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Abstract We prove a product formula for the determinant of the cohomology of an étale sheaf with �-adic
coefficients over an arbitrary proper scheme over a perfect field of positive characteristic p distinct from
�. The local contributions are constructed by iterating vanishing cycle functors as well as certain exact
additive functors that can be considered as linearised versions of Artin conductors and local ε-factors.
We provide several applications of our higher dimensional product formula, such as twist formulas for
global ε-factors.
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1888 Q. Guignard

1. Introduction

1.1.

Let k be a perfect field of positive characteristic p and let k be an algebraic closure of k.
Let Λ be a finite field of characteristic � invertible in k or a finite extension of Q�. The

ε-factor associated with a pair (X,F), where X is a proper k-scheme and F is a bounded

constructible complex of étale Λ-sheaves on X, is the Galois line given by

εk(X,F) = det(RΓ(Xk,F))−1.

In this article, we simply consider this object as a homomorphism from Gk = Gal(k/k)
to Λ×. We will also consider the Euler characteristic

χ(X,F) = rk(RΓ(Xk,F)).

In the case where X is a smooth curve over a finite field, it was conjectured by Langlands

that the global ε-factor εk(X,F) should split as a product of local contributions. This

conjecture was motivated by the corresponding theory of automorphic local ε-factors.

Partial results were obtained by Dwork [2] and Deligne [1], and the product formula for
�-adic sheaves on a smooth curve over a finite field was proved in its full generality by

Laumon ([10], Theorem 3.2.1.1). The case of a smooth curve over an arbitrary perfect

field of positive characteristic was handled in [6]. An alternative approach by ‘spreading
out’ in order to reduce to the finite field case was also given by Yasuda in [17, 18, 16].

In the geometric setting of [6], the local ε-factors are realised as determinants of

certain Galois modules arising in the cohomology of Gabber-Katz extensions (cf. [6,
Def. 9.2]). These Galois modules are thus linearisations of local ε-factors: these are

given by additive functors, whose determinants yield the local factors. In this article

we show how such linearisations, henceforth labelled linearised Artin conductors, allow

splitting higher dimensional global ε-factors into a finite product of local contributions.
The resulting higher local ε-factors arise as iteration of vanishing cycle functors and of

these linearised Artin conductors. Our main result is the following.

Theorem 1.2. Let k be a perfect field of positive characteristic, and let X be a proper

k-scheme. Let Λ be a finite field whose order has image 1 in k. Then there exists a
collection

(Ex)x∈|X|,

of triangulated functors Ex : Db
c(X(x),Λ)→ Db

c(x,Λ), indexed by the set of closed points

of X, where we denoted by X(x) the henselisation of X at a point x, such that

(1) for any object F of Db
c(X,Λ), we have Ex(F|X(x)

)� 0 for all but finitely many closed

points x of X;

(2) for any closed point x of X, any object F of Db
c(X(x),Λ) and any object G of

Db
c(x,Λ), we have an isomorphism

Ex(F ⊗ sp−1G)� Ex(F)⊗G,
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where sp :X(x) → x is the canonical specialisation morphism, and this isomorphism
is functorial in F and G;

(3) for any object F of Db
c(X,Λ), we have

εk(X,F) = det

⎛
⎝ ⊕

x∈|X|
IndGk

Gx
Ex(F|X(x)

)

⎞
⎠,

−χ(X,F) = rk

⎛
⎝ ⊕

x∈|X|
IndGk

Gx
Ex(F|X(x)

)

⎞
⎠,

where Gk =Gal(k/k) is the Galois group of an algebraic closure of k and Gx is the
Galois group of k/k(x). Here we pick an arbitrary k-embedding of k(x) in k and

we identify Db
c(x,Λ) with the derived category of bounded constructible complexes of

Λ-modules endowed with a continuous action of Gx.

Remark 1.3. A similar result holds for Q�-sheaves, with � invertible in k, though we

restrict throughout this text to the case of finite coefficients to simplify the exposition.

The same remark applies to Theorems 1.7, 1.8, 1.9 and 1.10.

Theorem 1.2 will be proved in 5.1 for X = P1
k and in Section 5 in general. It will be

clear from the proof that the resulting functors Ex are not uniquely determined by the
conditions in the conclusion of Theorem 1.2. The factorisation of εk(X,F) in Theorem

1.2 can be written as

εk(X,F) =
∏

x∈|X|
δ
rk(Ex(F|X(x)

))

x/k det(Ex(F|X(x)
))◦verx/k,

where δx/k : Gk → {±1} is the signature homomorphism for the left action of Gk on

Gk/Gx, and verx/k :G
ab
k →Gab

x is the transfer homomorphism associated with the finite

index subgroup Gx of Gk. The factors

det
(
Ex(F|X(x)

)
)

thus play the role of local ε-factors in higher dimension.

Remark 1.4. It is natural to ask whether it is possible to give a similar product formula
determining the line det(RΓ(X,F))−1 up to unique isomorphism, functorially in F , when

the base field k is algebraically closed. It will be clear from the proof of Theorem 1.2 that

a positive answer to the latter question in the case X = P1
k implies a positive answer for

any proper k-scheme X. However, we do not have any reason to believe that the answer

to this question should indeed be positive.

1.5.

In [13], Takeuchi proves a microlocalisation result for the global ε-factor in higher

dimension, thereby generalising Saito’s microlocal index formula from [11]. Unfortunately,

Takeuchi’s microlocal formula does not provide a decomposition of the Galois character
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εk(X,F) but rather of its restriction to Gal(k/k′), where k′ is a finite extension of k

contained in k, depending on F . If k is a finite field, this is equivalent to describing the
determinant of the Frobenius element of k on RΓ(Xk,F), modulo roots of unity.

1.6.

Theorem 1.2 admits the following immediate consequence.

Theorem 1.7. Let X be a proper k-scheme. Let F1 and F2 be objects of Db
c(X,Λ) such

that F1|X(x)
is isomorphic to F2|X(x)

for any closed point x of X. Then we have

χ(X,F1) = χ(X,F2),

εk(X,F1) = εk(X,F2).

The conclusion of 1.7 regarding Euler characteristics is originally due to Deligne, whose
proof was written by Illusie in [7]. The part concerning ε-factors appears to be new, though

the case of a finite base field alternatively follows from the Grothendieck-Lefschetz trace

formula, as was pointed out to the author by Takeshi Saito.

Theorem 1.8. Let S be a Henselian trait of equicharacteristic p, with closed point s such
that k(s) is perfect. Let f :X → S be a proper morphism and let F1 and F2 be objects of

Db
c(X,Λ) such that F1|X(x)

is isomorphic to F2|X(x)
for any closed point x of the special

fibre Xs. Then we have

a(S,Rf∗F1) = a(S,Rf∗F2),

εs(S,Rf∗F1,ω) = εs(S,Rf∗F2,ω)

for any nonzero meromorphic 1-form ω on S. Here we denoted by a(S,−) the Artin

conductor (cf. [6], Par. 7.2) and by εs(S, − ,ω) the geometric local ε-factor (cf. [6],
Def. 9.2).

This is a consequence of Theorem 6.1, whose proof relies on Theorem 1.2. The first
equality also follows from a theorem of Vidal [15].

Theorem 1.9 (Twist Formula). Let X be a proper k-scheme and let (Ex)x∈|X| be as in

Theorem 1.2. Let F be an object of Db
c(X,Λ), and let G be a Λ-local system of constant

rank r on X. We then have

χ(X,F ⊗G) = rχ(X,F),

εk(X,F ⊗G) = εk(X,F)r
∏

x∈|X|

(
det(Gx)◦verx/k

)rk(Ex(F))
.

