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The classical water-wave theory often neglects water compressibility effects, assuming
acoustic and gravity waves propagate independently due to their disparate spatial and
temporal scales. However, nonlinear interactions can couple these wave modes, enabling
energy transfer between them. This study adopts a dynamical systems approach to
investigate acoustic–gravity wave triads in compressible water flow, employing phase-
plane analysis to reveal complex bifurcation structures and identify steady-state resonant
configurations. Through this framework, we identify specific parameter conditions that
enable complete energy exchange between surface and acoustic modes, with the triad
phase (also known as the dynamical phase) playing a crucial role in modulating
energy transfer. Further, incorporating spatial dependencies into the triad system reveals
additional dynamical effects that depend on the wave velocity and resonance conditions:
we observe that travelling-wave solutions emerge, and their stability is governed by the
Hamiltonian structure of the system. The phase-plane analysis shows that, for certain
velocity regimes, the resonance dynamics remains similar to the spatially independent
case, while in other regimes, bifurcations modify the structure of resonant interactions,
influencing the efficiency of energy exchange. Additionally, modulated periodic solutions
appear, exhibiting changes in wave amplitudes over time and space, with implications
for wave-packet stability and energy localisation. These findings enhance the theoretical
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understanding of acoustic–gravity wave interactions, offering potential applications in
geophysical phenomena such as oceanic microseisms.

Key words: nonlinear dynamical systems, surface gravity waves, compressible flows

1. Introduction
The classical theory of water waves often overlooks the impact of water compressibility,
primarily because acoustic waves are typically considered to be decoupled from free-
surface waves. In linear theory, this assumption is valid due to the vastly different spatial
and temporal scales of acoustic propagation modes compared with free-surface waves,
driven by the fact that the speed of sound in water significantly exceeds the maximum
phase speed of surface waves. However, when nonlinear wave interactions are considered,
neglecting compressibility may no longer be justified. Longuet-Higgins (1950) highlighted
this in a seminal paper, demonstrating that quadratic interactions of gravity surface waves
can resonantly excite compression modes in finite-depth water. He proposed that this
nonlinear coupling mechanism is crucial for generating oceanic microseisms – small
oscillations of the seafloor in the frequency range of 0.1–0.3 Hz.

Longuet-Higgins (1950) focused on a scenario where two oppositely propagating
gravity wavetrains of the same frequency decay exponentially with depth, consistent
with classical, incompressible water-wave theory. At the second order, however, quadratic
interactions produce a space-averaged pressure component at twice the wave frequency,
which does not attenuate with depth. When the water depth is comparable to the acoustic
wavelength, compressibility must be considered to accurately compute the induced
pressure disturbance within the fluid. Accounting for compressibility, the second-order
response shows a resonance when a free compression mode has twice the surface-wave
frequency, suggesting optimal conditions for microseism generation, as supported by
recent North Atlantic field observations (Kedar et al. 2008).

Building on this, Kadri & Stiassnie (2013) provided numerical evidence that the
resonances identified by Longuet-Higgins (1950) are specific instances of resonant
wave triads involving a propagating acoustic wave mode and two oppositely travelling
subharmonic surface waves. They further argued that these resonant acoustic–gravity
interactions are described by amplitude equations similar to those of a standard resonant
triad (Bretherton 1964).

Subsequently, Kadri & Akylas (2016) analysed triads consisting of a long-crested
acoustic mode and two oppositely propagating subharmonic gravity waves. Due to the
significant difference in the scales of gravity and acoustic waves, the interaction time scale
is longer than that of a standard resonant triad, and the amplitude evolution equations
include certain cubic terms in addition to the usual quadratic interaction terms. Despite
this complexity, finely tuned triads can form, and it was shown that nearly all the energy
initially in the gravity waves may transfer to the acoustic mode. However, this energy
transfer mechanism is significantly less effective for locally confined wave packets.

In this study, we adopt a dynamical systems approach to further explore the results
obtained by Kadri & Akylas (2016). The key emergent degrees of freedom in this
approach are the so-called triad phases, or dynamical phases (Bustamante & Kartashova
2009; Harris, Bustamante & Connaughton 2012), whose dynamical evolution and
synchronisation can influence strongly the way energy is transferred across different
modes, as shown in a variety of physical scenarios: generation of low-frequency
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Rossby waves in the atmosphere (Raphaldini et al. 2022), long-term solar cycles in
magnetohydrodynamic Rossby waves (Raphaldini et al. 2019), turbulence in one-
dimensional compressible flows (Buzzicotti et al. 2016; Murray & Bustamante 2018;
Arguedas-Leiva et al. 2022; Protas, Kang & Bustamante 2024), type I and type II
instabilities of surface gravity waves (Andrade & Stuhlmeier 2023b,c; Heffernan,
Chabchoub & Stuhlmeier 2024), dissipation events and turbulence in two- and three-
dimensional incompressible flows (Bustamante, Quinn & Lucas 2014; Walsh &
Bustamante 2020; Redfern, Lazer & Lucas 2024; Wang et al. 2024). Utilising phase-plane
analysis, in the current work we examine the solutions on separatrices, revealing rich
structure and a variety of bifurcations. Fixed points in the interior of the phase space are
identified with steady-state resonant triads first found by Yang, Dias & Liao (2018). We
find that specific values of detuning parameter γ allow for full asymptotic energy exchange
between surface and acoustic–gravity modes. At the same time, we see how the triad
phase, constructed as a kind of phase difference from surface and acoustic modes, can
increase or decrease energy exchange, which may be important for practical applications.

2. Preliminaries
Consider the propagation of surface–acoustic wave disturbances in water of constant depth
h over a rigid bottom (z = −h), due to the combined action of gravity and compressibility.
Water will be treated as an inviscid, barotropic fluid (where the pressure p is a function
of the density ρ only) with constant sound speed c = (dp/dρ)1/2, and the motion will
be assumed irrotational. A key parameter, which controls the effects of compressibility
relative to gravity, is

μ = gh

c2 , (μ � 1), (2.1)

where g is the gravitational acceleration. Typically, this parameter is small (μ � 1), as the
sound speed in water, c = 1.5 × 103 m s–1, far exceeds the maximum gravity-wave phase
speed (gh)1/2 (under oceanic conditions, for h = 150–1500 m, say, μ � 10−3–10−2). As
a result, free-surface (gravity) wave disturbances feature vastly different spatial and/or
temporal scales from acoustic (compression) wave modes.

