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Abstract We prove a product formula for the determinant of the cohomology of an étale sheaf with ¢-adic
coefficients over an arbitrary proper scheme over a perfect field of positive characteristic p distinct from
£. The local contributions are constructed by iterating vanishing cycle functors as well as certain exact
additive functors that can be considered as linearised versions of Artin conductors and local e-factors.
‘We provide several applications of our higher dimensional product formula, such as twist formulas for
global e-factors.
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1888 Q. Guignard

1. Introduction

1.1.

Let k be a perfect field of positive characteristic p and let k be an algebraic closure of k.
Let A be a finite field of characteristic ¢ invertible in k or a finite extension of Q. The
e-factor associated with a pair (X,F), where X is a proper k-scheme and F is a bounded
constructible complex of étale A-sheaves on X, is the Galois line given by

ez(X,F) = det(RT(X7,F)) .

In this article, we simply consider this object as a homomorphism from G} = Gal(k/k)
to A*. We will also consider the Euler characteristic

X(X,F) = rk(RI'(X%, F)).

In the case where X is a smooth curve over a finite field, it was conjectured by Langlands
that the global e-factor (X, F) should split as a product of local contributions. This
conjecture was motivated by the corresponding theory of automorphic local e-factors.
Partial results were obtained by Dwork [2] and Deligne [1], and the product formula for
{-adic sheaves on a smooth curve over a finite field was proved in its full generality by
Laumon ([10], Theorem 3.2.1.1). The case of a smooth curve over an arbitrary perfect
field of positive characteristic was handled in [6]. An alternative approach by ‘spreading
out’ in order to reduce to the finite field case was also given by Yasuda in [17, 18, 16].

In the geometric setting of [6], the local e-factors are realised as determinants of
certain Galois modules arising in the cohomology of Gabber-Katz extensions (cf. [6,
Def. 9.2]). These Galois modules are thus linearisations of local e-factors: these are
given by additive functors, whose determinants yield the local factors. In this article
we show how such linearisations, henceforth labelled linearised Artin conductors, allow
splitting higher dimensional global e-factors into a finite product of local contributions.
The resulting higher local e-factors arise as iteration of vanishing cycle functors and of
these linearised Artin conductors. Our main result is the following.

Theorem 1.2. Let k be a perfect field of positive characteristic, and let X be a proper
k-scheme. Let A be a finite field whose order has image 1 in k. Then there exists a
collection

(Bx)ze|x)s

of triangulated functors E, : Dg(X(x),A) — D%(x,A), indexed by the set of closed points
of X, where we denoted by X, the henselisation of X at a point x, such that

(1) for any object F of DY(X,A), we have E, (]:IX(@) ~0 for all but finitely many closed
points x of X;

(2) for any closed point x of X, any object F of D’;(X(z),A) and any object G of
Db(x,M), we have an isomorphism

Ez(}—®5p_lg) ~ B, (F)®g,
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where sp : X () — @ is the canonical specialisation morphism, and this isomorphism
s functorial in F and G;

(3) for any object F of DY(X,A), we have

ex(X,F) = det @Indgf;EI(]ﬂX(m)) ,
z€|X|

—X(X,F) =1k | € IWdG*E.(Fix.,) |
z€|X|

where Gy, = Gal(k/k) is the Galois group of an algebraic closure of k and G, is the
Galois group of k/k(x). Here we pick an arbitrary k-embedding of k(x) in k and
we identify D%(x,\) with the derived category of bounded constructible complezes of
A-modules endowed with a continuous action of Gy.

Remark 1.3. A similar result holds for Q,-sheaves, with ¢ invertible in k, though we
restrict throughout this text to the case of finite coefficients to simplify the exposition.
The same remark applies to Theorems 1.7, 1.8, 1.9 and 1.10.

Theorem 1.2 will be proved in 5.1 for X =P}, and in Section 5 in general. It will be
clear from the proof that the resulting functors E, are not uniquely determined by the
conditions in the conclusion of Theorem 1.2. The factorisation of e7(X,F) in Theorem
1.2 can be written as

rk(Es (Fix, )
X F) = I 6.0 T det( By (Fix,, ) 0 Vera i,

z€|X|

where 0,1, : G — {%1} is the signature homomorphism for the left action of Gy on
Gr/Ge, and veryy, : sz — G2P is the transfer homomorphism associated with the finite
index subgroup G, of Gi. The factors

det (E.(Fix,,,))
thus play the role of local e-factors in higher dimension.

Remark 1.4. It is natural to ask whether it is possible to give a similar product formula
determining the line det(RT'(X,F))~! up to unique isomorphism, functorially in 7, when
the base field k is algebraically closed. It will be clear from the proof of Theorem 1.2 that
a positive answer to the latter question in the case X = IP’}C implies a positive answer for
any proper k-scheme X. However, we do not have any reason to believe that the answer
to this question should indeed be positive.

1.5.

In [13], Takeuchi proves a microlocalisation result for the global e-factor in higher
dimension, thereby generalising Saito’s microlocal index formula from [11]. Unfortunately,
Takeuchi’s microlocal formula does not provide a decomposition of the Galois character
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ez(X,F) but rather of its restriction to Gal(k/k’), where k" is a finite extension of k
contained in k, depending on F. If k is a finite field, this is equivalent to describing the
determinant of the Frobenius element of & on RI'(X3,F), modulo roots of unity.

1.6.
Theorem 1.2 admits the following immediate consequence.

Theorem 1.7. Let X be a proper k-scheme. Let Fy and Fa be objects of D%(X,\) such
that Flix () S isomorphic to Falxn for any closed point x of X. Then we have

X(val) = X(Xv}-Q)a
EE(X,J:1) = EE(X,fQ).

The conclusion of 1.7 regarding Euler characteristics is originally due to Deligne, whose
proof was written by Illusie in [7]. The part concerning e-factors appears to be new, though
the case of a finite base field alternatively follows from the Grothendieck-Lefschetz trace
formula, as was pointed out to the author by Takeshi Saito.

Theorem 1.8. Let S be a Henselian trait of equicharacteristic p, with closed point s such
that k(s) is perfect. Let f: X — S be a proper morphism and let F1 and Fo be objects of
DY(X,A) such that Flx(, 18 1somorphic to Fox for any closed point x of the special
fibre Xs. Then we have

a(SaRf*Fl) = a’(S?Rf*-FQ)a
5§(S7Rf*‘717w) = €§(S,Rf*f2,LU)

for any monzero meromorphic 1-form w on S. Here we denoted by a(S,—) the Artin
conductor (cf. [6], Par. 7.2) and by e35(S, —,w) the geometric local e-factor (cf. [6],
Def. 9.2).

This is a consequence of Theorem 6.1, whose proof relies on Theorem 1.2. The first
equality also follows from a theorem of Vidal [15].