This is an immediate consequence of Theorem 1.2. A similar twist formula was obtained

in [14] in the case of a projective smooth scheme over a finite field. Let us set

ccX(F) =−
∑

x∈|X|
rk(Ex(F))[x]

as a 0-cycle on X. Theorem 1.2 yields deg(ccX(F)) = χ(X,F), and the conclusion of
Theorem 1.9 can be written as

εk(X,F ⊗G) = εk(X,F)r〈det(G),− ccX(F)〉,
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where the pairing 〈−,−〉 is defined by

〈L,c〉=
∏
i

(Lxi
◦verxi/k)

ni, (1.9.1)

for any Λ-local system L of rank 1 on X and any 0-cycle c =
∑

ini[xi]. When k is

finite and when X is projective smooth, then the main result of [14] and the class field

theory of Kato-Saito [8] yield that ccX(F) coincides in the Chow group CH0(X) with
the characteristic class defined in ([11], Definition 5.7). When k is arbitrary and X is

projective smooth, one can simply assert that the difference between ccX(F) and Saito’s

characteristic class belong to the kernel of the pairing 1.9.1. As in ([14], Cor. 5.26), this
implies that the formation of Saito’s characteristic class on projective smooth k-schemes

commutes with proper pushforward, up to a 0-cycle in the kernel of the pairing 1.9.1.

Finally, we notice that Theorem 1.2 actually yields a slightly stronger twist formula:

Theorem 1.10. Let X be a proper k-scheme and let (Ex)x∈|X| be as in Theorem 1.2.

Let r be an integer. Let F1 and F2 be objects of Db
c(X,Λ) such that for any closed point

x of X we have F2|X(x)
�F1|X(x)

⊗Gx for some free Λ-module Gx of rank r endowed with

an admissible action of Gal(k/k(x)). We then have

χ(X,F2) = rχ(X,F1),

εk(X,F2) = εk(X,F1)
r

∏
x∈|X|

(
det(Gx)◦verx/k

)rk(Ex(F))
.

1.11.

Theorem 1.2, as well as its consequences 1.7, 1.8, 1.9, 1.10, can be generalised to

(complexes of) étale sheaves twisted by a 2-cocycle on Gk (cf. [6], Section 3). We choose
to restrict the exposition to nontwisted sheaves for the sake of simplicity and concision.

Let us, however, notice that in the twist formula 1.9, we can allow G to be a twisted local

system, and this ultimately yields a more precise conclusion in the discussion following
Theorem 1.9 regarding the commutation of the formation of Saito’s characteristic class

with proper pushforward.

1.12.

Let us now describe the organisation of this article. In Section 2 we give a few sorites
on Galois equivariant étale sheaves on schemes. We also study transformations of such

sheaves afforded by Λ-linear contractions (cf. 2.12).

In Section 3 we give a brief review of nearby and vanishing cycles functors, as presented
in ([5], XIII), and we state a few results regarding the composition of these functors with

a Λ-linear contraction.

In Section 4, we review the theory of Gabber-Katz extensions, and we use it to provide
three families of Λ-linear contractions: Katz’s cohomological construction of the Swan

module from ([9], Sect. 1.6; cf. 4.5), a functor refining geometric class field theory (cf. 4.7)

and a linearised Artin conductor (cf. 4.9) that linearises Artin conductors and geometric
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local ε-factors. Only the second and third of these constructions will be used in the proof
of our main results, though Katz’s construction was inspirational to us.

Finally, we prove the main Theorem 1.2 in Section 5. We first provide a stronger result

in the case of a projective line in 5.1, by using the product formula from [6]. We then
prove in 5.2 and 5.3 using Chow’s lemma that it is sufficient to prove Theorem 1.2 in the

case of a projective space. The latter case is handled in 5.4 by choosing an arbitrary pencil

and by applying to the latter the product formula from 5.1, as well as the functoriality

properties from Section 3.

1.13. Conventions and notation

Throughout this article, we fix distinct prime numbers p,�. We fix a nontrivial homomor-

phism ψ : Fp → F
×
� , and every finite field Λ of characteristic � will be assumed to contain

the image of ψ. We denote by Lψ the corresponding Artin-Schreier sheaf on A1
Fp
. For any

Fp-scheme X and any global function f in Γ(X,OX), we denote by Lψ{f} the pullback

of Lψ by the morphism f :X → A1
Fp
.

We write ‘qcqs’ for ‘quasi-compact quasi-separated’, and for any scheme S we denote

by ÉtS the category of qcqs étale S-schemes and by Sét the étale topos of S, namely, the

topos of sheaves of sets on the site ÉtS .

2. Preliminaries

In this section, we record various sorites regarding equivariant sheaves and transforma-
tions thereof. Throughout this section, we let s be the spectrum of a field and we let

s be a separable closure of s. We denote by Gs the Galois group of k(s) over k(s). In

particular, the group Gs acts on the right on s.

2.1.

Let θ : Q → Gs be a continuous homomorphism of profinite groups and let Y be an
s-scheme.

Definition 2.2 ([5] XIII 1.1). Let Λ be a ring. Let F be an étale sheaf of sets (respectively

of Λ-modules) on Ys.

(1) A (left) action of Q compatible with θ on F is a collection (σ(q))q∈Q of isomorphisms
σ(q) : F → θ(q)∗F , for each q in Q, such that

θ(q2)∗σ(q1)◦σ(q2) = σ(q1q2),

for any q1,q2 in Q.

(2) An action of Q compatible with θ on F is continuous if for any qcqs étale Y -scheme

U the resulting left action of Q on F(Us) is continuous, when the latter is endowed

with the discrete topology.

(3) We denote by Sh(Y ,Q,θ) (respectively Sh(Y ,Q,θ,Λ)), or simply by Sh(Y ,Q)

(respectively Sh(Y ,Q,Λ)) if no confusion can arise from this abuse of notation, the

category of étale sheaves (respectively étale sheaves of Λ-modules) on Ys endowed
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with a continuous action of Q compatible with θ. The morphisms in this category
are the morphisms of sheaves on Ys that commute with the action of Q.

If one takes Y to be the base scheme s, then the category Sh(Y ,Q,θ) (respectively

Sh(Y ,Q,θ,Λ)) is simply the category of sets (respectively of Λ-modules) endowed with a

continuous left action of Q, which we also denoted by Q−Sets (respectively Q−ModΛ).

Remark 2.3. One can alternatively describe the topos Sh(Y ,Q,θ) (respectively the

abelian category Sh(Y ,Q,θ,Λ)) as the fibre product BQ×sét Yét (respectively as the

category of Λ-modules in the topos BQ×sét Yét), where BQ is the topos of sets endowed
with a continuous left action of Q. In particular, the abelian category Sh(Y ,Q,θ,Λ) has

enough injectives.

Proposition 2.4. The natural functor Sh(Y ) → Sh(Y ,Gs,id) is an equivalence of

categories.

This is ([5] XIII 1.1.3(ii)). A quasi-inverse to this functor can be described as follows:

To any object F of Sh(Y ,Gs,id) one associates the étale sheaf on Y whose sections on a

quasi-compact étale Y -scheme U are given by the Gs-invariants F(Us)
Gs .

2.5.

Let Λ be a ring. Let Y be an s-scheme and let s → s′ → s be a factorisation of s → s,
where s′ is a finite extension of s. Let us consider a commutative diagram

Q′ Gs′

Q Gs

θ|Q′

θ

of continuous homomorphisms of profinite groups, with injective vertical arrows. We then

have a restriction functor

ResQQ′ : Sh(Y ,Q,θ,Λ)→ Sh(Ys′,Q
′,θ|Q′,Λ),

obtained by restricting to Q′ the action of Q on a given object of Sh(Y ,Q,Λ). This is an

exact and faithful functor. If Q′ is an open subgroup of Q, then the functor ResQQ′ admits

a left adjoint, the induction functor

IndQQ′ : Sh(Ys′,Q
′,θ|Q′,Λ)→ Sh(Y ,Q,θ,Λ),

which is exact as well.