Assuming irrotational flow, the surface–acoustic wave problem is formulated in terms
of the velocity potential ϕ(x, z, t), where u = ∇ϕ is the velocity field. Moreover, we
shall use dimensionless variables, employing µh as length scale and h/c as time
scale. As in Longuet-Higgins (1950), the equation governing ϕ in the fluid interior is
obtained by combining continuity with the unsteady Bernoulli equation. Specifically, ϕ

satisfies
1
μ2 (ϕxx + ϕzz) − ϕt t − ϕz − |∇ϕ|2t − 1

2
u · ∇

(
|∇ϕ|2

)
= 0, (2.2)

with the combined (kinematic and dynamic) condition on the free surface

ϕt t + ϕz + |∇ϕ|2t − {ϕt (ϕt t + ϕz)}z + 1
2

u · ∇
(
|∇ϕ|2

)
− {

ϕt |∇ϕ|2t
}

z

−1
2

{
(ϕt t + ϕz)

(
|∇ϕ|2 − ϕ2

t

) }
z
= 0 (z = 0),

(2.3a)

and the boundary condition on the rigid bottom at z = −1/μ reads

ϕz = 0 (z = −1/μ). (2.3b)
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In the limit μ � 1, equation (2.2) along with the boundary conditions (2.3) reduce
to the classical incompressible deep-water wave problem (correct to cubic terms). This
reflects the fact that the chosen length scale μh pertains to deep-water gravity waves,
which are confined close to the free surface. Acoustic waves, by contrast, extend through
the entire fluid depth, and x and z have to be re-scaled accordingly in order to capture these
disturbances for μ � 1.

For the gravity wave, the frequency ω satisfies the dispersion relation

ω2 = |k| + O(μ4), (2.4)

where k is the wavenumber.
For the acoustic modes there is a countable infinity of propagation modes which obey

the dispersion relations

ω2 = ω2
n + κ2 + μ

ω2
n − κ2

ω2
n + κ2 + O(μ2) (n = 0, 1, 2, . . .), (2.5)

where ωn ≡ (n + (1/2))π .
Consider two gravity waves (k+, ω+) and (k−, ω−) observing the dispersion relation

(2.4), along with an acoustic wave (μκ, ω) which satisfies the dispersion relations (2.5) for
some n = 0, 1, 2, . . . . To form a resonant triad, these modes must also obey the resonance
conditions

(i) k+ + k− = μκ; (ii) ω+ + ω− = ω. (2.6)

3. Resonant wave triads: dynamics and evolution
For a slow time scale T = μt , the amplitude evolution equations for the acoustic mode
A(T ) and the two gravity waves S±(T ) are given by (Kadri & Akylas 2016)

dA

dT
= iγ A + δS+S−, (3.1)

dS±
dT

= −δ

2
AS∗∓ − iλ

(
S±2S∗± − 2|S∓|2S±

)
, (3.2)

where

γ ≡ κ2 − ω2
n

2ω3 − β; δ ≡ (−1)n

4
ωnω

2α; λ≡ 1
64

ω7α2, (3.3)

and ∗ stands for complex conjugate. The terms on the right-hand side of (3.2) account for
the quadratic and cubic interactions, which enter the evolution equations at the same order
for α = O(1), β is the detuning introduced in (Kadri & Akylas 2016, Eq. (5.2)), such that
γ is a measure for the overall resonance detuning, which we call the detuning parameter.

Writing the variables in terms of complex exponentials A = a exp(iθa) and S± =
s± exp(iθ±), where both the amplitudes a, s± and the phases θa, θ± are unknown
functions of time, allows us to split the triad resonance system into the following:

a′ + iaθ ′
a = iγ a + δs+s− exp(iθ), (3.4)

s′± + is±θ ′± = −δ

2
as∓ exp(−iθ) − iλ

(
s3± − 2s2∓s±

)
, (3.5)

where we have introduced the triad phase or dynamical phase θ ≡ θ+ + θ− − θa
(Bustamante & Kartashova 2009). The key insight that the three individual phases θa, θ±
1013 A23-4
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do not influence the resonant interaction except in this single combination is the first step
to reducing the dimension of the resulting system.

Separating (3.4)–(3.5) into real and imaginary parts results in the system

a′ = δs+s− cos(θ); s′± = −δ

2
as∓ cos(θ), (3.6)

θ ′ = −γ + λ
(

s2+ + s2−
)

+ δ

[
a2s2− + a2s2+ − 2s2+s2−

2as+s−

]
sin(θ). (3.7)

The two conserved quantities for this system, W and K , identified with the total energy
and surface-wave energy difference. Judicious use of these will allow us to eliminate two
of the three amplitudes, and recast our equations in the phase plane. These conserved
quantities can be written compactly as(

1 1 1
0 1 −1

)⎛⎜⎝a2

s2+
s2−

⎞⎟⎠=
(

W
K

)
, (3.8)

where we take K � 0 without loss of generality. This system has the following general
solution, in terms of the single unknown function η(t):⎛⎜⎝a2

s2+
s2−

⎞⎟⎠=
⎛⎝ W − η

(η + K )/2
(η − K )/2

⎞⎠ . (3.9)

Substitution of the solution allows us to write the triad system in terms of two variables

η′ = −δ

√
(W − η)(η2 − K 2) cos(θ), (3.10)

θ ′ = −γ + λη + δ

2
sin(θ)

(
2ηW + K 2 − 3η2√
(W − η)(η2 − K 2)

)
. (3.11)

Integration of these equations yields immediately the Hamiltonian

H = δ

√
(η − W )(K 2 − η2) sin(θ) − η

(
γ − λη

2

)
, (3.12)

with
∂ H

∂η
= dθ

dt
,

∂ H

∂θ
= −dη

dt
. (3.13)

Note that the two-dimensional, Hamiltonian system (3.10)–(3.11) is entirely equivalent to
the original system of three complex equations (3.1)–(3.2). The simpler system obtained
by Kadri & Stiassnie (2013) can likewise be cast in Hamiltonian form by setting λ= 0 and
γ = 0, thereby eliminating the cubic terms and the detuning, respectively.