Theorem 1.9 (Twist Formula). Let X be a proper k-scheme and let (E; )¢ x| be as in
Theorem 1.2. Let F be an object of DY(X,A), and let G be a A-local system of constant
rank r on X. We then have

X(X,F®G) =rx(X,F),
(X, F2G) =ep(X,F)" [ (det(Gz)overy )

z€e|X|

rk(Ex(F))

This is an immediate consequence of Theorem 1.2. A similar twist formula was obtained
in [14] in the case of a projective smooth scheme over a finite field. Let us set

cex(F)=— Z rk(E, (F))[z]
z€|X|

as a O-cycle on X. Theorem 1.2 yields deg(cex(F)) = x(X,F), and the conclusion of
Theorem 1.9 can be written as

(X, FRG) = (X, F)" (det(G), — cex (F)),
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where the pairing (—,—) is defined by

(L,c)= H(ﬁaﬁ-OVefz,;/k)m, (1.9.1)

%

for any A-local system L of rank 1 on X and any O-cycle ¢ = >, n;[x;]. When k is
finite and when X is projective smooth, then the main result of [14] and the class field
theory of Kato-Saito [8] yield that ccx(F) coincides in the Chow group C'Hy(X) with
the characteristic class defined in ([11], Definition 5.7). When k is arbitrary and X is
projective smooth, one can simply assert that the difference between ccx (F) and Saito’s
characteristic class belong to the kernel of the pairing 1.9.1. As in ([14], Cor. 5.26), this
implies that the formation of Saito’s characteristic class on projective smooth k-schemes
commutes with proper pushforward, up to a 0-cycle in the kernel of the pairing 1.9.1.
Finally, we notice that Theorem 1.2 actually yields a slightly stronger twist formula:

Theorem 1.10. Let X be a proper k-scheme and let (E;)q¢|x| be as in Theorem 1.2.
Let v be an integer. Let Fy and F» be objects of D%(X,A) such that for any closed point
z of X we have Folx o = F1X 0 ® G, for some free A-module G, of rank r endowed with

an admissible action of Gal(k/k(z)). We then have
X(Xaj_-é) :TX(Xafl)a

€E(X,]:2):€E(X,]:1)T H (det(gr)overz/k)rk(EI(
z€|X|

)

1.11.

Theorem 1.2, as well as its consequences 1.7, 1.8, 1.9, 1.10, can be generalised to
(complexes of) étale sheaves twisted by a 2-cocycle on Gy, (cf. [6], Section 3). We choose
to restrict the exposition to nontwisted sheaves for the sake of simplicity and concision.
Let us, however, notice that in the twist formula 1.9, we can allow G to be a twisted local
system, and this ultimately yields a more precise conclusion in the discussion following
Theorem 1.9 regarding the commutation of the formation of Saito’s characteristic class
with proper pushforward.

1.12.

Let us now describe the organisation of this article. In Section 2 we give a few sorites
on Galois equivariant étale sheaves on schemes. We also study transformations of such
sheaves afforded by A-linear contractions (cf. 2.12).

In Section 3 we give a brief review of nearby and vanishing cycles functors, as presented
in ([5], XIII), and we state a few results regarding the composition of these functors with
a A-linear contraction.

In Section 4, we review the theory of Gabber-Katz extensions, and we use it to provide
three families of A-linear contractions: Katz’s cohomological construction of the Swan
module from ([9], Sect. 1.6; cf. 4.5), a functor refining geometric class field theory (cf. 4.7)
and a linearised Artin conductor (cf. 4.9) that linearises Artin conductors and geometric
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local e-factors. Only the second and third of these constructions will be used in the proof
of our main results, though Katz’s construction was inspirational to us.

Finally, we prove the main Theorem 1.2 in Section 5. We first provide a stronger result
in the case of a projective line in 5.1, by using the product formula from [6]. We then
prove in 5.2 and 5.3 using Chow’s lemma that it is sufficient to prove Theorem 1.2 in the
case of a projective space. The latter case is handled in 5.4 by choosing an arbitrary pencil
and by applying to the latter the product formula from 5.1, as well as the functoriality
properties from Section 3.

1.13. Conventions and notation

Throughout this article, we fix distinct prime numbers p,£. We fix a nontrivial homomor-
phism ¢ : F, — EX , and every finite field A of characteristic ¢ will be assumed to contain
the image of 1. We denote by L, the corresponding Artin-Schreier sheaf on A]%p. For any
F,-scheme X and any global function f in I'(X,0x), we denote by L,{f} the pullback
of L, by the morphism f: X — A%p.

We write ‘qcqs’ for ‘quasi-compact quasi-separated’, and for any scheme S we denote
by Etg the category of qcgs étale S-schemes and by Sg; the étale topos of .S, namely, the
topos of sheaves of sets on the site Etg.

2. Preliminaries

In this section, we record various sorites regarding equivariant sheaves and transforma-
tions thereof. Throughout this section, we let s be the spectrum of a field and we let
S be a separable closure of s. We denote by G, the Galois group of k(35) over k(s). In
particular, the group G, acts on the right on s.

2.1.

Let 6 : Q — G5 be a continuous homomorphism of profinite groups and let Y be an
s-scheme.

Definition 2.2 ([5] XIII 1.1). Let A be aring. Let F be an étale sheaf of sets (respectively
of A-modules) on Yz.

(1) A (left) action of Q compatible with 6 on F is a collection (0(q))qeq of isomorphisms
o(q) : F = 0(q)F, for each ¢ in Q, such that

0(q2)«0(q1) 00 (q2) = 0(q142),

for any ¢1,q2 in Q.

(2) An action of @) compatible with 8 on F is continuous if for any qcqgs étale Y-scheme
U the resulting left action of @ on F(Us) is continuous, when the latter is endowed
with the discrete topology.

(3) We denote by Sh(Y,Q,0) (respectively Sh(Y,Q,0,A)), or simply by Sh(Y,Q)
(respectively Sh(Y,Q,A)) if no confusion can arise from this abuse of notation, the
category of étale sheaves (respectively étale sheaves of A-modules) on Yz endowed
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with a continuous action of () compatible with 8. The morphisms in this category
are the morphisms of sheaves on Yz that commute with the action of Q.

If one takes Y to be the base scheme s, then the category Sh(Y,Q,0) (respectively
Sh(Y,Q,0,A)) is simply the category of sets (respectively of A-modules) endowed with a
continuous left action of @), which we also denoted by @ — Sets (respectively @ —Mod,).

Remark 2.3. One can alternatively describe the topos Sh(Y,Q,0) (respectively the
abelian category Sh(Y,Q,0,A)) as the fibre product BQ Xs,, Ye (respectively as the
category of A-modules in the topos BQ xs,, Ys), where BQ is the topos of sets endowed
with a continuous left action of Q. In particular, the abelian category Sh(Y,Q,0,A) has
enough injectives.

Proposition 2.4. The natural functor Sh(Y) — Sh(Y,Gs,id) is an equivalence of
categories.