Example 2.6. Let U be an object of ÉtYs′ . Then

ΛQ′,U = IndQQ′Λ[HomYs
(−,U ×s′ s)]

is an object of Sh(Y ,Q,Λ). For any object F of Sh(Y ,Q,Λ), the natural homomorphism

Hom(ΛQ′,U,F)→F(U ×s′ s)
Q′

is an isomorphism.
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Proposition 2.7. Let F be an injective object in Sh(Y ,Q,Λ). Let U = (Ui → U)i∈I be a

finite cover in ÉtYs
. Then for any j > 0, the Čech cohomology group Hj(U,F) vanishes.

Because I is finite, and because any object of ÉtYs is qcqs, there exists a factorisation
s → s′ → s as in 2.5 and a cover U ′ = (U ′

i → U ′)i∈I in ÉtYs′ such that U is isomorphic

to U ′×s′ s = (U ′
i ×s′ s→ U ′×s′ s)i∈I . We henceforth assume that U is actually equal to

U ′×s′ s.
For any open subgroup Q′ of Q whose image by θ is contained in Gs′ , let us consider

the chain complex

ΛQ′,U ′ : · · · →
⊕

i0,i1∈I

ΛQ′,U ′
i0

×U′U ′
i1
→

⊕
i0∈I

ΛQ′,U ′
i0
→ 0→ ·· · ,

where the last nonzero term is placed in degree 0 (cf. Example 2.6 for the notation).

If Č•(U,F) is the Čech complex of F with respect to the cover U , then the natural

homomorphism

Hom(ΛQ′,U ′,F)→ Č•(U,F)Q
′

is an isomorphism (cf. Example 2.6). The natural homomorphism ΛQ′,U ′ → ΛQ′,U ′ [0] is a

quasi-isomorphism by ([12] 03AT) and by exactness of the induction functor IndQQ′ . By
applying the exact functor Hom(−,F), this yields that the natural homomorphism from

F(U)Q
′
to Č•(U,F)Q

′
is a quasi-isomorphism. The conclusion then follows by taking the

colimit over all open subgroups Q′ of Q with image by θ contained in Gs′ .

2.8.

Let θ :Q→Gs be a continuous homomorphism of profinite groups and let Λ be a ring. Let
f : Y ′ → Y be a quasi-compact morphism of s-schemes. For any object F of Sh(Y ′,Q,θ,Λ),
with corresponding action (σ(q))q∈Q, the data (f∗σ(q))q∈Q are a continous action of Q

on f∗F compatible with θ. We thus obtain a functor

f∗ : Sh(Y
′,Q,θ,Λ)→ Sh(Y ,Q,θ,Λ).

We similarly have a functor

f−1 : Sh(Y ,Q,θ,Λ)→ Sh(Y ′,Q,θ,Λ),

which is a left adjoint to f∗.

Remark 2.9. With the description from Remark 2.3, this pair of adjoint functors is

induced by the morphism of toposes id×f from BQ×sét Y
′
ét to BQ×sét Yét.

2.10.

Let θ : Q → G be a surjective continuous homomorphism of profinite groups and let I

be its kernel. Let Λ be a ring. For any element q of Q and any object M of I −ModΛ,

we denote by q∗M the object of I −ModΛ with underlying Λ-module M , on which an
element t of I acts as m �→ qtq−1m. This yields a Λ-linear functor

q∗ : I−ModΛ → I−ModΛ,
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and we have (q1q2)
∗ = q∗2q

∗
1 . For any element q of I, we have a Λ-linear natural

transformation

λq : id→ q∗,

given on an object M of I−ModΛ by the homomorphism m �→ qm.

2.11.

For any element g of G, we can form the diagram (q∗M)q∈θ−1(g) with transition

homomorphisms q∗1M → q∗2M given by λq−1
1 q2

q∗1 . We set

g∗M = colimq∈θ−1(g)q
∗M

to be the (filtered) colimit of this diagram. This yields a functor g∗ from I −ModΛ to
itself. The homomorphisms (λq)q∈θ−1(g) define a Λ-linear natural transformation

λg : id→ g∗.

Definition 2.12. A Λ-linear (Q,I)-contraction is a Λ-linear functor

T : I−ModΛ →ModΛ,

endowed with a collection τ = (τ(g))g∈G of Λ-linear natural transformations

τ(g) : Tg∗ → T,

satisfying the following conditions:

(1) The functor T is exact and commutes with small filtered colimits.

(2) If an object M of I −ModΛ is finitely generated as a Λ-module, then T (M) is a

finitely generated Λ-module, and there exists an open subgroup Q′ of Q such that

for any element q of Q′ we have q∗M = M as an I-module and for g = θ(q), the
composition of τ(g)M : T (g∗M)→ T (M) with the isomorphism T (M) = T (q∗M)∼=
T (g∗M) is the identity endomorphism of T (M).

(3) For any elements g1,g2 of G, the natural transformation τ(g1)◦τ(g2)g∗1 from Tg∗2g
∗
1

to T coincides with τ(g1g2).

We will give nontrivial examples of Λ-linear (Q,I)-contractions in Section 4 (cf. 4.5, 4.7
and 4.9).

2.13.

Let θ :Q→G be a surjective continuous homomorphism of profinite groups with kernel

I and let Λ be a ring. Let (T,τ) be a Λ-linear (Q,I)-contraction (cf. 2.12). Let G′ be
a closed subgroup of G and let Q′ be its inverse image by θ. Then one can construct a
functor

TG′ :Q′−ModΛ →G′−ModΛ

as follows. For any element g of G′, we have a Λ-linear natural transformation

λg : id→ g∗
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of endofunctors of Q′−ModΛ (cf. 2.10). We then obtain a Λ-linear natural transformation

τ(g)◦T (λg) : Tφ→ Tφ,

where φ is the forgetful functor from Q′−ModΛ to I−ModΛ. Lemma 2.14 then ensures

that for any object M of Q′−ModΛ, one obtains a continuous left action of G′ on T (M)
by letting an element g of Q′ act as (τ(g)◦T (λg))M .

Lemma 2.14. For any elements g1,g2 of G′ we have

τ(g1)◦T (λg1)◦ τ(g2)◦T (λg2) = τ(g1g2)◦T (λg1g2).

Moreover, for any object M of Q′−ModΛ and element m of T (M) there exists an open

subgroup G′′ of G′ such that τ(g)T (λg)m=m for any element g of G′′.

The first assertion follows from the identities

T (λg1)◦ τ(g2) = τ(g2)g
∗
1 ◦T (g∗2λg1),

τ(g1)◦ τ(g2)g∗1 = τ(g1g2),

g∗2λg1 ◦λg2 = λg1g2 .

The first equality stems from the fact that τ(g2) is a natural transformation, the second

follows from 2.12 (3) and the third identity is tautological. For the last assertion of
Lemma 2.14, we can assume by 2.12 (1) that M is finitely generated as a Λ-module, and

the conclusion then follows from 2.12 (2).

2.15.

Because T and TG are exact functors, we still denote by T and TG the functors

T :D(I−ModΛ)→D(ModΛ),

TG :D(Q−ModΛ)→D(G−ModΛ)

induced by them on the corresponding derived categories.

Proposition 2.16. We have a bifunctorial isomorphism

T (M
L
⊗Λ N)∼= T (M)

L
⊗Λ N

with M in D−(I −ModΛ) and N in D−(ModΛ). We similarly have a bifunctorial

isomorphism

TG(M
L
⊗Λ N)∼= TG(M)

L
⊗Λ N

with M in D−(Q−ModΛ) and N in D−(G−ModΛ).

