo = z\. 
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THEOREM 1. There exists such system (I), that the system (9) has 10 simple roots 
(zo, ZQ), i.e. they are real in real coordinates. 

(ID 

PROOF. Let for system (9) Z?3 = b4 = b5 = b7 = 0. Then (10) is 

b2 - faz2 

bb + biz2 

Denote 

(12) 

Then 

(13) 

and the equation (11) becomes 
(14) 

From this 
(15) 

we see that 

_ b2 - faz2 

be+^z2' 

2 bi — be* 
z = 

b% + b\x 

z J z = —x. 

1*1 = 1 
for solutions which are interesting for us i.e. xx = 1. By squaring both sides of (14) we 
obtain the equation 

- 2 2 2 
Z =X Z . 

According to (13) and (13) after the changed = 1 /x, it turns into 

b2x — bç, ib2 — b()X 
— =— = x 
b%x + b\ b$ + b\x' 

which is equivalent to an equation of degree 4. We need solutions that satisfy the relations 
(14) and (15). To make them more explicit, we multiply the equation (11) z = — xz by z. 
Then according to (13) for xx = 1 we have 

2 b2 - b6x (b2 - b6x)(b\ + fax) 
zz =z —z x =z —x — = =—. 

b\x + b% {bxx + h)(b\x + b$) ' 
Since Im zz = 0 and Rezz > 0, we obtain 

(16) lm(b2 - b6x)(hx + 5i) = 0, |JC| = 1, 

(17) Re(fr2 - fax){fax + b i ) < 0. 

The equations (16) are two quadratic equations with respect to Rex and Imx. After 
the elimination one of them, we obtain equation of degree 4 such that from its roots we 
can choose only those that satisfy the inequality (17). 

Now we prove that there exists such system (16), (17) with 4 solutions. For that in 
the complex x-plain we consider the points of intersection of the circle |x| = 1 and the 
hyperbola \m(b2 — b(,x)(fax + b\) - 0. Here the points x = b2/be and x = —b\ /b% lie 
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in this hyperbola and are used for boundary of those its points that satisfy the inequality 
(17), whereas the point 

x=((b2/bb)-(b]/h))/2 

is the center of the hyperbola. 
For simplicity, we restrict ourself with the case b^ = Z?8 = 1. Then 

(x-b2)(x + bl)= (x 
b2 + b 

• ) - ra 
and 

Re(x-62)(x + M = Re x -
b2 ~b\ 

Im 
( * • 

+^[Re(/?2 + ^,)]2-^[Im(/72+51)]2 , 

lm(x - b2)(x + b\) = Re(x -)lm(* 
b2-b{\ . 1 

+ -Re(è2+*i)Im(62
 + *i). 

On the hyperbola Im(x — b2)(x + b\ ) = 0 the inequality Re(x — b2)(x + b\ ) < 0 means 
that the Re x lies on the interval 

J = (min[ReZ?2. — Re£]],max[ReZ?2, — Re/?i]), 

if Re/?2 7̂  Reel. Further, we restrict ourselves to the case Reb2 ^ Re^i and lmb2 

lmb\. Then the first equation in (16) defines two perpendicular lines 

(18) Rex = - Re(Z?2 — &i)< Inix = - \m(b2 — b\) 

The condition (17) is satisfied on the whole first line and in the interval J on the 
second line. 

Now we consider the case, when both lines (18) intersect the unit circle and both 
points b2 and —b\ lie outside it, i.e., 

| R e 6 2 - R e 6 i | < 2, \\mb2\<\, \b2\ > 1, \b\\ > 1. 

Then the first line intersects the unit circle in two points and the interval J intersects it 
also in two points, i.e. we have 4 solutions of the system (16), (17). 

According to (13), to each suitable value x° there corresponds two values ±zo. Hence 
we have 8 different solutions (z0, z\ ) with z\ = z0 f 0 and oo. 

In addition the equation (9) has the root z0 = 0 since b5 - 0 and the root z0 = oo since 
b-j = 0. Evidently z\ = zo for them. So the equation (9) has 10 roots with that property. 
This finishes the proof of the theorem. 

Now we shall go back, and solve the system (8) with respect to four variables z, z, r, 
e. For small e and r solutions of system (8) belong to the vicinity of the point (zo, ZQ). We 
assume that the point (ZQ,ZO) is the simple root of the system (9), i.e. in it the Jacobian 
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D(G, G)/D(z<z) f 0. Then taking z = zo, z = zo, r = 0, 5 = 0 and applying the Implicit 
Function Theorem we obtain the roots of the system (8) in the form of expansions 

(19) 
z = z0 + 0(r\ 
z = z0 + 0{r\ 
£ = -2Rk[2Re(^i(0,z0 ,z0 ,1)) + 0{r)\ 

Substituting these expansions into (7) we obtain 

(20) 

u2 = i/i(z0 + O(r)) , 
û\ - uYlr(z0z0 + O(r)^ 
Û2 = u\xr[zQ + 0(r)), 

{e = -r(M+0(r)), 

where M = Re[^i(0, z0,z0, l)]/Re*/i. 
After substituting (20) into the sum (3), the first equation of system (2) implies 

d\nu\ 
dt 

= a (-r(M + 0{rj) ) + V0(z0, z0, r), 

which yields u\ = Ceet where 

0 = a(-r(M + o(r)j) + <ip°(z0,z0l r), C = constant. 

Consequently, from (20) we can obtain a family of periodic solutions of the system (2), 
corresponding to the roots (19) of the system (5): 

(21) 

\u2=e&t(zo + 0(rj) \ 
û\ =e-0Vfzozo + O(r)), 

Ô2=e-0/r(zo + O(r)), 
e = - r (M+0( r ) ) , 

As all solutions (zo, zo) obtained by the Theorem 1 are simple, so for each of them we 
can apply the Implicit Function Theorem and find corresponding series (20) and families 
of periodic solutions in form (21). So we have proved the following theorem. 

THEOREM 2. There exist systems (1), in which 10 families of real periodic solutions 
bifurcate from the stationary point y = 0, when £ passes through zero. 

If (zo, zo) is not a simple root of the system (9), we substitute z = zo + 77, z = zo + 77 into 
the system (8), which produces 

def 
H\(e,ri,fj,r) = Gi(e,z0 + 77,z0 + f/,r) = 0, 

(22) 
def 

i/2(e, 77, f/, r) = G2{e, z0 + 77, z0 + rj, r) = 0, 
def 

Hi(e,r), 77, r) = G3(^,z0 + 77,zo + 77,r) = 0. 
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To this system we apply the toroidal blowing up process used to pass from system (5) to 
system (8). In our case the singularity is concentrated at the point e = i] = r = 0. After 
the application of the procedure, the point will be blown up into a plane, and we must 
find several roots of a new truncated system. Sum of their multiplicities is exactly the 
multiplicity of the root (zn.zn). So each of new roots is simpler than the initial root. We 
can iterate this process until we obtain a non singular system. This way we can determine 
all the components of the families of periodic solutions of system (2) which contract to 
the singular point (see [1], [4], [5], [8]). 

In the same manner, one can study periodic solutions of the Hamiltonian system with 
two degrees of freedom near a resonant periodic solution (see [9]). Generally, bifurcations 
of periodic modes in resonant cases from Poiseuille flow, Couette flow and other flows 
were investigated by this way (see [6, 7]). 
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