The Hamiltonian H has Jacobi matrix

J =
(

Hηθ Hθθ

−Hηη −Hηθ

)
, (3.14)
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with determinant det(J ) = Hθθ Hηη − H2
ηθ . At a fixed point of the system, the eigenvalues

corresponding to the linearised solution are λ1,2 = ±√− det(J ).

This approach of reducing wave interaction equations to a dynamical system has
been previously employed for cubically nonlinear three-wave mixing in optical fibres
by Cappellini & Trillo (1991), and has recently been used to explore several classical
instabilities for free-surface water waves (see e.g. Andrade & Stuhlmeier 2023b). We shall
see that it readily yields a new and transparent view of the acoustic–gravity wave resonance
problem.

4. Phase-plane analysis
The principal advantage of reducing the three complex resonant interaction equations
(3.1)–(3.2) to a (real-valued) planar Hamiltonian system (3.10)–(3.11) is in allowing simple
insight via phase-plane analysis. The single dynamical phase (sometimes termed triad
phase in this context) θ and energy parameter η allow the problem to be formulated in
a domain (η, θ) ∈ (K , W ) × [−π, π] (recall that K � 0 without loss of generality, and
W > K by (3.9)). As η tends to the lower limit of the energy scale η = K we have a
system consisting of the acoustic mode a and one surface mode s+, while at the upper
limit η = W we have two surface modes s− and s+ only (see (3.9)). When surface mode
energy is equipartitioned, K = 0, and the lower limit corresponds to the acoustic mode
a only. This points to a significant difference between cases with (K = 0) and without
(K �= 0) such equipartition.

We begin the phase-plane analysis by identifying nullclines and fixed points of the
system. By straightforward inspection the nullclines of (3.10) are η = W , η = K and
θ = ±π/2. Meanwhile, we can obtain the nullcline of (3.11) by setting the right-hand
side equal to zero, i.e.

θ = arcsin

(
2(γ − λη)

√
(W − η)(η2 − K 2)

δ(2ηW + K 2 − 3η2)

)
. (4.1)

We note that, as η → W, the nullcline intersects the points (η, θ) = (W, 0) and (W, ±π).

Consequently there are always fixed points of the system (3.10)–(3.11) at the top of the
phase plane. If K �= 0 the same holds as η → K , i.e. as we approach the bottom of the
phase plane. In this case we always have fixed points in these positions, limiting the
types of bifurcation that can take place. On the other hand, for K = 0, i.e. equipartition of
energy between the two surface waves, we can find fixed points at the bottom of the phase
plane with

θ = arcsin
(

γ

δ
√

W

)
, (4.2)

when the argument of arcsin is of magnitude less than or equal to 1.
We can also establish the existence of an interior fixed point along the nullcline of

η corresponding to θ = ±π/2. For θ = π/2 setting the right-hand side of (3.11) to zero
yields

p(η) ≡ (γ − λη)

√
(W − η)(η2 − K 2) − δ

2

(
2ηW + K 2 − 3η2

)
. (4.3)
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Figure 1. Characteristic phase portraits for K = 0, W = 2 and α = 1 for various values of detuning parameter.
Panels show γ = 0.36 (a), γ = λW/2 ≈ 1.21 (b), γ ≈ 1.62 (c), γ ≈ 1.98 (d), γ ≈ 1.20 (e) and γ = 2.5 (f ). Each
curve is a level line of the Hamiltonian, so that trajectories of the system in (η, θ) remain confined to these
level lines; fixed points are denoted by circles (©), and separatrices connecting these fixed points are denoted
by dashed, black curves. For the interpretation of the red ×s in panel (a) refer to figure 2.

Evaluating at the limits η = K and η = W gives

p(K ) = δK (W − K ), p(W ) = δ

2
(K 2 − W 2), (4.4)

which have opposite signs when K �= 0, implying the existence of a zero. The same
argument is true for θ = −π/2.

4.1. Bifurcation with equal surface-wave amplitudes
When the surface-wave amplitudes are equal four parameters remain in our problem:
the total energy W (see (3.9)), the modal parameter δ (which depends on the acoustic–
gravity mode and frequencies considered), the steepness parameter α and the detuning
γ. As the lowest acoustic–gravity mode is dominant, and following the work of Kadri
& Akylas (2016) we will take n = 0 and ω0 = π/2 as well as ω =√

1 + π2/4 in all
subsequent examples. Taking α = 1 then fixes δ via (3.3). If we subsequently choose the
total energy W = 2 (see (Kadri & Akylas 2016, (6.1))) this leaves the detuning γ as a
bifurcation parameter for our system.

Figure 1 shows six characteristic phase portraits for a fixed value of α = 1, with various
values of detuning parameter γ . Trajectories are level lines of the Hamiltonian (3.12),
with colours denoting the value of the Hamiltonian. Fixed points are denoted by circles,
while separatrices are shown as dashed black lines. For sufficiently small (negative) values
of detuning γ, condition (4.2) is violated and no fixed points occur at η = 0 (not shown).
Fixed points appear at η = 0 when γ = ±δ

√
W , at which point a bifurcation splits the fixed

point at (η, θ) = (0, ±π/2) into the two fixed points (η, θ) = (0, arcsin(±γ δ−1W −1/2))
seen in panels (a)–(c).
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Still referring to figure 1, for sufficiently small steepness α � 32ωnω
−5W −1/2 and

γ = λW/2 (shown in panel (b)) separatrices connecting fixed points at the top and bottom
of the domain merge – the solution along this separatrix exhibits total conversion as
two surface modes are asymptotically converted into an acoustic mode or vice versa.
This corresponds to the ‘perfectly tuned’ situation discussed by (Kadri & Akylas 2016,
Section 6), and describes a departure from the prototypical cyclic energy exchange seen
elsewhere in the phase plane.

As the detuning parameter γ increases further, the fixed points at η = 0 undergo a
saddle-node bifurcation (panel (d)), where they coalesce and then vanish. This is followed
by a centre-saddle bifurcation (panel (e)), characterised by the disappearance of the
remaining fixed points due to the vanishing discriminant of the cubic polynomial

q(η) = 4(γ − λη)2(W − η) − δ2(2W − 3η)2. (4.5)

It is instructive to move from the phase space shown in figure 1 to the time evolution
of the physical mode amplitudes. This is the natural setting for the original system of
interaction equations (3.1)–(3.2). We shall visualise the modal interactions for α = 1 and
detuning parameter γ = 0.36, as shown in figure 1, panel (a). As initial conditions we
employ the values of energy distribution and dynamic phase given at the three red ×
symbols in the aforementioned panel: η(0) = 0.1, θ(0) = −π/2, η(0) = 0.1, θ(0) = π/2
and η(0) = W − 0.1, θ(0) = π/2.