We only prove the first assertion, the second one being similar. Let C be the Λ-linear

category of bounded above chain complexes with terms in the full subcategory of ModΛ
consisting of free Λ-modules. Because T is Λ-linear and commutes with small direct sums

by 2.12 (1), we have a functorial isomorphism

T (M ⊗ΛN)∼= T (M)⊗ΛN
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with M in D−(I −ModΛ) and N in C. This isomorphism factors through the quotient

D−(ModΛ) of C because for any homomorphism λ :N1 →N2 in C, which is homotopic to

0, the corresponding homomorphisms

T (M ⊗ΛN1)→ T (M ⊗ΛN2),

T (M)⊗ΛN1 → T (M)⊗ΛN2

vanish in D−(ModΛ).

Corollary 2.17. Let M be an object of I−ModΛ that is flat as a Λ-module. Then T (M)
is a flat Λ-module.

Indeed, for any Λ-module N , the complex M
L
⊗Λ N is quasi-isomorphic to M ⊗ΛN [0]

by flatness of M ; hence, Proposition 2.16 yields an isomorphism

T (M)
L
⊗Λ N ∼= T (M ⊗ΛN)[0]

in D−(ModΛ). In particular, the complex T (M)
L
⊗Λ N is acyclic in nonzero degrees; hence

the flatness of M .

2.18.

Let θ :Q→Gs be a surjective continuous homomorphism of profinite groups with kernel

I and let Λ be a ring. Let us consider a Λ-linear (Q,I)-contraction (T,τ) (cf. 2.12). Let

Y be an s-scheme.

Definition 2.19. For any object F of Sh(Y ,Q,Λ), we define T (F) to be the étale sheaf of

Λ-modules on Y whose sections on a qcqs étale Y -scheme U are given by the Gs-invariants

TGs
(F(Us))

Gs (cf. 2.13).

The mentioned presheaf is indeed a sheaf by left exactness of the functor M �→
TGs

(M)Gs from Q−ModΛ to the category of Λ-modules.

Proposition 2.20. We have a bifunctorial isomorphism

Γ(U,T (F))−→
∼

T (Γ(U,F))

for U in ÉtYs
and F in Sh(Y ,Q,Λ).

Ler us consider a factorisation s
ϕ0−→ s′ → s where s′ is a finite extension of s and an

object U ′ of ÉtYs′ such that U is isomorphic to U ′×s′,ϕ0
s. We henceforth assume that

U is equal to U ′×s′,ϕ0
s. We have a decomposition

U ′×s s=
∐

s
ϕ−→s′

U ′×s′,ϕ s,

and hence a splitting

Γ(U ′
s,F)∼=

⊕

s
ϕ−→s′

Γ(U ′×s′,ϕ s),F)
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and, in particular,

T (Γ(U ′
s,F))∼=

⊕

s
ϕ−→s′

T (Γ(U ′×s′,ϕ s,F)) .

Taking into consideration the action of Gs on the left-hand side (cf. 2.13), we obtain an

isomorphism

TGs
(Γ(U ′

s,F))∼= IndGs

Gs′
TGs′ (Γ(U

′×s′,ϕ0
s,F)) .

Taking the Gs-invariants, this yields

Γ(U ′,T (F))∼= TGs′ (Γ(U
′×s′,ϕ0

s,F))
Gs′ = TGs′ (Γ(U,F))

Gs′ .

If s→ s′′ → s′ is a factorisation of ϕ0, where s′′ is a finite extension of s′, then replacing

s′ and U ′ by s′′ and U ′×s′ s
′′ above yields

Γ(U ′×s′ s
′′,T (F))∼= TGs′ (Γ(U,F))

Gs′′ .

By taking the colimit over s′′, we obtain

Γ(U,T (F))∼= T (Γ(U,F)) .

Corollary 2.21. For any geometric point ȳ of Y , we have a natural isomorphism

T (F)ȳ ∼= T (Fȳ),

for F in Sh(Y ,Q,Λ). In particular, the functor

T : Sh(Y ,Q,Λ)→ Sh(Y ,Λ)

is exact and commutes with small filtered colimits.

Indeed, we can consider ȳ as a geometric point of Ys and the conclusion follows by

taking the (filtered) colimit of the isomorphisms

Γ(U,T (F))−→
∼

T (Γ(U,F))

from 2.20, where U runs over qcqs étale neighbourhoods of ȳ over Ys.

Corollary 2.22. Let f : Y ′ → Y be a morphism of s-schemes. For any object F of

Sh(Y ,Q,Λ), the natural homomorphism

f−1T (F)→ T (f−1F),

with notation as in 2.8, is an isomorphism.

This is an immediate consequence of 2.21.

Proposition 2.23. Let F be an injective object in Sh(Y ,Q,Λ). Then for any U in ÉtYs

and any j > 0 we have Hj(U,T (F )) = 0.
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For any étale cover U = (Ui → U)i∈I in ÉtYs
with I finite, the Čech complex Č•(U,F)

is acyclic in nonzero degree by Proposition 2.7. By Proposition 2.20 and by exactness of

T , we obtain that

Č•(U,T (F))∼= T
(
Č•(U,F)

)

is acyclic as well in nonzero degree. The conclusion then follows from ([12] 03F9).

2.24.

Let θ,Λ and (T,τ) be as in 2.18. Let f : Y ′ → Y be a qcqs morphism of s-schemes. For
any object U of ÉtY, the fibre product U ×Y Y ′ is an object of ÉtY ′ . Moreover, for any

object F of Sh(Y ,Q,Λ), we have, with the notation from 2.8,

Γ(U,T (f∗F)) = TGs
(f∗F(Us))

Gs

= TGs
(F(Us×Ys Y

′
s ))

Gs

= Γ(U,f∗T (F)),

and hence a commutative diagram

Sh(Y ,Q,Λ) Sh(Y ,Λ)

Sh(Y ′,Q,Λ) Sh(Y ′,Λ)

T

f∗f∗

T

of abelian categories.

Proposition 2.25. We have a natural isomorphism

Rf∗ ◦T ∼= T ◦Rf∗

of functors from D+(Y ′,Q,Λ) to D+(Y ,Λ).

Indeed, for any injective object F of Sh(Y ′,Q,Λ), the object f∗F of Sh(Y ,Q,Λ) is T -
acyclic by exactness of T (cf. 2.21). Moreover, for any integer j > 0 the restriction of

Rjf∗T (F) to Ys is the sheaf associated with the presheaf

U �→Hj(U ×Ys
Y ′
s,T (F)),

which vanishes by 2.23. Thus T (F) is f∗-acyclic. This implies that the canonical
transformations

R(f∗ ◦T )→Rf∗ ◦T,
R(T ◦f∗)→ T ◦Rf∗

are isomorphisms, and the conclusion then follows from the equality f∗ ◦T = T ◦f∗.

https://doi.org/10.1017/S1474748021000037 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748021000037


1900 Q. Guignard

2.26.

Let θ :Q→Gs be a surjective continuous homomorphism of profinite groups with kernel

I and let Λ be a Noetherian ring. Let Y be a locally Noetherian s-scheme. We denote by
Shc(Y ,Q,Λ) the full subcategory of Sh(Y ,Q,Λ) consisting of objects F whose underlying

sheaf of Λ-module on Ys is constructible (cf. [3], IX 2.3).

Proposition 2.27. Let (T,τ) be a Λ-linear (Q,I)-contraction and let F be an object of

Sh(Y ,Q,Λ).

(1) If the object of Sh(Ys,Λ) underlying F is locally constant constructible, then T (F)
is locally constant constructible.

(2) If the object of Sh(Ys,Λ) underlying F is constructible, then T (F) is constructible.

Part (1) follows from Corollary 2.21, from 2.12 (2) and from ([3], IX 2.13 (i)). Part (2)

follows from (1) and from Corollary 2.22.

3. Nearby and vanishing cycles

Let S be a scheme and let s be a point of S such that the local ring OS,s is a discrete

valuation ring. We denote by s a separable closure of s, by η the generic point of the

henselisation S(s) of S at s and by η a separable closure of the generic point ηs of the
strict henselisation S(s).