This is ([5] XIII 1.1.3(ii)). A quasi-inverse to this functor can be described as follows:
To any object F of Sh(Y,G,,id) one associates the étale sheaf on Y whose sections on a
quasi-compact étale Y-scheme U are given by the G-invariants F(Us)%s.

2.5.

Let A be a ring. Let Y be an s-scheme and let 5 — s’ — s be a factorisation of 5 — s,
where s’ is a finite extension of s. Let us consider a commutative diagram

Q#Gs

T oo 1

Q — Gy

of continuous homomorphisms of profinite groups, with injective vertical arrows. We then
have a restriction functor

Resg, : Sh(Y,Q.0,A) — Sh(Yy,Q',0,q1. M),

obtained by restricting to @’ the action of @ on a given object of Sh(Y,Q,A). This is an
exact and faithful functor. If Q' is an open subgroup of @, then the functor Resg, admits
a left adjoint, the induction functor

Indg, : Sh(Yy,Q',0)01,A) — Sh(Y,Q.0,0),
which is exact as well.
Example 2.6. Let U be an object of Etys,. Then
Agu= Indg,A[Homyg(—,U X g 8)]
is an object of Sh(Y,Q,A). For any object F of Sh(Y,Q,A), the natural homomorphism
Hom(Agr 1, F) = F(U x4 5)?

is an isomorphism.
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Proposition 2.7. Let F be an injective object in Sh(Y,Q,A). Let U = (U; = U)er be a
finite cover in Ety_. Then for any j > 0, the Cech cohomology group HJ (U,F) vanishes.

Because [ is finite, and because any object of Etyg is qcgs, there exists a factorisation
$— s —sasin 2.5 and a cover U’ = (U] — U');er in Etys, such that U is isomorphic
toU' xg 5= (U] X5 — U’ Xy 3);er. We henceforth assume that U is actually equal to
U x5

For any open subgroup Q' of Q whose image by 6 is contained in Gy, let us consider
the chain complex

AQ/J/{/ Lo — @ AQ/’U&,XU’U;I — @AQI’U;O 0=,

10,41 €1 g€l

where the last nonzero term is placed in degree 0 (cf. Example 2.6 for the notation).
If @'(U,}" ) is the Cech complex of F with respect to the cover U, then the natural
homomorphism

Hom(Ag 0, F) — C* (U, F)?

is an isomorphism (cf. Example 2.6). The natural homomorphism Ag/ r = Ags,p7[0] is a
quasi-isomorphism by ([12] 03AT) and by exactness of the induction functor Indg,. By
applying the exact functor Hom(—,F), this yields that the natural homomorphism from
FU )Ql to C*(U,F )Ql is a quasi-isomorphism. The conclusion then follows by taking the
colimit over all open subgroups @’ of Q with image by 6 contained in G .

2.8.

Let 0 : Q — G5 be a continuous homomorphism of profinite groups and let A be a ring. Let
f:Y" =Y be a quasi-compact morphism of s-schemes. For any object F of Sh(Y’,Q,0,A),
with corresponding action (0(¢))qeq, the data (fio(¢))qeq are a continous action of @
on f,F compatible with §. We thus obtain a functor

f« :Sh(Y',Q,0,A) — Sh(Y,Q,0,A).
We similarly have a functor

f71:Sh(Y,Q,0,A) — Sh(Y’,Q,0,A),
which is a left adjoint to f..

Remark 2.9. With the description from Remark 2.3, this pair of adjoint functors is
induced by the morphism of toposes id x f from BQ x,, Y/, to BQ x,, Yz;.

2.10.

Let 6 : Q — G be a surjective continuous homomorphism of profinite groups and let I
be its kernel. Let A be a ring. For any element ¢ of Q) and any object M of I —Mody,
we denote by ¢*M the object of I —Mod, with underlying A-module M, on which an
element ¢ of I acts as m +— qtq—'m. This yields a A-linear functor

q* : I —Mody — I —Modaj,
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and we have (q1¢2)* = ¢3¢;. For any element g of I, we have a A-linear natural
transformation

Ag 1id — ¢7,

given on an object M of I —Mod, by the homomorphism m — gm.

2.11.

For any element g of G, we can form the diagram (¢*M)gco-1(,) with transition
homomorphisms ¢y M — g5 M given by A ! quT. We set

"M = colimgep-1(g)q" M

to be the (filtered) colimit of this diagram. This yields a functor ¢g* from I —Mod, to
itself. The homomorphisms (A;)4co-1(y) define a A-linear natural transformation

Agiid = g™
Definition 2.12. A A-linear (Q,I)-contraction is a A-linear functor
T:1—Modp — Moday,
endowed with a collection 7= (7(g))4ec of A-linear natural transformations
7(9): Tg* =T,
satisfying the following conditions:

(1) The functor T is exact and commutes with small filtered colimits.

(2) If an object M of I —Mod, is finitely generated as a A-module, then T'(M) is a
finitely generated A-module, and there exists an open subgroup @’ of @) such that
for any element g of Q' we have ¢*M = M as an I-module and for g = 6(q), the
composition of 7(g)ar : T(g* M) — T(M) with the isomorphism T'(M) =T (¢* M) =
T(g*M) is the identity endomorphism of T'(M).

(3) For any elements g1,92 of G, the natural transformation 7(g1) o 7(g2)g; from T'g5g7
to T coincides with 7(g1g2).

We will give nontrivial examples of A-linear (Q,I)-contractions in Section 4 (cf. 4.5, 4.7
and 4.9).

2.13.

Let 6: Q — G be a surjective continuous homomorphism of profinite groups with kernel
I and let A be a ring. Let (T,7) be a A-linear (Q,I)-contraction (cf. 2.12). Let G’ be
a closed subgroup of G and let Q' be its inverse image by 6. Then one can construct a
functor

TG/ : Ql — MOdA — G/ — MOdA
as follows. For any element g of G’, we have a A-linear natural transformation

Ag rid = ¢*
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of endofunctors of @' —Mody (cf. 2.10). We then obtain a A-linear natural transformation
T(9)oT(Ag) : To— T,

where ¢ is the forgetful functor from Q' —Mod to I —Mod,. Lemma 2.14 then ensures
that for any object M of Q" —Mod,, one obtains a continuous left action of G’ on T'(M)
by letting an element g of Q" act as (7(g9) 0T'(Ag)) -

Lemma 2.14. For any elements g1,92 of G' we have

7(91) 0T (Ag) 07(92) 0 T(Ag) = 7(9192) 0 T (Agy40)-

Moreover, for any object M of Q' —Mody and element m of T(M) there exists an open
subgroup G" of G’ such that 7(g)T'(Ag)m =m for any element g of G".

The first assertion follows from the identities

T'(Ag,)o7(92) =7(92)91 °T(937g, ),

7(91) 0T(92)97 = 7(9192),
95)‘91 © )‘gz = )‘9192'

The first equality stems from the fact that 7(gs) is a natural transformation, the second
follows from 2.12 (3) and the third identity is tautological. For the last assertion of
Lemma 2.14, we can assume by 2.12 (1) that M is finitely generated as a A-module, and
the conclusion then follows from 2.12 (2).