These three initial conditions belong to different parts of the phase space separated by
the separatrices (dashed black curves in figure 1): these are orbits surrounding the centre
at θ = −π/2, orbits surrounding the centre at θ = π/2 and trajectories between the two
separatrices. The first two domains are characterised by a confined dynamical phase, and
are depicted in panel (a) and panel (c) of figure 2, respectively. The last is shown in panel
(b) of figure 2, where the dynamical phase is wrapped to [−π, π].

In the phase-plane description, the energy exchange among the acoustic mode a and
the surface modes s± is given by the excursion of η along a given contour. For instance,
if an additional panel were added to figure 2 showing initial data at an interior fixed
point, the result would depict three horizontal lines, corresponding to a steady-state
resonance. The trajectories confined around the fixed point at θ = π/2 in figure 1(a)
demonstrate only limited energy exchange over time, as shown in figure 2(c). Both
representations of the resonant interaction illustrate that the greatest energy exchange
(maximum of η′) along a contour occurs when there is minimal variation in the dynamical
phase (minimum of θ ′), and vice versa. A detailed exploration of the conditions for
optimal energy conversion between acoustic and surface modes will follow in subsequent
sections.

4.2. Fixed points as steady-state triads
The interior fixed points we find are steady-state resonant acoustic–gravity triads, which
have previously been discovered in isolation using the homotopy analysis method (HAM)
by Yang et al. (2018). Their high-order, iterative procedure yields such steady states in the
context of triads without detuning and in the absence of cubic terms, which amounts to
setting both γ and λ to zero in (3.10)–(3.11).

The phase-plane analysis we undertake shows that such steady states are ubiquitous
in the acoustic–gravity wave interaction. Indeed, making the substitution γ = λ= 0 in
(3.11) shows that interior fixed points are always centres, and exist independent of mode
number or other parameters. For any values of W and K they are located at (η, θ) =
((W + √

3K 2 + W 2)/3, ±π/2). Although Yang et al. (2018) do not report the phases of
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Figure 2. Resonant interaction throughout the phase space for K = 0 and γ = 0.36 (Panel (a), figure 1)
corresponding to the initial conditions shown as red × symbols in figure 1. Left axes show the amplitudes
of surface (dashed blue curves) and acoustic modes (solid blue curves). Right axes show the dynamical
phase (dash-dotted red curves). Panel (a) η(0) = 0.1, θ(0) = −π/2. Panel (b) η(0) = 0.1, θ(0) = π/2. Panel
(c) η(0) = W − 0.1, θ(0) = π/2..

their steady-state solutions, it is easy to verify that their iteration converges to amplitudes
partitioned as per η above, i.e. using η = W − a2 and given values of K and W. The
agreement is not exact, since their high-order expansion allows for energy to exist in wave
modes other than a, s+ and s−, whereas we are strictly confined to three modes only.

4.3. Bifurcation with unequal surface-wave amplitudes
When the two surface modes have unequal amplitudes, complete asymptotic conversion
of all surface-wave energy into an acoustic mode is not possible. This limitation arises
because the phase space depends on the conserved energy difference K . Consequently, in
addition to specifying total energy W and other parameters as outlined in § 4.1, the value
of K must also be defined. Using n = 0 and the values of ω0, ω from § 4.1, we select
W = 2, K = 0.1 and α = 1.2.

Non-symmetric surface waves imply the existence of fixed points at θ = 0, ±π at both
the top and bottom of the phase space. However, variations of the detuning γ give rise to
bifurcations, much as in the symmetric case discussed above. Indeed, as γ is increased
to γ = λ(K + W )/2, we find that separatrices connect the two boundaries of the phase
plane, as depicted in figure 3(b). This represents asymptotic conversion of two surface
modes with s2± = (W ± K )/2 into one surface mode with a2 = W − K and one acoustic
mode with s2+ = K , or vice versa (see (3.9)).

As γ continues to increase, a pitchfork bifurcation emerges (illustrated in panels (d) and
(e) of figure 3), producing two centres and a saddle point from the single centre initially
located at θ = π/2 in panels (a)–(c). This bifurcation occurs for specific values of K ,
W and α, such that the quintic derived from (3.11) at θ = π/2 possesses three real roots
within the interval [K , W ]. As the detuning parameter γ increases, fixed points at the
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Figure 3. Characteristic phase portraits for K = 0.1, W = 2 and α = 1.2 for various values of increasing
detuning parameter. Panels show γ = −0.55 (a), γ = λ(K + W )/2 ≈ 1.83 (b), γ = 2.2 (c), γ ≈ 2.58 (d),
γ ≈ 2.60 (e) and γ = 3.50 (f ). Each curve is a level line of the Hamiltonian, so that trajectories of the system in
(η, θ) remain confined to these level lines; fixed points are denoted by circles (©), and separatrices connecting
these fixed points are denoted by dashed, black curves.

boundaries remain present (cf. panel (f ) in figures 1 and 3), but the qualitative behaviour
remains similar: large detuning, whether positive or negative, results in a flattening of
orbits, signifying reduced energy exchange among the modes.

4.4. Optimal energy conversion
From a physical perspective, the most intriguing solutions revealed through phase-plane
analysis are those enabling the asymptotic conversion of all energy. This occurs either
from two surface modes into a single acoustic mode (when K = 0) or from two surface
modes into one acoustic and one surface mode (when K �= 0). Remarkably, these solutions
can be computed analytically.

For given values of W and K , maximal energy exchange is observed along a separatrix
that connects the top (η = W ) and bottom (η = K ) boundaries of the domain. A necessary
condition for the existence of such a particular solution is that the values of the
Hamiltonian at η = W and η = K are equal, expressed as

H(W, θ) = −W

(
γ − λW

2

)
= −K

(
γ − λK

2

)
= H(K , θ), (4.6)

which amounts to choosing γ = λ(W + K )/2. For this specific choice of γ , the existence
of a separatrix requires

δ

√
(W − η)(η2 − K 2) sin(θ) = −λ

2
(η − K )(η − W ). (4.7)
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Figure 4. Optimal energy conversion along the separatrix shown in figure 1(b).