3.1.

Let us denote by Gη and Gs the Galois group of the extensions η → η and s →
s respectively. We have a natural specialisation homomorphism θ : Gη → Gs. This

homomorphism is surjective and we denote by Iη its kernel, so that we have an exact

sequence

1→ Iη →Gη →Gs → 1

of profinite groups. In this section, we apply the definitions and results of Section 2 to

Q=Gη and θ as above.

3.2.

Let f :X → S be an S-scheme. Let us consider the commutative diagram

s S(s) S(s) S

Xs X×S S(s) X×S S(s) X
i

fs f

of S-schemes, where all squares are Cartesian.
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Definition 3.3 ([5], XIII 1.3.2). Let Λ be a ring and let F be an object of Sh(X,Λ). We

denote by Ψs
f (F) the object of Sh(Xs,Gη,Λ) (cf. 2.2) obtained as the pullback by i of the

sheaf of Λ-modules on X×S S(s) whose sections on an object U of ÉtX×SS(s)
are given

by Γ(U ×S(s)
η,F).

This defines a left exact functor

Ψs
f : Sh(X,Λ)→ Sh(Xs,Gη,Λ),

thereby inducing a right derived functor

RΨs
f :D+(X,Λ)→D+(Xs,Gη,Λ),

namely, the nearby cycles functor (cf. [5], XIII 2.1.1).

3.4.

Let i :Xs →X be the natural closed immersion. The natural cospecialisation homomor-

phism

i−1 →Ψs
f

yields a triangulated functor from D+(X,Λ) to the derived category of the arrow category
of Sh(Xs,Gη,Λ). Its composition with the cone functor is the vanishing cycles functor,

which we denote by

RΦs
f :D+(X,Λ)→D+(Xs,Gη,Λ).

We thus have a functorial distinguished triangle

i−1F →RΨs
fF →RΦs

f (F)
[1]−→ ,

for F in D+(X,Λ).

3.5.

Let Λ be a Noetherian ring annihilated by an integer invertible on s. Let (T,τ) be a

Λ-linear (Gη,Iη)-contraction (cf. 2.12). The composition of the functor T from 2.19 with

the vanishing cycles functor from 3.4 yields a triangulated functor

TRΦs
f :D+(X,Λ)→D+(Xs,Λ).

We now list a few of its properties.

Proposition 3.6. Let F be an object of Db
c(X,Λ). If f is locally of finite type, then

TRΦs
f belongs to Db

c(Xs,Λ).

Under these assumptions, it follows from ([4], [Th. finitude] Th. 3.2) that RΨs
f (F)

belongs to Db
c(Xs,Λ); hence, RΦs

f (F) belongs as well to Db
c(Xs,Λ) and so does TRΦs

f (F)

by 2.27 (2).
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Proposition 3.7. Let h :X ′ →X be a smooth morphism of S-schemes and let F be an

object of D+(X,Λ). Then the natural homomorphism

h−1
s TRΦs

f (F)→ TRΦs
fh(h

−1F)

is an isomorphism, where hs :X
′
s →Xs is the morphism induced by h. In particular, if f

is smooth, then TRΦs
f (Λ) vanishes.

This follows from the corresponding property of RΨs
f (cf. [5], XIII 2.1.7.1) and from

Corollary 2.22.

Proposition 3.8. Let h :X ′ →X be a proper morphism of S-schemes and let F be an
object of D+(X ′,Λ). Then we have a natural homomorphism

Rhs∗TRΦs
fh(F ′)→ TRΦs

f (Rh∗F)

in D+(Xs,Λ). In particular, if f is proper then we have a functorial isomorphism

RΓ(Xs,TRΦs
f (F))→ TRΦs

id(Rf∗F)

in D+(Gs−ModΛ).

This follows from the corresponding property of RΨs
f (cf. [5], XIII 2.1.7.2) and from

Proposition 2.25 because h is qcqs.

4. Gabber-Katz extensions and examples of contractions

In this section, we provide examples of linear contractions (cf. 2.12) whose constructions

are based on the theory of Gabber-Katz extensions from [9]. We review the latter in 4.1

by placing these extensions in what we believe to be their rightful context, namely, as
pullbacks along a morphism of toposes, the Gabber-Katz retraction (cf. 4.4). Throughout

this section, we fix a perfect field k of characteristic p > 0.

4.1.

Let S be a smooth k-scheme purely of dimension 1, and let s be a closed point of S.
Thus, the henselisation S(s) of S at s is a Henselian trait whose residue field k(s) is a

finite extension of k. Let π be a uniformiser of S(s), thereby inducing a morphism

π : S(s) → A1
s

corresponding to the unique homomorphism k(s)[t]→OS(s)
of k(s)-algebras sending t to

π. Let us denote by

π♦ : ÉtS(s)
→ ÉtA1

s

the Gabber-Katz extension functor (cf. [6], Par. 4.2): For any étale S(s)-scheme U , the

étale A1
s-scheme π♦U is the unique (up to unique isomorphism) such A1

s-scheme endowed
with an isomorphism from its pullback by π to U , whose restriction along the open

immersion Gm,s → A1
s is a special finite étale Gm,s-scheme; namely, it is tamely ramified

above ∞ and its geometric monodromy group has a unique p-Sylow (cf. [6], Par. 4.3).
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We will also label special an étale A1
s-scheme whose restriction along the open immersion

Gm,s → A1
s is special or, equivalently, an object of the essential image of π♦.

Proposition 4.2. The functor π♦ has the following properties:

(1) It sends a final object of ÉtS(s)
to a final object of ÉtA1

s
.

(2) For any cover (Ui →U)i∈I of the site ÉtS(s)
, the family (π♦Ui → π♦U)i∈I is a cover

in site ÉtA1
s
.

(3) For any diagram U →W ← V in ÉtS(s)
, the natural A1

s-morphism

π♦(U ×W V )→ π♦(U)×π♦(W ) π♦(V )

is an isomorphism.

The A1
s-scheme A1

s is special and its pullback by π is S(s); hence, π♦S(s) isomorphic to

A1
s. This proves (1). In order to prove (2), we can assume that U is connected, because

the functor π♦ commutes with finite disjoint unions. Moreover, we have that π−1π♦Ui is
isomorphic to Ui, so that (π−1π♦Ui)i∈I covers π−1π♦U ; hence it is sufficient to prove that

(j−1π♦Ui)i∈I covers j−1π♦U , where j :Gm,s →A1
s is the natural open immersion. Let i0

in I be such that the image of Ui0 in U contains the generic point of U . Then the image of
j−1π♦Ui0 in j−1π♦U is nonempty. Because the morphism j−1π♦Ui0 → j−1π♦U is finite

étale, its image is closed and open in the connected scheme j−1π♦U . Consequently, the

morphism j−1π♦Ui0 → j−1π♦U is surjective. Let us now prove (3). Let

α : π♦(U ×W V )→ π♦(U)×π♦(W ) π♦(V )

be the morphism under consideration. Then π−1α is an isomorphism, and we infer from
the characterisation of π♦ (cf. 4.1) that (3) holds if and only if X = π♦(U)×π♦(W )π♦(V )

is a special A1
s-scheme. Because π♦(U) and π♦(V ) are tamely ramified above infinity,

so is X. Moreover, the geometric monodromy group of j−1X → Gm,s is a subgroup of
the product of those of j−1π♦(U) and j−1π♦(V ), and the class of finite groups that

admit a unique p-Sylow is stable by finite products and subobjects; hence, the geometric

monodromy group of j−1X →Gm,s belongs to that class. Thus, X is a special A1
s-scheme,

and (3) holds.

Corollary 4.3. The functor π♦ : ÉtS(s)
→ ÉtA1

s
is continuous and the corresponding

functor S(s),ét → A1
s,ét commutes with finite limits. In particular, π♦ defines a morphism

of sites from ÉtA1
s
to ÉtS(s)

.

