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A construction for Hadamard arrays

Joan Cooper and Jennifer Wallis

We give a construction for Hadamard arrays and exhibit the
" arrays of orders k4t , t € {1, 3,5, 7T, ..., 19} . This gives

seventeen new Hadamard matrices of order less than LOOO

An Hadamard matrix H of order h has every element +1 or -1 and
satisfies HHT = hIh , where I 1is the identity matrix of order h . h
is necessarily 1, 2 or congruent to zero modulo &4 .

The Hadamard product, * , of two matrices 4 = (aij) , and B = (bij)
which are the same size is given by

A*xB= (aijbij)

We define an Hadamard array of order Un , based on the indeterminates
A,B,C and D, tobe a kn x Un array with entries chosen from A4, -4,
B, -B, C, -C, D and -D 1in such a way that:

(i) 1in any row there are n entries equal to 4 or -4 , =n
entries *B , n entries *C and »n entries *D ; and
similarly for columns;

(ii) the rows are formally orthogonal, in the sense that if A4,

B, C and D are realized as any elements of any commutative
ring then the rows of the array are pairwise orthogonal; and

similarly for columns.

The Hadamard array of order U is
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4 B ¢ D
8 A =D C
- D A -B
0 - B A

and is due to Williamson [10].

Suppose V 1is a finite sbelian group with v elements, written in
additive notation. A difference set D with parameters (v, k, A) is a
subset of V¥V with k elements and such that in the totality of all the
possible differences of elements from D each non-zero element of V

occurs A times.

If V 1is the set of integers modulo v then D is called a cyclid

difference set: these are extensively discussed in Baumert [1].

A circulant matriz B = [b) of order v satisfies b..=b, . .
d 1d 1,7-1+1

(j=i+1 reduced modulo v ), while B is back-circulant if its elements

satisfy bij =b (Z+j-1 reduced modulo v ).

1,2+j-1

Throughout the remainder of this paper I will always mean the
identity matrix and J +the matrix with every element +1 , where the
order, unless specifically stated, is determined by the context. The

Kronecker product of two matrices will be denoted by X .

Let Sl’ S .y Sn be subsets of a finite abelian group V ,

2,
|V| = p , containing kl, k2, N kn elements respectively. Write Ti
for the totality of all differences between elements of Si (with

repetitions), and T for the totality of elements of all the Ti . It T

contains each non-zero element of V a fixed number of times, X say,

S -» 8, will be called 7 - {v; kl, k > k5 A}

then the sets S s eos
2 n

1° "2
supplementary difference sets.

The parameters of n - {v; ky > k2, cees kn; A} supplementary
difference sets satisfy

n
(1) Mo-1) = )k (k,-1)
i=1
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If kl = k2 = ... = kn = k we will write n - {v; k; A} to denote the

supplementary difference sets and (1) becomes
(2) A(v-1) = nk(k-1)
See [7] and [8] for more details.

The incidence matrix A = (aij) of a subset X of an abelian group

G of order v , with elements g1 9o g3, ey gv , is found by choosing

1 if gj -9; €xX,

a. .
rd
0 othervise.

If A A s A are the incidence matrices of

12 S0t Ay

n - {v; kl, k , K 3 A} supplementary difference sets then

Dy "

n 7 n
I a4, = ( 1 ki-A]I + A,
i=1 * i=1

and the (1, -1) matrices B, = 2Ai - J satisfy

igl B;5; = [h .g

n
k.—hA]I + (nv-h P I VY B
i . i

=1 =

1=1

We define the matrix R = (rij) of order v on G by

1 if g, +g;=0,

r..
1d
0 otherwise.