2.15.

Because T and T are exact functors, we still denote by T and T the functors

T : D(I —Mody,) — D(Mody),
Ta: D(Q — MOdA) — D(G— MOdA)

induced by them on the corresponding derived categories.
Proposition 2.16. We have a bifunctorial isomorphism

L L

T(M @p N)2T(M)®xs N

with M in D~ (I —Modyp) and N in D~ (Modyp). We similarly have a bifunctorial
isomorphism

L L

Tg(M A N) = TG(M) (SN N

with M in D~ (Q —Mody) and N in D~ (G —Mody).

We only prove the first assertion, the second one being similar. Let C be the A-linear
category of bounded above chain complexes with terms in the full subcategory of Mody
consisting of free A-modules. Because 7" is A-linear and commutes with small direct sums
by 2.12 (1), we have a functorial isomorphism

T(MRsN)ZT(M)®s N
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with M in D~ (I —Mod,) and N in C. This isomorphism factors through the quotient
D~ (Mody) of C because for any homomorphism A : Ny — N in C, which is homotopic to
0, the corresponding homomorphisms

T(M ®5 N1) — T(M®@a Ny),
T(M)®a Ny — T(M)@a Ny
vanish in D~ (Mod,).

Corollary 2.17. Let M be an object of I —Mody that is flat as a A-module. Then T (M)
18 a flat A-module.

L
Indeed, for any A-module N, the complex M ®, N is quasi-isomorphic to M @4 N|0]
by flatness of M; hence, Proposition 2.16 yields an isomorphism

T(M) &5 N = T(M @4 N)[0)

L
in D~ (Mody). In particular, the complex T'(M) ®a N is acyclic in nonzero degrees; hence
the flatness of M.

2.18.

Let 0: QQ — G5 be a surjective continuous homomorphism of profinite groups with kernel
I and let A be a ring. Let us consider a A-linear (Q,I)-contraction (T',7) (cf. 2.12). Let
Y be an s-scheme.

Definition 2.19. For any object F of Sh(Y,Q,A), we define T'(F) to be the étale sheaf of
A-modules on Y whose sections on a qcgs étale Y-scheme U are given by the G-invariants
Te, (F(Us))% (cf. 2.13).

The mentioned presheaf is indeed a sheaf by left exactness of the functor M —
Tg.(M)% from Q —Modj, to the category of A-modules.

Proposition 2.20. We have a bifunctorial isomorphism

LU, T(F)) — TIU,F))
for U in EtyE and F in Sh(Y,Q,A).

Ler us consider a factorisation 5 2% s’ — s where s is a finite extension of s and an
object U’ of Ety,, such that U is isomorphic to U’ Xy ,, 5. We henceforth assume that
U is equal to U’ X 4,4, 5. We have a decomposition

U'xs5= H U' Xg.53,
5
and hence a splitting

T(ULF)= @ T(U xs,,35).F)
§i>s’
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and, in particular,

T((ULF)= @ TEOU xy,,5.F))-
52s!

Taking into consideration the action of G4 on the left-hand side (cf. 2.13), we obtain an
isomorphism

Te, (D(Us, F)) 2 Indg:, Ta,, (DU X, 5,F)).
Taking the Gs-invariants, this yields
(U, T(F)) = Te., (TU' Xy 00 5,F) =Te., (TU,F)° .

If s — s’ — s’ is a factorisation of g, where s” is a finite extension of s’, then replacing
s’ and U’ by s” and U’ x4 s” above yields

DU’ %y 8" T(F)) = Tg,, (DU,F)"".

By taking the colimit over s”, we obtain

TUTF)=2T((U,F)).
Corollary 2.21. For any geometric point y of Y, we have a natural isomorphism

T(F), = T(F)

for F in Sh(Y,Q,A). In particular, the functor

T:Sh(Y,Q,A) — Sh(Y,A)
18 exact and commutes with small filtered colimits.

Indeed, we can consider § as a geometric point of Yz and the conclusion follows by
taking the (filtered) colimit of the isomorphisms

U, T(F)) — T((U,F))
from 2.20, where U runs over qcgs étale neighbourhoods of § over Yz.

Corollary 2.22. Let f:Y' =Y be a morphism of s-schemes. For any object F of
Sh(Y,Q,A), the natural homomorphism

FIT(F) = T(fF),
with notation as in 2.8, is an isomorphism.

This is an immediate consequence of 2.21.

Proposition 2.23. Let F be an injective object in Sh(Y,Q,A). Then for any U in Etyg
and any j > 0 we have H'(U,T(F))=0.
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For any étale cover U = (U; — U);es in Ety. with I finite, the Cech complex C*(U,F)
is acyclic in nonzero degree by Proposition 2.7. By Proposition 2.20 and by exactness of
T, we obtain that

C*(UT(F) =T (C*(U,T))

is acyclic as well in nonzero degree. The conclusion then follows from ([12] 03F9).

2.24.

Let 6,A and (T,7) be as in 2.18. Let f: Y’ =Y be a qcqs morphism of s-schemes. For
any object U of Ety, the fibre product U xy Y’ is an object of Ety-. Moreover, for any
object F of Sh(Y,Q,A), we have, with the notation from 2.8,

L(U,T(f.F)) = Te, (f.F(Us)) %
=T, (F(Us xy, Y1)
= F(Uaf*T(‘F))a

and hence a commutative diagram
Sh(Y’,Q,A) —— Sh(Y",A)
e fe
Sh(Y,Q,A) ——— Sh(Y,A)

of abelian categories.

Proposition 2.25. We have a natural isomorphism
Rf,oT =ToRf,
of functors from DT (Y',Q,A) to DT (Y,A).

Indeed, for any injective object F of Sh(Y’,Q,A), the object f.F of Sh(Y,Q,A) is T-
acyclic by exactness of T' (cf. 2.21). Moreover, for any integer j > 0 the restriction of
RIf. T(F) to Yz is the sheaf associated with the presheaf

U s HI(U xy, YAT(F)),

which vanishes by 2.23. Thus T(F) is f.-acyclic. This implies that the canonical
transformations

R(f.oT) = Rf.oT,
R(To f.) = ToRf.

are isomorphisms, and the conclusion then follows from the equality f.oT =T o f,.
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2.26.

Let 0 : Q@ — G4 be a surjective continuous homomorphism of profinite groups with kernel
I and let A be a Noetherian ring. Let Y be a locally Noetherian s-scheme. We denote by
Sh.(Y,Q,A) the full subcategory of Sh(Y,Q,A) consisting of objects F whose underlying
sheaf of A-module on Y5 is constructible (cf. [3], IX 2.3).

Proposition 2.27. Let (T,7) be a A-linear (Q,I)-contraction and let F be an object of
Sh(Y,Q,A).

(1) If the object of Sh(Yz,A) underlying F is locally constant constructible, then T (F)
18 locally constant constructible.