This follows from Proposition 4.2 and from the fact that ÉtS(s)
is an essentially small

category.

Definition 4.4. Let (S,s,π) be as in 4.1. The Gabber-Katz retraction associated with
these data is the morphism of toposes rs,π :A1

s,ét → S(s),ét associated with the morphism

of sites π♦ (cf. 4.3).

The composition of rs,π with the morphism π : S(s),ét → A1
s,ét of toposes induced by

π is (equivalent to) the identity morphism of S(s),ét; hence the terminology ‘retraction’.
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The pair rs,π = (r−1
s,π,rs,π∗) of adjoint functors can be described as follows. For an object

F of A1
s,ét, the object rs,π∗F is the sheaf on ÉtS(s)

given by U �→ F(π♦U). Moreover, the
functor r−1

s,π : S(s),ét →A1
s,ét is the Gabber-Katz extension functor, sending a representable

sheaf U to the representable sheaf π♦U .

4.5.

Let Λ be a finite field of characteristic �, and let (S,s,π) be as in 4.1. Let ηs be the generic

point of S(s), let s be a separable closure of s and let ηs be a separable closure of ηs.

Let Gηs
and Gs be the Galois group of the extensions s → s and ηs → ηs. Let Iηs

be
the kernel of the surjective specialisation homomorphism Gηs

→Gs. For an object M of

Gηs
−ModΛ, we denote by M! the extension by zero to S(s) of the corresponding sheaf

on ηs. In ([9], Sect. 1.6), Katz considered the functor defined by

Sw(M) =H1(A1
s,r

−1
s,πM!),

for M in Iηs
−ModΛ, where rs,π is the canonical retraction from 4.4.

For an element g of Gs, let us construct a natural transformation

τ(g) : Swg∗ → Sw

on Iηs
−ModΛ (cf. 2.11). We have a functorial isomorphism (g∗M)! � g∗M!, where g acts

naturally on S(s). We then have functorial isomorphisms

Sw(g∗M)�H1(A1
s,r

−1
s,πg

∗M!)

�H1(A1
s,g

∗r−1
s,πM!),

where g acts naturally on A1
s. We now compose with the natural homomorphism from

g∗r−1
s,πM! to (g−1)∗r

−1
s,πM!, in order to obtain a functorial homomorphism from Sw(g∗M)

to

H1(A1
s,(g

−1)∗r
−1
s,πM!) = Sw(M).

Proposition 4.6. The couple (Sw,(τ(g))g∈Gs
) is a (Gηs

,Iηs
)-contraction. Moreover, we

have

rk(Sw(M)) = sw(M),

where sw(M) is the Swan conductor of M .

For the exactness of Sw see ([9], Par. 1.6). Moreover, the functor Sw commutes with
small filtered colimits because that property is satisfied by the functors (−)!, r

−1
s,π and

H1(A1
s,−). Thus, 2.12(1) is satisfied. The composition formula 2.12(3) is immediate,

whereas 2.12(2) follows from preservation of constructibility in étale cohomology.

4.7.

We retain the notation from 4.5. Let us set π̃= (1−π−1)−1. The uniformiser π is uniquely

determined by π̃, because we have π = (1− π̃−1)−1. Let 1 : s→A1
s be the s-point 1 of A1

s.
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Let us set

CFTπ̃(M) = r−1
s,π(M!)1,

for M in Iηs
−ModΛ. This is naturally a Λ-linear (Gηs

,Iηs
)-contraction, with τ(g) given

for g in Gs by the natural composition

CFTπ̃(g
∗M) = r−1

s,π(g
∗M!)1 � g∗r−1

s,π(M!)1 � r−1
s,π(M!)1 =CFTπ̃(M).

The functor CFTπ̃ can be considered as constituting a linearised class field theory for ηs,

as indicated by the following result.

Proposition 4.8. Let Λ be a field of characteristic �. Let M be an object of Gηs
−

ModΛ and let D be a divisor on S(s) such that det(M) has ramification bounded D (cf.
[6], Def. 5.17). Let χdet(M) be the multiplicative local system on Pic(S(s),D)s (cf. [6],

Def. 5.20) associated with det(M) by geometric class field theory (cf. [6], Th. 5.25). Then

we have an equality

〈χdet(M)〉(π̃) = det(CFTπ̃(M))

of characters of Gs, with the notation from ([6], Par. 7.11).

Indeed, we have

det(CFTπ̃(M)) = CFTπ̃(det(M)).

By ([6], Par. 5.34), the pullback of the multiplicative local system χdet(M) by the
morphism

Gm,k → Pic(S(s),D)s,

which sends the coordinate t to 1− tπ−1, is the Gabber-Katz extension of det(M) with
respect to the uniformiser π. We thus have

(χdet(M))|1−π−1 = det(CFTπ̃(M));

hence the conclusion.

4.9.

We still retain the notation from 4.5. Let Λ be a finite Z/�nZ algebra for some integer

n. The profinite group Iηs
admits a unique p-Sylow subgroup P , the wild inertia group

associated with (S(s),ηs).

Definition 4.10. A continuous representation of Gηs
on a Λ-module M is totally wildly

ramified if the submodule MP of P -invariant elements vanishes.

Example 4.11. Let ψ : Fp →Λ× be a nontrivial homomorphism and let f be an element

of k(ηs) whose valuation is negative and prime to p. Then the continuous representation
of Gηs

corresponding to Lψ{f} is totally wildly ramified. The latter assertion holds as

well for F⊗Lψ{f} for any tamely ramified lisse étale sheaf of Λ-modules F on ηs, because

P acts trivially on Fηs
.
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Proposition 4.12. Let M be a Λ-module endowed with a continuous Λ-linear left action
of Gη, and let F be the corresponding lisse étale sheaf of Λ-modules on η. If M is totally

wildly ramified (cf. 4.10) then the canonical homomorphism

j!F →Rj∗F,

where j : ηs → S(s) is the canonical open immersion, is a quasi-isomorphism.

This amounts to the acyclicity of the fibre of Rj∗F at s; that is, to the vanishing of

Hb(Iηs
,M) for each integer b. We have the Hochschild-Serre spectral sequence

Ha(Iηs
/P,Hb(P,M))⇒Ha+b(Iηs

,M).

The groups Hb(P,M) vanish for b 
= 0 because P is a p-group and M is of �-torsion,

and H0(P,M) =MP vanishes because M is assumed to be totally wildly ramified. Thus,

Hb(P,M) vanishes for any j, and consequently so does Hb(Iηs
,M).

Proposition 4.13. Let M be a Λ-module endowed with a continuous Λ-linear left action
of Iηs

. Then the canonical homomorphism

RΓc(A
1
s,r

−1
s,πM!⊗Lψ{−t})→RΓ(A1

s,r
−1
s,πM!⊗Lψ{−t})

is a quasi-isomorphism. Moreover, the complex RΓ(A1
s,r

−1
s,πM!⊗Lψ{−t}) is concentrated

in degree 1.

The first assertion follows from Example 4.11 and from Proposition 4.12. The second

assertion follows from the vanishing of H0(A1
s,r

−1
π M!⊗Lψ{−t}) and from the fact that

the étale cohomological dimension of a smooth affine curve over a separably closed field
is at most 1.

Corollary 4.14. The functor

Artπ :M �→H1
c (A

1
s,r

−1
s,πM!⊗Lψ{−t})

from Iηs
−ModΛ to ModΛ is additive and exact and commutes with base change along

homomorphisms Λ→ Λ′ of finite Z/�nZ algebra.

This is an immediate consequence of Proposition 4.13. We note that Artπ is naturally
endowed with a structure of Λ-linear (Gηs

,Iηs
)-contraction, with (τ(g))g∈Gs

constructed

as in 4.5.