This allows us to simplify (3.10) considerably, squaring it and substituting the above to
obtain

(η′)2 = (W − η)(η − K )

(
δ2(η + K ) − λ

2

4
(η − K )(W − η)

)
= P4(η). (4.8)

Here, P4(η) is a degree-4 polynomial in η, and so equation (4.8) can be solved exactly by
means of elliptic functions. We compute the separatrix explicitly for K = 0. The equation
that needs to be solved in this case is a simplification of (4.8)

(η′)2 = (W − η)η2
(
λ2

4
η + δ2 − λ

2

4
W

)
. (4.9)

The roots of the polynomial are W and 0 (with multiplicity two) and d = W − 4δ2/λ2

which is negative whenever fixed points at η = 0 exist. The solution of equation (4.9) can
be obtained through separation of variables, yielding

tanh−1

(√
d(η − W )

W (η − d)

)
=

√−W d

2
t. (4.10)

Here, it is important to note that d � 0, and this expression is valid only for t � 0, as the
argument of the hyperbolic tangent must remain non-negative. Thus, the solution to the
differential equation is given by

η = W dsech2(
√−W dt/2)

d − W tanh2(
√−W dt/2)

, (4.11)

valid for t � 0 only. Additionally, note that η(0) = W , meaning the solution starts at the
upper boundary and progressively approaches the lower boundary of the domain. This
represents the optimal configuration, where the gravity-wave transfers all its energy to the
acoustic mode.

Once η is determined, θ can be calculated using (4.7). Employing the same parameter
values as those used in § 4.1, figure 4 illustrates the solution along the separatrix
originating from η(0) = W and θ(0) = 0, as depicted in panel (b) of figure 1.
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5. Spatial dependency
For the more general wave-packet resonant interaction, the wave envelopes A and S±
display spatio-temporal modulations. For κ = O(1), the appropriate spatial envelope
variable is X = μ2x . In this setting only the acoustic amplitude equation is modified, to
the following:

∂ A

∂T
+ κ

ω

∂ A

∂ X
= iγ A + δS+S−, (5.1)

whereas the evolution equation for the gravity modes remains unchanged, except for a
parametric spatial dependency (see Kadri & Akylas 2016), namely the above equation is
combined with (3.2). Notice that now the general problem is to look for a solution of the
system of (5.1), (3.2) such that A, S+ and S− are functions of X and T .

5.1. Travelling-wave solution with velocity v

While pursuing a general solution to such a system is an intriguing endeavour, likely
connected to the theory of integrable systems (Calogero & Degasperis 2004; Degasperis
& Lombardo 2007), here, attention is focused on gaining insights by examining specific
solutions. We assume that A and S± are functions of the real variable ξ ≡ T − X/v, where
v �= 0. This represents a fixed ‘profile’ propagating at a constant velocity v in the X -
direction. Although the profile is fixed, it is non-trivial, with its shape governed by the
nonlinear interaction between A and S±, as demonstrated below.

Assuming A = A(T − X/v) and S± = S±(T − X/v), and denoting the derivative of a
function with respect to its argument by a prime, we have

∂ A

∂ X
= −A′/v; ∂ A

∂T
= A′; ∂S±

∂T
= S′±, (5.2)

where we have omitted the argument ξ = T − X/v of the above functions. Replacing the
above into (5.1), (3.2) we obtain the system(

1 − κ

ωv

)
A′ = iγ A + δS+S−; S′± = −δ

2
AS∗∓ − iλ

(
S2±S∗± − 2|S∓|2S±

)
. (5.3)

The analysis is divided into two cases for v �= 0: (i) v = κ/ω, and (ii) v �= κ/ω. In case
(i) the system simplifies as follows:

A = i
δ

γ
S+S−; S′± = −i

(
λ|S±|2 +

(
δ2

2γ
− 2λ

)
|S∓|2

)
S±. (5.4)

In this case the dynamics simplifies considerably, yielding the general solution

A(ξ) = i
δ

γ
M+M− exp(−i(Ω+ + Ω−)ξ + i(Φ+ + Φ−));

S±(ξ) = M± exp(−iΩ±ξ + iΦ±),

(5.5)

where

Ω± ≡ λM2± +
(

δ2

2γ
− 2λ

)
M2∓. (5.6)

Here, M± are arbitrary non-negative constants, and Φ± are arbitrary real constants.
Notably, this solution introduces phase modulation while leaving the absolute values
|A| and |S±| uniform in space and time. This indicates that the amplitudes remain
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constant despite the modulation of their phases, highlighting the significant simplifications
introduced by the condition v = κ/ω.

Case (ii) differs fundamentally from case (i), as it permits the evolution of all variables.
Returning to (5.3), we observe that the prefactor (1 − κ/ωv) is non-zero, and its sign plays
a crucial role in the dynamics. To simplify the system and account for the prefactor, we
define the rescaled variables

Ã ≡ Asign
(

1 − κ

ωv

)
; S̃± ≡ S±√|1 − κ/ωv| ; ξ̃ ≡ ξ

1 − κ/ωv
. (5.7)

Substituting these variables into (5.3), we derive the rescaled equations

( Ã)′ = iγ Ã + δ
(

1 − κ

ωv

)
S̃+ S̃−, (5.8)

(S̃±)′ = −δ

2

∣∣∣1 − κ

ωv

∣∣∣ ÃS̃∗∓ − iλ
∣∣∣1 − κ

ωv

∣∣∣ (1 − κ

ωv

) (
S̃2± S̃∗± − 2|S̃∓|2 S̃±

)
. (5.9)

Here, the derivative ′ refers to differentiation with respect to ξ̃ in the moving frame. We
identify two subcases based on the sign of (1 − κ/ωv). Subcase (ii-1): (1 − κ/ωv) < 0.
This scenario represents a singularity that signifies an ‘explosive’ breakdown of the
equations after a finite time. We remark that, as noted in Craik (1986), this does not
contradict the conservation laws. Rather, the conserved quantities | Ã|2 − 2|S̃±|2 are no
longer sign definite: see (Craik 1986, Section 14.3). Due to this unphysical behaviour, we
discard the analysis of these solutions for the remainder of this discussion – more on such
solutions can be found in (Coppi, Rosenbluth & Sudan 1969).