For example, if & is the integers modulo 7 with the usual ordering,

=1, r.,=0 otherwise.

r., . .
1i,m-7 id

The construction

X

THEOREM 1. Suppose there exist four (0, 1, -1) matrices X s

l’
X3, X, of order n which satisfy

(0) X% X;=0, i#7, 4,§=1,2,31b,
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N

(ii) Y XKL =l .
T A A n
1=1

Suppose x. is the number of positive elements in each row and columm of -

X, and Y; is the number of negative elements in each row and column of

i
X. . Then
i
L
(a) (‘%*yi) =n,
=1
2
(b) 1} (xi—yi) =n

Proof. (a) follows immediately from (ZZ). To prove (b) we consider

the four (1, -1) matrices

Yo=Kyt X, F XX,
Yo= X - Xy v Xyt X,
Y= X X, - Xgt X,

N
From [7] we know that L4 - {n; kl, k2, k3, kh; 7;21 ki-—n}

supplementary difference sets may be used to form an Hadamard matrix of

order Ln . DNow

so 2, = %(Yi-%J) , ©=1,2, 3, 4 are the incidence matrices (or

permutations of them) of
L
- . +7 + .
L {n, Y REGHEHE) 5 T ¥y R KDY 5 Ty KDY Ty HTy Rty 2 izl xi}
supplementary difference sets. Using (1) we have

b Y
2 E z,(n-1) = )

ny iy (2 4yt by -2 ) (g by iy by -2 -0)
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or writing x, + x, + x3 + xh =w, t= yl + y2 + y3 + yh , m=w+ t,

1 2

2w(n-1)

izl (x+yi-xi]ﬁd+yi—xi-l)

5 b L - i
b + 2w izl (yi-xi + izl (yi_xi) - izl (yi-xi) - bw

2 4 2
W+ 2w(t-w) + ] (y;-x,)7 - (Ew) - W .
=1 :

So

2
=) ==

[N e E=d

=1
as required.
THEOREM 2. Suppose there exist four (0, 1, -1) ectrculant matrices
Xy Xy, X3, X, of order n satisfying the conditions of the above
theorem. Then there exists an Hadamard array of order un .

Proof. Consider the following matrices, where 4, B, C, D are

indeterminates which commute in pairs

Y) =X X A*X, X BHX; X C+X, X D,
Yo =Xy X =B+ X, X A+ X x D+X xC,
Yy=X) X-C+Xy X -D+X;x A+X x B,
Yy =Xy XD+ Xy X C+Xyx-B+X x-A,

Yl Y2R Y3R YhR

YR Y —X{R ng

2 1

YR YR ¥ -ng

3 l 1
-1 -1 YTZR 7, |

where R is the Goethals-Seidel matrix (see [3, 6]).

Now clearly H 1is of order Mkn . Since each indeterminate is
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associated with Xl, X2, X, and Xh in each row and colum, and (a) of

3
Theorem 1 holds, each indeterminate occurs exactly »n times in each row

and column. It may be verified that

m' = I, lz‘ Y.y,

1 i1
It remains to show that

)y
I 2,7 =n x (ad"+pE"vcc"00")
N

L
but this is clearly true since X Xng = n.Z'n .
=1

There is an equivalent enunciation for both Theorems 2 and 3 when

Xl’ X2, X3, Xl& are matrices defined on subsets of abelian groups.

THEOREM 3. Suppose there exist four circulant (0, 1, -1) matrices

X X2, X3, Xh of order n which satisfy

1,
(i) Xi*XJ.:O, i#J, t,§=1,2,3, k4,

L
(i) ) XK, =nl .
=1
Further suppose there exist four (1, -1) matrices A, B, C, D of order

m which pairwise satisfy Mt = IVMT and for which
ad” + 58"+ cc” 00 = mI_

Then there exists an Hadamard matrixz of order kumm .

Proof. This follows by replacing the indeterminates A, B, €, D of

the previous theorem by the matrices A, B, C, D .

COROLLARY 4. There exists an Hadamard array of order Wt for
t € {x : x is an odd integer, 1 < t = 19} .