Proposition 4.15. Let Λ be a finite field of characteristic �. Let M be a Λ-module

endowed with a continuous Λ-linear left action of Gηs
. Then we have

rk(Artπ(M)) = rk(M)+sw(M) = a(S(s),M!),

det(Artπ(M)) = ε(S(s),M!,dπ),

where a(S(s),−) is the Artin conductor (cf. [6], Par. 7.2) and ε(S(s),−) is the geometric

local ε-factor from ([6], Def. 9.2).

The first assertion follows from the Grothendieck-Ogg-Shafarevich formula, and the

second one matches the definition of geometric local ε-factors in ([6], Def. 9.2).
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Corollary 4.16. Let Λ be a finite field of characteristic �, and let F be an object of
Db

c(S(s),Λ). Then we have

rk(ArtπRΦs
id(F)) = a(S(s),F),

det(ArtπRΦs
id(F)) = ε(S(s),F,dπ).

This follows from Propositions 4.15 and 2.16 and from the fact that Artπ(Λ)∼= Λ.

5. Proof of Theorem 1.2

In this section, we prove Theorem 1.2. The preliminary paragraph 5.1 provides a more
detailed conclusion in the case of a projective line. We then explain how to reduce to

projective schemes by using Chow’s lemma in 5.2. Theorem 1.2 is then reduced to the case

of projective spaces in 5.3, and the latter case is handled by induction on the dimension
in 5.4. Throughout this section, we denote by Λ a finite extension of F�.

5.1.

Let S = P1
k, and let F be an object of Db

c(S,Λ). We denote by t the canonical coordinate
on the open subset A1

k of S. By the product formula ([6], Th. 1.9), we have, with notation

as in ([6], Par. 3.26),

εk(S,F) = χ−rk(F)
cyc ε(S(∞),F|S(∞)

,dt)
∏

s∈|A1
k|

δ
a(S(s),F|S(s)

)

s/k Vers/k

(
ε(S(s),F|S(s)

,dt)
)

= χrk(F)
cyc 〈χdet(Fη∞ )〉(−t2)ε(S(∞),F|S(∞)

,d(t−1))
∏

s∈|A1
k|

δ
a(S(s),F|S(s)

)

s/k Vers/k

(
ε(S(s),F|S(s)

,dt)
)
.

For any closed point s of A1
k, we have dt= d(t− t(s)) and πs = t− t(s) is a uniformiser of

S(s). For s=∞, we set π∞ = t−1. Then Corollary 4.16 yields

δ
a(S(s),F|S(s)

)

s/k Vers/k

(
ε(S(s),F|S(s)

,dπs)
)
= det

(
IndGk

Gs
Artπs

RΦs
id(F)

)
,

for any closed point s of P1
k. By Proposition 4.8, we further have

〈χdet(Fη∞ )〉(−t2) = det(CFTt−1(Fη∞))
−1

det(CFT−t−1(Fη∞))
−1

.

We thus obtain that εk(S,F) coincides with

det(CFTt−1RΨ∞
idF(−1))

−1
det(CFT−t−1RΨ∞

idF)
−1

∏
s∈|P1

k|

det
(
IndGk

Gs
Artπs

RΦs
id(F)

)
.

Moreover, the sum

−rk(CFTt−1RΨ∞
idF(−1))− rk(CFT−t−1RΨ∞

idF)+
∑

s∈|P1
k|

rk
(
IndGk

Gs
Artπs

RΦs
id(F)

)
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is equal, by Corollary 4.16, to

−2rk(F)+
∑

s∈|P1
k|

[k(s) : k]a(S(s),FS(s)
).

The latter sum is equal to the Euler characteristic −χ(S,F) by the Grothendieck-Ogg-
Shafarevich formula.

5.2.

Let us assume that Theorem 1.2 is proved for any projective k-scheme. Let us then

prove that Theorem 1.2 holds for any proper k-scheme X. We argue by induction on
the dimension of X, which is henceforth assumed to be at least 1 because 0-dimensional

schemes are projective.

By Chow’s lemma, there exists a proper morphism f :X ′ →X, which is an isomorphism
above a dense open subset U of X, such that X ′ is projective. Let Z ′ =X ′ \f−1(U) and

Z =X \U . BecauseX ′ and Z ′ are projective, and because Z has dimension strictly smaller

than X, the preliminary assumption and the induction hypothesis yield that Theorem 1.2
holds for X ′,Z ′ and Z; hence the existence of collections (EX′,x′)x′∈|X′|, (EZ′,z′)z′∈|Z′|
and (EZ,z)z∈|Z| of triangulated functors satisfying the conclusion of Theorem 1.2 for

X ′,Z ′ and Z, respectively.

Let F be an object of Db
c(X,Λ). Then εk(X,F) coincides with εk(Z,F)εk(X

′,F)εk
(Z ′,F)−1 and is therefore equal to the determinant of

⊕
z∈|Z|

IndGk

Gz
EZ,z(F|Z(z)

)⊕
⊕

x′∈|X′|
IndGk

Gx′EX′,x′(f−1F|X′
(x′)

)⊕

⊕
z′∈|Z′|

IndGk

Gz′
EZ′,z′(f−1F|Z′

(z′)
)[1].

This yields the conclusion by setting for any closed point x of X,

Ex(G) = EZ,x(G|Z(x)
)⊕

⊕
x′∈|f−1(x)|

IndGx

Gx′

(
EX′,x′(f−1G|X′

(x′)
)⊕EZ′,x′(f−1G|Z′

(x′)
)[1]

)

if x belongs to Z and

EX,x(G) = EX′,f−1(x)(f
−1G|X′

(f−1(x))
)

otherwise.

5.3.

Let ι : X → Pd
k be a closed immersion into a projective space Pd

k, for some integer d.
If Theorem 1.2 holds for Pd

k, so that we have a collection (EPd
k,x

)x∈|Pd
k| of triangulated

functors, then Theorem 1.2 also holds for X by setting

Ex(G) = EPd
k,ι(x)

(ι∗G).
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5.4.

Let us prove Theorem 1.2. By 5.2 and 5.3, it is sufficient to consider the case where

X = P(V ) is the projective space parametrising hyperplanes in a k-vector space V . We
denote by d+1 the dimension of V , and we argue by induction on d, the case d= 0 being

immediate. We henceforth assume that d is greater than 0.

Let e1,e2 be a basis of a 2-dimensional sub-k-vector space W of V and let X ′ be the

flag variety parametrising pairs ([t1 : t2],H), where [t1 : t2] is a point of P1
k and H is an

hyperplane in V containing t1e1+ t2e2. Let f : X ′ → P1
k and r : X ′ → P(V ) be the first

and second projections, respectively.

Let F be an object of Db
c(P(V ),Λ). The morphism r is an isomorphism outside the

closed subscheme ι : P(V/W )→ P(V ) and is a P1-bundle above P(V/W ); hence,

εk(P(V ),F) = εk(X
′,r−1F)εk(P(V/W ),ι−1F(−1))−1 (5.4.1)

= εk(P
1
k,Rf∗r

−1F)εk(P(V/W ),ι−1F(−1))−1. (5.4.2)

By 5.1, the homomorphism εk(P
1
k,Rf∗r

−1F) is the determinant of

CFTt−1RΨ∞
id G[1](−1)⊕CFT−t−1RΨ∞

id G[1]⊕
⊕

s∈|P1
k|

IndGk

Gs
Artπs

RΦs
id(G),

where G =Rf∗r
−1F . Moreover, by 3.8 we have a functorial isomorphism

Artπs
RΦs

id(G)�RΓ(X ′
s,Artπs

RΦs
f (r

−1F)).

We similarly have

CFTt−1RΨ∞
id G(−1)∼=RΓ(X ′

s,CFTt−1RΨ∞
f (r−1F(−1)))

CFT−t−1RΨ∞
idG ∼=RΓ(X ′

s,CFT−t−1RΨ∞
f (r−1F)).