Subcase (ii-2): 0 < (1 − κ/ωv). This case is well behaved and aligns with the previous
analyses presented in § 3. In fact, the rescaled system is analogous to the one studied in
that section if we make the following transformations:

S± → S±√
1 − κ/ωv

, α →
(

1 − κ

ωv

)
α , T → T − X/v

1 − κ/ωv
, (5.10)

while A and γ remain unchanged. Corresponding to the change (5.10), due to their
dependence on α the constants δ and λ are replaced by (1 − κ/ωv)δ and (1 − κ/ωv)2λ,
respectively.

In summary, assuming κ/ω > 0, we conclude that a travelling-wave solution with
velocity v is stable (in the sense that the amplitudes remain bounded) only if κ/ω � v,
namely when v ∈ (−∞, 0) ∪ [κ/ω, ∞). This unusual condition on the velocity has a
straightforward interpretation. In the stable case, the travelling wave is governed by
the solution to equations (5.8)–(5.9), which are typically periodic, with period τ > 0
(depending on the initial amplitudes and the velocity v through the mapping in (5.10)).
Thus, the travelling wave, being a function of T − X/v, is periodic not only in time but
also in space, with wavelength λ= vτ and wavenumber k = 1/λ. The wavenumber k can
take either sign: k > 0 corresponds to a wave travelling from left to right, while k < 0
corresponds to a wave travelling from right to left. Therefore, the condition for stability
becomes −∞ < k �ω/κτ, which covers a continuous range of wavenumbers, including
all perturbations propagating from right to left as well as an infrared (i.e. ‘long-wave’)
range of perturbations propagating from left to right.
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5.2. Spatio-temporal resonant interactions
In the moving frame of reference with velocity v, the equations for the spatio-temporal
evolution of interacting acoustic–gravity waves, (5.8)–(5.9), are formally similar to
their spatially independent counterparts, (3.1)–(3.2). Consequently, the same approach
employed in § 3 can be applied to analyse this system.

By expressing each complex amplitude in exponential form, separating real and
imaginary parts and deriving an equation for the dynamical phase, we find

θ ′ = −γ + Λ
(

s2+ + s2−
)

−
[
Γ

(
as−
s+

+ as+
s−

)
+ �s+s−

a

]
sin θ, (5.11)

where

� ≡ δ
(

1 − κ

ωv

)
, Γ ≡ −δ

2

∣∣∣1 − κ

ωv

∣∣∣ , Λ ≡ λ
∣∣∣1 − κ

ωv

∣∣∣ (1 − κ

ωv

)
. (5.12)

We focus on the case v ∈ (−∞, 0) ∪ (κ/ω, ∞), where the system simplifies to

a′ = �s+s− cos θ; s′± = −�

2
as∓ cos θ; (5.13)

θ ′ = −γ + Λ
(

s2+ + s2−
)

+ �

[
a2s2− + a2s2+ − 2s2+s2−

2as+s−

]
sin θ. (5.14)

By employing the transformation (3.9), we rewrite this as a planar system with the
Hamiltonian

H = Δ

√
(η − W )(K 2 − η2) sin θ − η

(
γ − Λη

2

)
. (5.15)

Note that, as the velocity v is increased to zero, the Hamiltonian H becomes positive
everywhere. Conversely, as v is decreased to κ/ω , the Hamiltonian becomes negative
everywhere. In the limit |v| → ∞, the Hamiltonian reduces to the form described in § 3,
corresponding to the case without spatial dependency (see (5.11)).

In the case of spatial dependency and a moving frame of reference, v becomes an
additional independent variable influencing the system’s dynamics. Figure 5 illustrates
how variations in v alter the wave-packet acoustic–gravity interaction, resulting in distinct
dynamical behaviours. In all panels of figure 5 we fix γ = 0.36, and select K = 0, W = 2,
consistent with the parameters used in figure 1. For large positive and negative values of
v, the dynamics converges to that seen in panel (a) of figure 1. This is exemplified in
panel (f ) of figure 5, where a numerical value of v = 500 was used to approximate the
asymptotic (v = ∞) values of the Hamiltonian to within three significant figures. As the
velocity approaches the exclusion zone [0, κ/ω), the interaction diminishes and eventually
disappears, as demonstrated in panels (a)–(c) of figure 5. This behaviour is consistent with
the simple solution found in (5.4). For v > κ/ω, the bifurcation process is essentially the
same as that observed in figure 1 when the detuning parameter γ � 1 is decreased. The
corresponding dynamics, discussed in § 3, is similarly recovered in this case, including
the case of asymptotic energy conversion, which is recovered at values of v that solve
γ = ΛW/2 as shown in figure 5(e).
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Figure 5. Phase portraits for the spatio-temporal system with varying speed v. Parameter choices are as in
panel (a) of figure 1, with v = −0.5 (a), v = −0.25 (b), v = κ/ω ≈ 0.537 (c), v = 0.805 (d), v ≈ 1.18 (e) and
v = ∞ (f ). Each curve is a level line of the Hamiltonian, so that trajectories of the system in (η, θ) remain
confined to these level lines; fixed points are denoted by circles (©), and separatrices connecting these fixed
points are denoted by dashed, black curves. Note that panel (f ) of this figure is identical to panel (a) of figure 1.

6. Discussion and concluding remarks
The analysis presented in this study highlights the intricate dynamics of resonant triads
involving acoustic–gravity wave interactions, with particular emphasis on spatial and
temporal dependencies of wave amplitude. Considering the amplitude evolution equations
derived by Kadri & Akylas (2016), we employed a dynamical systems approach to
investigate bifurcation structures, steady-state resonances and optimal energy transfer
conditions. This investigation provides new insights into the interplay between acoustic
and surface modes in compressible fluids, enriching the broader understanding of
nonlinear wave interactions.

Our results confirm that the triad phase or dynamical phase (Bustamante & Kartashova
2009; Harris et al. 2012) – a kind of phase difference between interacting modes –
plays a pivotal role in energy exchange. When the dynamical phase aligns optimally
along the separatrices, complete energy transfer between surface and acoustic modes
becomes achievable. For the symmetric case (K = 0), the bifurcation analysis revealed
solutions corresponding to total energy conversion from surface to acoustic modes. For
the asymmetric case (K �= 0), although complete conversion is unattainable, substantial
energy redistribution still occurs, governed by the conserved quantities W and K .
These findings complement earlier observations of the energy exchange dynamics in
acoustic–gravity systems (Kadri & Akylas 2016).