(2) If the object of Sh(Ys,A) underlying F is constructible, then T'(F) is constructible.

Part (1) follows from Corollary 2.21, from 2.12 (2) and from ([3], IX 2.13 (i)). Part (2)
follows from (1) and from Corollary 2.22.

3. Nearby and vanishing cycles

Let S be a scheme and let s be a point of S such that the local ring Og s is a discrete
valuation ring. We denote by § a separable closure of s, by 1 the generic point of the
henselisation Sy of S at s and by 7 a separable closure of the generic point 7z of the
strict henselisation S).

3.1.

Let us denote by G, and G, the Galois group of the extensions 7 — n and 5 —
s respectively. We have a natural specialisation homomorphism 6 : G, — G,. This
homomorphism is surjective and we denote by I, its kernel, so that we have an exact
sequence

1—=1, -G, =G, —1

of profinite groups. In this section, we apply the definitions and results of Section 2 to
Q = G,, and 0 as above.

3.2.

Let f: X — S be an S-scheme. Let us consider the commutative diagram

§L>XXSS(§) = X X583 ——

X X
5 S

Se) S(s)

of S-schemes, where all squares are Cartesian.
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Definition 3.3 ([5], XIII 1.3.2). Let A be a ring and let F be an object of Sh(X,A). We
denote by W} (F) the object of Sh(X,Gy,A) (cf. 2.2) obtained as the pullback by i of the

sheaf of A-modules on X xg S5 whose sections on an object U of Etx x sS( are given
by I'(U x5, 1,F).

This defines a left exact functor
W3 Sh(X,A) = Sh(X,, Gy, A),
thereby inducing a right derived functor
RVS DT (X,A) = DT (X,,G,,A),
namely, the nearby cycles functor (cf. [5], XIII 2.1.1).

3.4.

Let i : Xy — X be the natural closed immersion. The natural cospecialisation homomor-
phism

1 :

i =W
yields a triangulated functor from DT (X,A) to the derived category of the arrow category

of Sh(X,,Gy,A). Its composition with the cone functor is the vanishing cycles functor,
which we denote by

R®% : DT (X,A) = DV (X,,Gyp,A).
We thus have a functorial distinguished triangle

— s s [
i"'F — RU$F — RO}(F) —»,

for F in DT (X,A).

3.5.

Let A be a Noetherian ring annihilated by an integer invertible on s. Let (T,7) be a
A-linear (G, I,,)-contraction (cf. 2.12). The composition of the functor T from 2.19 with
the vanishing cycles functor from 3.4 yields a triangulated functor

TR® :DT(X,A) = DT (X,,A).
We now list a few of its properties.

Proposition 3.6. Let F be an object of D2%(X,A). If f is locally of finite type, then
TR®} belongs to DY%(X,,A).

Under these assumptions, it follows from ([4], [Th. finitude] Th. 3.2) that RU3(F)
belongs to D%(X,,A); hence, R®%(F) belongs as well to D%(X,A) and so does TRO%(F)
by 2.27 (2).

https://doi.org/10.1017/51474748021000037 Published online by Cambridge University Press


https://doi.org/10.1017/S1474748021000037

1902 Q. Guignard
Proposition 3.7. Let h: X' — X be a smooth morphism of S-schemes and let F be an
object of DT (X,\). Then the natural homomorphism

h'TR®%(F) — TR®%, (h~' F)

is an isomorphism, where hs : X, — X is the morphism induced by h. In particular, if f
is smooth, then TR®%(A) vanishes.

This follows from the corresponding property of R¥4 (cf. [5], XIII 2.1.7.1) and from
Corollary 2.22.

Proposition 3.8. Let h: X' — X be a proper morphism of S-schemes and let F be an
object of DT (X',A). Then we have a natural homomorphism

Rhs*TR(I)}h(]:’) — TR®%(Rh..JF)
in DT (Xs,A). In particular, if f is proper then we have a functorial isomorphism
RU(X5,TR®3(F)) = TR (Rf.F)
in D (G5 —Mod,).

This follows from the corresponding property of R¥4 (cf. [5], XIII 2.1.7.2) and from
Proposition 2.25 because h is qcgs.

4. Gabber-Katz extensions and examples of contractions

In this section, we provide examples of linear contractions (cf. 2.12) whose constructions
are based on the theory of Gabber-Katz extensions from [9]. We review the latter in 4.1
by placing these extensions in what we believe to be their rightful context, namely, as
pullbacks along a morphism of toposes, the Gabber-Katz retraction (cf. 4.4). Throughout
this section, we fix a perfect field k of characteristic p > 0.

4.1.

Let S be a smooth k-scheme purely of dimension 1, and let s be a closed point of S.
Thus, the henselisation S,y of S at s is a Henselian trait whose residue field k(s) is a
finite extension of k. Let 7 be a uniformiser of S, thereby inducing a morphism

W:S(S) —)Ai

corresponding to the unique homomorphism k(s)[t] = Og,, of k(s)-algebras sending ¢ to
7. Let us denote by

T - EtS(d) — EtAé

the Gabber-Katz extension functor (cf. [6], Par. 4.2): For any étale S(,-scheme U, the
étale Al-scheme 7, U is the unique (up to unique isomorphism) such Al-scheme endowed
with an isomorphism from its pullback by n to U, whose restriction along the open
immersion G,, s — Al is a special finite étale G,, s-scheme; namely, it is tamely ramified
above oo and its geometric monodromy group has a unique p-Sylow (cf. [6], Par. 4.3).
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We will also label special an étale Al-scheme whose restriction along the open immersion
Gum,s — Al is special or, equivalently, an object of the essential image of .

Proposition 4.2. The functor m¢ has the following properties:
(1) It sends a final object of Ets(s) to a final object of EtAg-
(2) For any cover (U; — U);er of the site Ets(s) , the family (noU; — woU)ier is a cover
n site EtAé.
(3) For any diagram U — W +V in Ets(s) , the natural AL-morphism
WQ(U XWw V) — WQ(U) XﬂQ(W) 7T<>(V)
is an isomorphism.

The Al-scheme Al is special and its pullback by 7 is S(s); hence, 74,5 () isomorphic to
Al. This proves (1). In order to prove (2), we can assume that U is connected, because
the functor m¢, commutes with finite disjoint unions. Moreover, we have that 7~ 7o U; is
isomorphic to U, so that (7~ tmoU;)ser covers m—1meU; hence it is sufficient to prove that
(17t Us)ier covers j~lme U, where j: Gy, s — Al is the natural open immersion. Let ig
in I be such that the image of U, in U contains the generic point of U. Then the image of
j o Ui, in j7me U is nonempty. Because the morphism j~1mo U, — 71w U is finite
étale, its image is closed and open in the connected scheme j~'moU. Consequently, the
morphism j 1w U;, — 7 1me U is surjective. Let us now prove (3). Let

«: FQ(U Xw V) — 7T<>(U) X (W) 7T<>(V)

be the morphism under consideration. Then 7~ ' is an isomorphism, and we infer from

the characterisation of 7, (cf. 4.1) that (3) holds if and only if X = 7¢ (U) Xr (w) 7o (V)
is a special Al-scheme. Because 74 (U) and 7 (V) are tamely ramified above infinity,
so is X. Moreover, the geometric monodromy group of 71X — G,, s is a subgroup of
the product of those of j 71w (U) and j~'me(V), and the class of finite groups that
admit a unique p-Sylow is stable by finite products and subobjects; hence, the geometric
monodromy group of j ' X — G, s belongs to that class. Thus, X is a special Al-scheme,
and (3) holds.