For each closed point s = [t1,t2] of P
1
k, the fibre X ′

s is the projective space associated

with the quotient of V ⊗k k(s) by the k(s)-line k(s)(t1e1 + t2e2). In particular, the

induction hypothesis applies to X ′
s, and we therefore have a collection (EX′

s,x
′)x′∈|X′

s|
of triangulated functors satisfying the conclusion of Theorem 1.2 for the s-scheme X ′

s.

Thus, εk(P
1
k,Rf∗r

−1F) is the determinant of
⊕

x′∈|X′
∞|

IndGk

Gx′EX′
∞,x′(CFTt−1RΨ∞

f (r−1F(−1))) (5.4.3)

⊕
⊕

x′∈|X′
∞|

IndGk

Gx′EX′
∞,x′(CFT−t−1RΨ∞

f (r−1F)) (5.4.4)

⊕
⊕

x′∈|X′|
IndGk

Gx′EX′
f(x′),x

′(Artπf(x′)RΦ
f(x′)
f (r−1F)). (5.4.5)

One should note that r−1F is universally locally acyclic with respect to f above a dense

open subscheme of P1
k by ([4], [Th. finitude] Theorem 2.13); hence, RΦs

f (r
−1F) vanishes

for all but finitely many closed points s of P1
k. This and the induction hypothesis ensure

that only finitely many terms contribute in the above sum. The conclusion then follows

from 5.4.2 and from the induction hypothesis applied to P(V/W ): The property 1.2(1)
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has already been discussed, the property 1.2(3) holds by construction and it remains to

clarify why 1.2(2) holds as well. For a point x′ ∈ |X ′
∞| and for an object G of Db

c(r(x
′),Λ),

the pullback by the specialisation map sp : (P(V )(r(x′)))ét → r(x′)ét yields an object sp−1G
of Db

c(P(V )(r(x′)),Λ). For F in Db
c(P(V )(r(x′)),Λ), we then have

RΨ∞
f (r−1(F ⊗ sp−1G)(−1))�RΨ∞

f (r−1(F(−1)))⊗ r−1sp−1G|X′
∞
.

Then 2.16 yields a functorial isomorphism

CFTt−1RΨ∞
f (r−1(F ⊗ sp−1G)(−1))� CFTt−1RΨ∞

f (r−1F(−1))⊗ r−1sp−1G|X′
∞
.

Because EX′
∞,x′ satisfies the twist formula as well by induction, we obtain the property

1.2(2) for EX′
∞,x′(CFTt−1RΨ∞

f (r−1F(−1))). The same argument provides 1.2(2) for the

other terms in 5.4.5; hence the conclusion.

6. Proof of Theorem 1.8

In this section, we prove Theorem 6.1, of which Theorem 1.8 is an immediate consequence.

Theorem 6.1. Let Λ be a finite field of characteristic �. Let S be a Henselian trait of
equicharacteristic p, with closed point s such that k(s) is perfect, and let ω be a nonzero

meromorphic differential 1-form on S. Let f :X → S be a proper morphism. Then there

exists a collection

(Ex)x∈|Xs|

of triangulated functors Ex : Db
c(X(x),Λ)→ Db

c(x,Λ), indexed by the set of closed points

of the special fibre Xs, such that

(1) for any object F of Db
c(X,Λ), we have Ex(F|X(x)

)� 0 for all but finitely many closed
points x of X;

(2) for any closed point x of X, any object F of Db
c(X(x),Λ) and any object G of

Db
c(x,Λ), we have an isomorphism

Ex(F ⊗ sp−1G)� Ex(F)⊗G,

where sp :X(x) → x is the canonical specialisation morphism, and this isomorphism
is functorial in F and G;

(3) for any object F of Db
c(X,Λ), we have

εs(S,Rf∗F,ω) = det

⎛
⎝ ⊕

x∈|Xs|
IndGs

Gx
Ex(F|X(x)

)

⎞
⎠,

a(S,Rf∗F,ω) = rk

⎛
⎝ ⊕

x∈|Xs|
IndGs

Gx
Ex(F|X(x)

)

⎞
⎠,

where s is a separable closure of s with Galois group Gs and where a(S,−,ω) is the

Artin conductor (cf. [6], Par. 7.2).
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Let π be a uniformiser of S, and let us write ω= αdπ for some nonzero element α of the
function fields k(η) of S. We denote by v(α) the valuation of α in the discretely valued

field k(η). For any object G of Db
c(S,Λ), we have

εs(S,G,ω) = εs(S,G,dπ)〈χdet(Gη)〉(α)χ−v(α)rk(Fη)
cyc ,

a(S,G,ω) = a(S,G)+v(α)rk(Gη),

with notation as in ([6], Def. 9.2) or Proposition 4.8. It is therefore enough to produce

families (E1
x)x∈|Xs| and (E2

x)x∈|Xs| of triangulated functors as in Theorem 6.1 (1), (2)

such that

εs(S,Rf∗F,dπ) = det

⎛
⎝ ⊕

x∈|Xs|
IndGs

Gx
E1

x(F|X(x)
)

⎞
⎠,

a(S,Rf∗F) = rk

⎛
⎝ ⊕

x∈|Xs|
IndGs

Gx
E1

x(F|X(x)
)

⎞
⎠,

and

〈χdet(Gη)〉(α)χ−v(α)rk(Fη)
cyc = det

⎛
⎝ ⊕

x∈|Xs|
IndGs

Gx
E2

x(F|X(x)
)

⎞
⎠,

v(α)rk(Gη) = rk

⎛
⎝ ⊕

x∈|Xs|
IndGs

Gx
E2

x(F|X(x)
)

⎞
⎠ .

In order to construct (E1
x)x∈|Xs|, we first notice that Corollary 4.16 and Proposition 3.8

yield that εs(S,Rf∗F,dπ) and a(S,Rf∗F) are respectively the determinant and rank of

the complex

ArtπRΦs
id(Rf∗F)∼=RΓ(Xs,ArtπRΦs

f (F)).

If (EXs,x)x∈|Xs| is as in Theorem 1.2 applied to the proper s-scheme Xs, then we can set

E1
x(F) = EXs,x(ArtπRΦs

f (F)).

For (E2
x)x∈|Xs|, we can assume by additivity that α is a uniformiser on S, in which case

Proposition 4.8 ensures that it is enough to set

E2
x(F) = EXs,x(CFTαRΨs

f (F)(−1)).

Remark 6.2. Let X be a smooth projective curve of a field k of positive characteristic

p and let F be an object of Db
c(X,Λ). The product formula for curves expresses the

determinant of RΓ(Xk,F) as a product of finitely many local ε-factors, which are

invariants attached to Galois representations of 1-dimensional local fields. If k is itself

a 1-dimensional local field (i.e., a complete discrete valuation field with perfect residue
field of positive characteristic) of positive characteristic, then the method described in

this section decomposes the local ε-factor of RΓ(Xk,F) as a product of finitely many

contributions, namely, 2-dimensional local ε-factors, which are invariants attached to
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Galois representations of 2-dimensional local fields of positive characteristic (i.e., complete

discrete valuation fields of positive characteristic whose residue fields are 1-dimensional

local fields). By iterating this procedure, one can attach an n-dimensional local ε-factor
to Galois representations of n-dimensional local fields of positive characteristic such that

if k is an n-dimensional local field of positive characteristic then the n-dimensional local

ε-factor of RΓ(Xk,F) factors as the product of finitely many (n+1)-dimensional local
ε-factors.
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[1] P. Deligne, Les constantes des équations fonctionnelles des fonctions L [Constants of
functional equations of L-functions], in Modular Functions of One Variable II, Lecture
Notes in Mathematics, Vol. 349, pp. 501–597 (Springer-Verlag, Berlin, 1973).
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