Proof. The matrices Xl’ X X3, Xb, for t=17,9, 11 may be found

in [6]. These matrices were found by Welch for ¢t =5 , (unpublished

result) but we give it here for completeness.
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In each case we give a set which may be used to determine the first

following table:

n

This is possible because the Xi are circulant.

is in the set for Xj then the <Z-th element of the first row of

is *1 , all the other elements are zero. Use the sets from the

Xl: X2y X35 Xy

[ JRECIRN, BRI

11
13

15
1T

19

12412412402
22412402402
22412412412
22422412402
32+02+02+02
32+12+12+02

32422402402

22422422472

32+22+12+12

)42"’12'4'02"’02

32+32+12+02

{1}, {2}, {3}

{1,2}, {5}, {3,-4}

{1,2}, {5}, {3,6,-1}, {k}

{1,6}, {2,8}, {9}, {3,4,-5,-7}

{1,2,7}, {3,-9}, {4,-8}, {5,-6}
{1,5,7,8,-9}, {11}, {2,3,-4,-6,10}
{1,7,9}, {&,5,8,-10}, {-2,-3,6,11,-12,13}

or

{1 ,3a9} > {2 as 36 a"13} ’ {h s'7 9_8910 ,—ll a12}
{1,5}, {3,4,-6,-9,10,12}, {7,13}, {-2,8,11}

or

{1,2,5,—9}, {33)‘"-6:10,'11,12}’ {7,13}, {8}
{1,2,6}, {8,9}, {10,-11,13}, {-3,-4,5,7,12,14,-15}
{l’h’8316}’ {2913’_15}, {99—17}:

or

{3,5,-6,-7,-10,-11,12,1L}

{135510312}a {3:)“9’9}, {8a-15}’

or

{2,-6,-7,11,-13,1k4,16,-17}

{l 525=3 9_,'+ ,_5 9'6 ’-9 a_lh »15 3_16} )

{10,11,-17}, {7,-8}, {12,-13}

{1,2,13}, {71,11,17}, {4,-9,-12,-14,15,16,18},

{3,5,-6,8,-10,-19}

The matrices

X

1°

X2, X3, Xb for n =13 = 32 + 22 + 02 + 02 were

found by listing the multiplicative cyclic group of order 12 generated by

2 to form the subgroup C, = {2hJ :j=0,1, 2} of order 3 and its
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o ' _
cosets C, = {2hJ Y:4=0,1,2}, i=1,2,3 . Then the first rows of

Xl’ X5 X3, Xl; may be obtained by using the sets
Cou (-¢) » c3ul-13}, ¢, . ¢

or

Y (-03) » CQui-13t, ¢y, @

where -Ci = {-1 : 7 € Ci} , and the Xj are formed as described in the
proof of Corollary h,
Y~ 2 2 2 s oas . .
For n =19 =3 +3 +1° +0 the multiplicative cyclic group of

order 18 generated by 2 was used to form the subgroup

Co = {26‘7 1 =0,1, 2} of order 3 and its cosets
C. = {26‘7.'”:4 : g =0,1, 2} 7 =1 5 Then X., X., X,, X, were
i . 3 b4 E] L4 s ey - l, 2’ 3’ h

found, as above, by using the sets

Cl, C3’ C2 u {_Cl} ’ {0} U Ch U {_Cs} .

Matrices A, B, ¢ and D satisfying the conditions of Theorem 3 have
previously been used to construct Hadamard matrices of orders um [10],
12m [2], 20m (unpublished result of Welch, communicated to the authors
by Baumert), 28m , 36m , hlm [6]. They are known to exist when m is

a member of the set
M=1{3,5, 7T, ..., 29, 37, 43} ,
[4], and when 2m - 1 is & prime power congruent to 1 modulo U4 [5, 9].

COROLLARY 5. There exist Hadamard matrices of orders 52m , 60m ,
68m , T6m whenever m € M .

COROLLARY 6. There extst Hadamard matrices of orders 26(qg+l) ,
30(g+1) , 34(q+1) , 38{g+l) whenever q is a prime power congruent to
1 modulo k4 .

This gives the following new Hadamard matrices of order < L4000:

988, 1196, 1ukk, 1508, 156L, 1612, 1900, 1972, 2108,
2356, 2516, 2788, 2924, 3116, 3128, 3172, 3876.
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