The HAM methodology is the state-of-the-art in identifying steady-state resonances,
having been employed successfully in a variety of physical configurations ranging from
surface water waves (Liao, Xu & Stiassnie 2016) to Bragg scattering (Xu et al. 2012,
2023). Nevertheless, the simple and transparent methodology adopted herein makes the
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identification of steady-state acoustic–gravity wave triads simple for a variety of parameter
values, and may provide impetus for further investigation using more highly nonlinear
approaches. Moreover, putting these steady states into a natural context as fixed points of
a dynamical system more clearly illustrates their role in the dynamics of energy exchange
between surface and acoustic modes, as well as other resonant interaction processes
(Andrade & Stuhlmeier 2023b).

Our model equations for acoustic–gravity wave interaction take into account the
leading terms up to and including cubic nonlinearities. It is therefore encouraging to
see that the weakly nonlinear analysis captures features of the acoustic–gravity wave
problem in the fully nonlinear compressible equations, as explored using HAM by
Yang et al. (2018); Yang & Yang (2024). While an exact, Gerstner-like acoustic–gravity
wave solution was found by Godin (2015), the wider landscape of fully nonlinear
progressive acoustic–gravity wave solutions remains to be explored, both analytically and
numerically.

The incorporation of spatial dependency into the triad dynamics introduces new and
richer behaviours, dependent on the wave velocity v. While the bifurcation structure
observed in the spatially independent case remains robust, the inclusion of the spatial
dynamics introduces modulations in periodic solutions and stability conditions, thereby
expanding the applicability of this framework. This aligns with the broader scope of
acoustic–gravity wave studies, including the generation of microseisms (Longuet-Higgins
1950; Kibblewhite & Ewans 1985), and the amplification of tsunami amplitude as in
the case of the 2022 Hunga-Tonga Hunga Ha’apai eruption (Omira et al. 2022). It
is worth noting that, although the Tonga case primarily involves the propagation of
acoustic–gravity waves in the atmosphere, their coupling with water waves (the generated
meteotsunami) occurs at the interface (water surface), which, in principle, follows the
same mechanism as described in Kadri & Akylas (2016), with only minor modifications.
Nevertheless, further research into the two-layer problem would be necessary to achieve a
more rigorous and specific result. Moreover, the complete energy conversion observed in
this study could have potential applications in the development of new energy-harnessing
technologies. The triad resonance mechanism may be exploited to enhance energy capture
and amplification in such systems.

Future research directions include the investigation of the nonlinear interaction of two
acoustic modes interacting with a single gravity wave (Kadri 2016, 2017; Zuccoli &
Kadri 2025), a context in which steady-state resonances have been recently identified
using the HAM (Yang & Yang 2024). Further extension of the model could account
for additional physical effects such as seabed elasticity (Eyov et al. 2013; Williams &
Kadri 2023), stratification (Michele & Renzi 2020), background currents and higher-
order nonlinearities. The coupling between broad-banded ocean wave spectra and multiple
compressibility modes, and the attendant role of dynamical phase in stochastic evolution
equations (Andrade & Stuhlmeier 2023a), also remain important challenges. Finally, we
expect that laboratory experiments, supported by numerical simulations, could be carried
out to validate and refine the analytical predictions presented here, particularly in scenarios
where spatially modulated triads introduce complex dynamical behaviours. In such cases,
triad resonance involving higher acoustic modes may become more accessible, especially
when flume depths are insufficient to support the leading mode efficiently. Experimental
investigations in this direction are currently ongoing.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2025.10259.

Acknowledgements. D.A. and R.S.: this article was made possible by a Research-in-Groups programme
funded by the International Centre for Mathematical Sciences, Edinburgh. U.K. acknowledges funding from

1013 A23-16

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
25

9 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10259
https://doi.org/10.1017/jfm.2025.10259


Journal of Fluid Mechanics

the Leverhulme Trust Research Project Grant 523930, which contributed to this research. M.D.B. is grateful
for the hospitality of the School of Mathematics at Cardiff University, where part of this work was done.

Declaration of interests. The authors report no conflict of interest.

Author contributions. The author ordering was chosen alphabetically rather than to reflect individual
authors’ contributions.

Data availability statement. The data that support the findings of this study are available from the authors
upon reasonable request.

REFERENCES

ANDRADE, D. & STUHLMEIER, R. 2023a Deterministic and stochastic theory for a resonant triad. Wave
Motion 116, 103087.

ANDRADE, D. & STUHLMEIER, R. 2023b Instability of waves in deep water — A discrete Hamiltonian
approach. Eur. J. Mech.-B/Fluids 101, 320–336.

ANDRADE, D. & STUHLMEIER, R. 2023c The nonlinear Benjamin–Feir instability - Hamiltonian dynamics,
discrete breathers, and steady solutions. J. Fluid Mech. 958, A17.

ARGUEDAS-LEIVA, J.-A., CARROLL, E., BIFERALE, L., WILCZEK, M. & BUSTAMANTE, M.D. 2022
Minimal phase-coupling model for intermittency in turbulent systems. Phys. Rev. Res. 4 (3), L032035.

BRETHERTON, F.P. 1964 Resonant interactions between waves. The case of discrete oscillations. J. Fluid
Mech. 20 (3), 457–479.

BUSTAMANTE, M.D. & KARTASHOVA, E. 2009 Effect of the dynamical phases on the nonlinear amplitudes’
evolution. Europhys. Lett. 85 (3), 3.

BUSTAMANTE, M.D., QUINN, B. & LUCAS, D. 2014 Robust energy transfer mechanism via precession
resonance in nonlinear turbulent wave systems. Phys. Rev. Lett. 113 (8), 084502.

BUZZICOTTI, M., MURRAY, B.P., BIFERALE, L. & BUSTAMANTE, M.D. 2016 Phase and precession
evolution in the Burgers equation. Eur. Phys. J. E 39 (3), 1–9.

CALOGERO, F. & DEGASPERIS, A. 2004 New integrable equations of nonlinear Schrödinger type. Stud. Appl.
Maths 113 (1), 91–137.

CAPPELLINI, G. & TRILLO, S. 1991 Third-order three-wave mixing in single-mode fibers: exact solutions and
spatial instability effects. J. Opt. Soc. Am. B 8 (4), 824.