Corollary 4.3. The functor my : Ets(s) — EtM is continuous and the corresponding
functor Sg) ¢¢ — A;,ét commutes with finite limits. In particular, m¢ defines a morphism

of sites from E’GAg to Etg(s).

This follows from Proposition 4.2 and from the fact that Ets(s> is an essentially small
category.

Definition 4.4. Let (S,s,m) be as in 4.1. The Gabber-Katz retraction associated with
these data is the morphism of toposes rs  : A; & — S(s),ét associated with the morphism
of sites m¢ (cf. 4.3).

The composition of 7y, with the morphism 7 : S(4) & — Aé,ét of toposes induced by
7 is (equivalent to) the identity morphism of S(y) ¢; hence the terminology ‘retraction’.
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The pair 1y » = (7”;71”7”5,77*) of adjoint functors can be described as follows. For an object
F of Al 4, the object 74 7. F is the sheaf on Ets(s> given by U +— F(m,U). Moreover, the
functor r;,lr 1 S5(s),60 = A; « 1s the Gabber-Katz extension functor, sending a representable

sheaf U to the representable sheaf m¢U.

4.5.

Let A be a finite field of characteristic ¢, and let (S,s,7) be as in 4.1. Let 7, be the generic
point of Sy, let 5 be a separable closure of s and let 77, be a separable closure of 7s.
Let G,, and G be the Galois group of the extensions 5 — s and 1, — 7,. Let I, be
the kernel of the surjective specialisation homomorphism G, — G,. For an object M of
G, —Mody, we denote by M, the extension by zero to S, of the corresponding sheaf
on 7. In ([9], Sect. 1.6), Katz considered the functor defined by

Sw(M) = H'(Ag,r5 M),

for M in I,,, —Mody, where 75 - is the canonical retraction from 4.4.
For an element g of G, let us construct a natural transformation

7(g) : Swg* — Sw

on I, —Mody (cf. 2.11). We have a functorial isomorphism (g* M), ~ g* M, where g acts
naturally on S(z). We then have functorial isomorphisms

Sw(g*M) ~ H' (Ay,r5 9" M)
~ Hl(Aé,g*r;TlrMy),
where g acts naturally on AL We now compose with the natural homomorphism from

g*rgﬂlng to (gfl)*rg’}ng, in order to obtain a functorial homomorphism from Sw(g* M)
to

HY (AL (g7 ) erg s My) = Sw(M).

Proposition 4.6. The couple (Sw,(7(g9))gec.) is a (Gy,,1I,,)-contraction. Moreover, we
have

rk(Sw(M)) =sw(M),
where sw(M) is the Swan conductor of M.

For the exactness of Sw see ([9], Par. 1.6). Moreover, the functor Sw commutes with
small filtered colimits because that property is satisfied by the functors (—)i, s 717 and

H'(AL —). Thus, 2.12(1) is satisfied. The composition formula 2.12(3) is immediate,
whereas 2.12(2) follows from preservation of constructibility in étale cohomology.

4.7.

We retain the notation from 4.5. Let us set 7 = (1 —7~!)~!. The uniformiser 7 is uniquely
determined by 7, because we have m = (1 —7~1)71. Let 1:5 — Al be the 5-point 1 of AL
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Let us set
CFT#(M) =r; L(M)y,

for M in I, — Moda. This is naturally a A-linear (G,,,I,, )-contraction, with 7(g) given
for g in G4 by the natural composition

CFTx(g"M) =rg (9" M)y ~ g*r; L(My)y ~rg (M) = CFTx(M).

The functor CFT; can be considered as constituting a linearised class field theory for ns,
as indicated by the following result.

Proposition 4.8. Let A be a field of characteristic £. Let M be an object of Gy, —
Mody and let D be a divisor on S, such that det(M) has ramification bounded D (cf.
(6], Def. 5.17). Let Xaet(nry be the multiplicative local system on Pic(S(s),D)s (cf. [6],
Def. 5.20) associated with det(M) by geometric class field theory (cf. [6], Th. 5.25). Then
we have an equality

(Xaet(an)) () = det(CFTz(M))
of characters of G, with the notation from ([6], Par. 7.11).

Indeed, we have
det(CFT#(M)) = CFTx(det(M)).
By ([6], Par. 5.34), the pullback of the multiplicative local system xget(ary by the
morphism
Gm,k — PiC(S(s),D)S,

which sends the coordinate t to 1 —tr !, is the Gabber-Katz extension of det(M) with
respect to the uniformiser 7. We thus have

(Xdet(ar))|1—r—1 = det(CFTx(M));

hence the conclusion.

4.9.

We still retain the notation from 4.5. Let A be a finite Z/¢"Z algebra for some integer
n. The profinite group I,,, admits a unique p-Sylow subgroup P, the wild inertia group
associated with (S(),75)-

Definition 4.10. A continuous representation of G, on a A-module M is totally wildly
ramified if the submodule M* of P-invariant elements vanishes.

Example 4.11. Let ¢ : F, = A* be a nontrivial homomorphism and let f be an element
of k(ns) whose valuation is negative and prime to p. Then the continuous representation
of Gy, corresponding to L,{f} is totally wildly ramified. The latter assertion holds as
well for F® Ly{f} for any tamely ramified lisse étale sheaf of A-modules F on 7, because
P acts trivially on Fa-.
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Proposition 4.12. Let M be a A-module endowed with a continuous A-linear left action
of Gy, and let F be the corresponding lisse étale sheaf of A-modules on n. If M is totally
wildly ramified (cf. 4.10) then the canonical homomorphism

W F — Rj.F,
where j :ns — S is the canonical open immersion, is a quasi-isomorphism.

This amounts to the acyclicity of the fibre of Rj,F at §; that is, to the vanishing of
HY(I, M) for each integer b. We have the Hochschild-Serre spectral sequence

H(I,,/P,H"(P,M)) = H*"(I, ,M).

The groups H®(P,M) vanish for b # 0 because P is a p-group and M is of (-torsion,
and H°(P,M) = MY vanishes because M is assumed to be totally wildly ramified. Thus,
HPY(P,M) vanishes for any j, and consequently so does H®(I,,_,M).

Proposition 4.13. Let M be a A-module endowed with a continuous A-linear left action
of I,,. Then the canonical homomorphism

RUc(ALrs My @ Ly{—t}) = RU(ALrs L My ® Ly {—t})

is a quasi-isomorphism. Moreover, the complex RI‘(A%,r;TlrM! ® Ly{—t}) is concentrated
i degree 1.

The first assertion follows from Example 4.11 and from Proposition 4.12. The second
assertion follows from the vanishing of H°(AL,r M, ® L,{—t}) and from the fact that

Ry
the étale cohomological dimension of a smooth affine curve over a separably closed field

is at most 1.
Corollary 4.14. The functor
Arty: M — H} (AL LMy @ Ly{—t})

from I, —Moda to Mody is additive and exact and commutes with base change along
homomorphisms A — A of finite Z/{"Z algebra.

This is an immediate consequence of Proposition 4.13. We note that Art, is naturally
endowed with a structure of A-linear (G,,,1I,, )-contraction, with (7(g))gec, constructed
as in 4.5.

Proposition 4.15. Let A be a finite field of characteristic £. Let M be a A-module
endowed with a continuous A-linear left action of G,,. Then we have

tk(Art, (M)) = k(M) +sw(M) = a(S(s), M),
det(Art,(M)) = e(S(s), My, dr),

where a(S(s),—) is the Artin conductor (cf. [6], Par. 7.2) and £(S(,),—) is the geometric
local e-factor from ([6], Def. 9.2).

The first assertion follows from the Grothendieck-Ogg-Shafarevich formula, and the
second one matches the definition of geometric local e-factors in ([6], Def. 9.2).
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Corollary 4.16. Let A be a finite field of characteristic £, and let F be an object of
DY(S(s),A). Then we have
rk(ArtﬂRqﬁsd(f)) = a(S(S)J-'),
det(Art, RO{y(F)) = e(S(s), F,dm).

This follows from Propositions 4.15 and 2.16 and from the fact that Art,(A) = A.

5. Proof of Theorem 1.2

In this section, we prove Theorem 1.2. The preliminary paragraph 5.1 provides a more

detailed conclusion in the case of a projective line. We then explain how to reduce to

projective schemes by using Chow’s lemma in 5.2. Theorem 1.2 is then reduced to the case

of projective spaces in 5.3, and the latter case is handled by induction on the dimension
5.4. Throughout this section, we denote by A a finite extension of Fy.

5.1.

Let S =P}, and let F be an object of D2(S,A). We denote by ¢ the canonical coordinate
on the open subset A} of S. By the product formula ([6], Th. 1.9), we have, with notation
as in ([6], Par. 3.26),

r (Ses): Fissy)
EE(Sa]:) ch(}((}—) (S(oo)a]:ls( )7 H 5s/k © Vers/k( (S(s ]:|S(<)a ))
s€lAf]

= X (Xer( 7)) (—17)E(S(00)s Fis ) A1)

a(S(s),Fs(ay)
H 6s/k () Vers/k (5(5(5)7}15(5),dt)) .
se|Ag|

For any closed point s of A}, we have dt = d(t—t(s)) and 75 =t —¢(s) is a uniformiser of
S(s)- For s =00, we set T = t~!. Then Corollary 4.16 yields

a(Ss): Fls gy )

5 Ver, 1 (E(S(S),ﬂ S(S),dﬁs)) — det (Indgi"Artﬂs R(I)fd(]-")) :

for any closed point s of P}. By Proposition 4.8, we further have
(Xdet(Fyo)) (—7) = det (CFT, 1 ()~ det (CFT 1 (Fy) ™

We thus obtain that e4(S,F) coincides with

det (CFT, 1 RO F(—1)) " det (CFT_, 1 RUFF) " ] det (Indg’;Artﬂstbfd(}")).
se|PL]

Moreover, the sum

—1k(CFT;-1 RU F(—1)) —rk(CFT_;—- 1 RUF) + Z rk(Indg:ArtﬁsR@fd(]:D
se|P}|
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is equal, by Corollary 4.16, to

—2rk(F)+ > [k(s) : Kla(S(s), Fs,.,)-

s€|]P’]1€\

The latter sum is equal to the Euler characteristic —x(S5,F) by the Grothendieck-Ogg-
Shafarevich formula.

5.2.

Let us assume that Theorem 1.2 is proved for any projective k-scheme. Let us then
prove that Theorem 1.2 holds for any proper k-scheme X. We argue by induction on
the dimension of X, which is henceforth assumed to be at least 1 because 0-dimensional
schemes are projective.

By Chow’s lemma, there exists a proper morphism f: X’ — X, which is an isomorphism
above a dense open subset U of X, such that X’ is projective. Let Z/ = X'\ f~}(U) and
Z =X\U. Because X' and Z' are projective, and because Z has dimension strictly smaller
than X, the preliminary assumption and the induction hypothesis yield that Theorem 1.2
holds for X', Z" and Z; hence the existence of collections (Ex’ 2/)ereix7|s (Ez1,21)2 €12
and (Ez .).¢c|z of triangulated functors satisfying the conclusion of Theorem 1.2 for
X',Z" and Z, respectively.

Let F be an object of D%(X,A). Then ez(X,F) coincides with ex(Z,F)egp(X',.F)ex
(Z',F)~1 and is therefore equal to the determinant of

G -1
D mdg Bz (Fiz.)® P Wdg:, Ex o (f Fix, )
2€|Z| z'e| X’
@D mdg: Bz (71 Fizy, )
z'€|Z’|

This yields the conclusion by setting for any closed point = of X,
Eu(G) = Ez2G2,)0 @ W, (Bxw(f 7Gx, )@ Bz (G2, 1)
z'€|f ()]

if  belongs to Z and

Ex .(G) = EX’,ffl(ﬂ”)(f g‘Xff—lw))

)

otherwise.

5.3.

Let +: X — ]P’g be a closed immersion into a projective space IE”%, for some integer d.
If Theorem 1.2 holds for P¢, so that we have a collection (Epg’aj)xewﬂ of triangulated
functors, then Theorem 1.2 also holds for X by setting

Er(g) = EPZ,L(%) (L*g)
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5.4.

Let us prove Theorem 1.2. By 5.2 and 5.3, it is sufficient to consider the case where
X =P(V) is the projective space parametrising hyperplanes in a k-vector space V. We
denote by d+ 1 the dimension of V', and we argue by induction on d, the case d =0 being
immediate. We henceforth assume that d is greater than 0.

Let e1,es be a basis of a 2-dimensional sub-k-vector space W of V' and let X’ be the
flag variety parametrising pairs ([t1 : ta],H), where [t; : 5] is a point of P} and H is an
hyperplane in V' containing tie; +t2es. Let f: X' — P} and r: X’ — P(V) be the first
and second projections, respectively.

Let F be an object of D%(P(V),A). The morphism r is an isomorphism outside the
closed subscheme ¢ : P(V/W) — P(V) and is a P!-bundle above P(V/W); hence,

eg(P(V),F) = (X' r " F)eg(P(V/W),.  F(=1)) 7! (5.4.1)
= e (Pp, R Fep(P(V/W),  F(-1)) 7"
By 5.1, the homomorphism ez (P}, Rf,r~'F) is the determinant of
CFT,-1 RUFG(1)(—1) & CFT_ RUSG[1] & P Indg* Art., RD3(G),
se[PL|
where G = Rf,.r—!F. Moreover, by 3.8 we have a functorial isomorphism
Artr, R}, (G) ~ RT (XL, Artr, RO (r~ ' F)).

We similarly have

CFT;—1 RUYG(—1) = RI(XL,CFT,— RYF (r ' F(-1)))

CFT_4-1 RUYG = RT (X, CFT_,-1 RUF (r~ ' F)).

For each closed point s = [t1,t2] of Pi, the fibre X/ is the projective space associated
with the quotient of V ®j k(s) by the k(s)-line k(s)(tie1 + tee2). In particular, the
induction hypothesis applies to X, and we therefore have a collection (Ex z/).r¢|x:|
of triangulated functors satisfying the conclusion of Theorem 1.2 for the s-scheme X.
Thus, ez (P}, Rf.r~'F) is the determinant of

P mdg Ex, o (CFT, - RIF (r~ ' F(-1))) (5.4.3)
x' €| X! |

® @ g Ex, o (CFT_ RUF (r~ F)) (5.4.4)
2 e|XL,|

o P mdgtE ,)7x/(Artﬂf(I,)R<I>;($)(7"71]-')). (5.4.5)
' €| X

One should note that »—! F is universally locally acyclic with respect to f above a dense
open subscheme of P} by ([4], [Th. finitude] Theorem 2.13); hence, R®%(r~'F) vanishes
for all but finitely many closed points s of P}. This and the induction hypothesis ensure
that only finitely many terms contribute in the above sum. The conclusion then follows
from 5.4.2 and from the induction hypothesis applied to P(V/W): The property 1.2(1)
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has already been discussed, the property 1. 2(3) holds by construction and it remains to

clarify why 1.2(2) holds as well. For a point ' € | X/_| and for an object G of D%(r(2’),A),

the pullback by the specialisation map sp : (P(V') ((27)) )6t — r(2')¢; yields an object sp -1g

of DY(P(V) (r(zr)),A). For F in DY(P(V)((47)), ), we then have
R\IJ?O(T_l(]:Q?sp_lQ)(—l)) ~ R\I/?O(r_l(]:(—l))) ®r_1sp_1g|Xéc.

Then 2.16 yields a functorial isomorphism

CFT;- RYY (r H(F®sp 'G)(—1)) ~ CFT, s R¥F (r ' F(-1)) @r 'sp~'Gix/ .

Because Ex:_ . satisfies the twist formula as well by induction, we obtain the property
1.2(2) for Ex;_ 4(CFT;-1 RUP (r~'F(~1))). The same argument provides 1.2(2) for the
other terms in 5.4.5; hence the conclusion.

6. Proof of Theorem 1.8
In this section, we prove Theorem 6.1, of which Theorem 1.8 is an immediate consequence.

Theorem 6.1. Let A be a finite field of characteristic £. Let S be a Henselian trait of
equicharacteristic p, with closed point s such that k(s) is perfect, and let w be a nonzero
meromorphic differential 1-form on S. Let f: X — S be a proper morphism. Then there
exists a collection

(Ex)IE\XS\
of triangulated functors E, : DE(X(QC),A) — D%(x,A), indexed by the set of closed points
of the special fibre X, such that
(1) for any object F of D(X,A), we have Em(]ﬂx(m)) ~0 for all but finitely many closed
points x of X;
(2) for any closed point = of X, any object F of D:(X(,),A) and any object G of
Db(x,M), we have an isomorphism

E.(Fosp 'G)~ E,(F)®6,

where sp : X,y — x is the canonical specialisation morphism, and this isomorphism
18 functorial in F and G;

(3) for any object F of DY(X,A), we have

es(S,Rf.Fw)=det | @ Idg: Eo(Fix,,,) |

€| X, |

a(S,Rf. Fw)=1k | @ Idg E.(Fix,,) |,

z€|X,|

where 3 is a separable closure of s with Galois group G5 and where a(S, —,w) is the
Artin conductor (cf. [6], Par. 7.2).
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Let 7 be a uniformiser of .S, and let us write w = adn for some nonzero element « of the
function fields k(n) of S. We denote by v(«) the valuation of « in the discretely valued
field k(). For any object G of D%(S,A), we have

£5(5,G,) = £5(5. 6. (Xater(g,)) (@) ey @),
a(8,G,w) = a(S,G) +v(a)rk(Gy),

with notation as in ([6], Def. 9.2) or Proposition 4.8. It is therefore enough to produce
families (E}),e|x,| and (E2),¢|x.| of triangulated functors as in Theorem 6.1 (1), (2)

such that
es(S,Rf.F,dr) =det | @ Indg E}(Fix,,,) |
€| Xs|
a(S,Rf.F) =1k | @ md§ E}(Fix,,) |,
€| Xs|
and

<Xdet(gn)>( )chv(a)rk(]:n):det @ IndG *F]X( ) )
z€| X |

v(a)rk(G,) =1k @ IndG ]:\X(,))

€| Xs|

In order to construct (E}),c|x,|, we first notice that Corollary 4.16 and Proposition 3.8
yield that e5(S,Rf.F,dn) and a(S,Rf.F) are respectively the determinant and rank of
the complex

Art, RO{ (RfF) = RI'(X5,Art, RO (F)).
If (Ex,,z)ze|x,| is as in Theorem 1.2 applied to the proper s-scheme X, then we can set
E,(F) = Ex, o(Art, R®%(F)).

For (EZ),e|x.|, we can assume by additivity that « is a uniformiser on S, in which case
Proposition 4.8 ensures that it is enough to set

Ei(]:):EXS,:L’(CFTQR\D;(}—)(_l))

Remark 6.2. Let X be a smooth projective curve of a field k of positive characteristic
p and let F be an object of D%(X,A). The product formula for curves expresses the
determinant of RI'(X3,F) as a product of finitely many local e-factors, which are
invariants attached to Galois representations of 1-dimensional local fields. If k is itself
a 1-dimensional local field (i.e., a complete discrete valuation field with perfect residue
field of positive characteristic) of positive characteristic, then the method described in
this section decomposes the local e-factor of RI'(X%,F) as a product of finitely many
contributions, namely, 2-dimensional local e-factors, which are invariants attached to
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Galois representations of 2-dimensional local fields of positive characteristic (i.e., complete
discrete valuation fields of positive characteristic whose residue fields are 1-dimensional
local fields). By iterating this procedure, one can attach an n-dimensional local e-factor
to Galois representations of n-dimensional local fields of positive characteristic such that
if k£ is an n-dimensional local field of positive characteristic then the n-dimensional local
e-factor of RI'(X%,F) factors as the product of finitely many (n + 1)-dimensional local
e-factors.
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