COPPI, B., ROSENBLUTH, M.N. & SUDAN, R.N. 1969 Nonlinear interactions of positive and negative energy
modes in rarefied plasmas (i). Ann. Phys. 55 (2), 207–247.

CRAIK, A.D.D. 1986 Wave Interactions and Fluid Flows. Cambridge University Press.
DEGASPERIS, A. & LOMBARDO, S. 2007 Multicomponent integrable wave equations: I. Darboux-dressing

transformation. J. Phys. A 40 (5), 961.
EYOV, E., KLAR, A., KADRI, U. & STIASSNIE, M. 2013 Progressive waves in a compressible-ocean with an

elastic bottom. Wave Motion 50 (5), 929–939.
GODIN, O.A. 2015 Finite-amplitude acoustic-gravity waves: exact solutions. J. Fluid Mech. 767, 52–64.
HARRIS, J., BUSTAMANTE, M.D. & CONNAUGHTON, C. 2012 Externally forced triads of resonantly

interacting waves: boundedness and integrability properties. Commun. Nonlinear Sci. Numer. Simul. 17
(12), 4988–5006.

HEFFERNAN, C., CHABCHOUB, A. & STUHLMEIER, R. 2024 Nonlinear spatial evolution of degenerate
quartets of water waves. Wave Motion 130, 103381.

KADRI, U. 2016 Triad resonance between a surface-gravity wave and two high frequency hydro- acoustic
waves. Eur. J. Mech. B/Fluids 55, 157–161.

KADRI, U. 2017 Tsunami mitigation by resonant triad interaction with acoustic–gravity waves. Heliyon 3 (1),
e00234.

KADRI, U. & AKYLAS, T.R. 2016 On resonant triad interactions of acoustic–gravity waves. J. Fluid Mech.
788, R1.

KADRI, U. & STIASSNIE, M. 2013 Generation of an acoustic-gravity wave by two gravity waves, and their
subsequent mutual interaction. J. Fluid Mech. 735 (6), 1–9.

KEDAR, S., LONGUET-HIGGINS, M., WEBB, F., GRAHAM, N., CLAYTON, R. & JONES, C. 2008 The origin
of deep ocean microseisms in the North Atlantic ocean. Proc. R. Soc. A: Math. Phys. Engng. Sci. 464
(2091), 777–793.

KIBBLEWHITE, A.C. & EWANS, K.C. 1985 Wave–wave interactions, microseisms, and infrasonic ambient
noise in the ocean. J. Acoust. Soc. Am. 78 (3), 981–994.

1013 A23-17

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
25

9 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10259


D. Andrade, M.D. Bustamante, U. Kadri and R. Stuhlmeier

LIAO, S., XU, D. & STIASSNIE, M. 2016 On the steady-state nearly resonant waves. J. Fluid Mech. 794,
175–199.

LONGUET-HIGGINS, M.S. 1950 A theory of the origin of microseisms. Phil. Trans. R. Soc. A Maths Phys.
Engng Sci. 243 (857), 1–35.

MICHELE, S. & RENZI, E. 2020 Effects of the sound speed vertical profile on the evolution of hydroacoustic
waves. J. Fluid Mech. 883, A28.

MURRAY, B.P. & BUSTAMANTE, M.D. 2018 Energy flux enhancement, intermittency and turbulence via
Fourier triad phase dynamics in the 1-D Burgers equation. J. Fluid Mech. 850, 624–645.

OMIRA, R., RAMALHO, R.S., KIM, J., GONZÁLEZ, P.J., KADRI, U., MIRANDA, J.M.,
CARRILHO, F. & BAPTISTA, M.A. 2022 Global Tonga tsunami explained by a fast-moving atmospheric
source. Nature 609 (7928), 734–740.

PROTAS, B., KANG, D. & BUSTAMANTE, M.D. 2024 Alignments of triad phases in extreme one-dimensional
Burgers flows. Phys. Rev. E 109 (5), 055104.

RAPHALDINI, B., PEIXOTO, P.S., TERUYA, A.S.W., RAUPP, C.F.M. & BUSTAMANTE, M.D. 2022
Precession resonance of Rossby wave triads and the generation of low-frequency atmospheric oscillations.
Phys. Fluids 34 (7), 076604.

RAPHALDINI, B., TERUYA, A.S., RAUPP, C.F.M. & BUSTAMANTE, M.D. 2019 Nonlinear Rossby wave–
wave and wave–mean flow theory for long-term solar cycle modulations. Astrophys. J. 887 (1), 1.

REDFERN, E.M., LAZER, A.L. & LUCAS, D. 2024 Dynamically relevant recurrent flows obtained via a
nonlinear recurrence function from two-dimensional turbulence. Phys. Rev. Fluids 9 (12), 124401.

WALSH, S.G. & BUSTAMANTE, M.D. 2020 On the convergence of the normal form transformation in discrete
Rossby and drift wave turbulence. J. Fluid Mech. 884, A28.

WANG, C., FANG, L., WANG, Z. & XU, C. 2024 Role of Fourier phase dynamics in decaying turbulence.
Phys. Rev. Fluids 9 (11), 114603.

WILLIAMS, B. & KADRI, U. 2023 On the propagation of acoustic–gravity waves due to a slender rupture in
an elastic seabed. J. Fluid Mech. 956, A6.

XU, D., LIN, Z., LIAO, S. & STIASSNIE, M. 2012 On the steady-state fully resonant progressive waves in
water of finite depth. J. Fluid Mech. 710, 379–418.

XU, D., ZHAO, H., SONG, Y. & ZHANG, H. 2023 Steady-state waves at class II Bragg resonance. Phys. Fluids
35 (6), 067104.

YANG, X., DIAS, F. & LIAO, S. 2018 On the steady-state resonant acoustic–gravity waves. J. Fluid Mech.
849, 111–135.

YANG, X.Y. & YANG, J. 2024 Steady-state triad resonance between a surface gravity wave and two
hydroacoustic waves based on the homotopy analysis method. Phys. Fluids 36 (6), 066103.

ZUCCOLI, E. & KADRI, U. 2025 Resonant triad interactions of two acoustic modes and a gravity wave.
J. Fluid Mech. 1008, A15.

1013 A23-18

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
25

9 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10259

	1. Introduction
	2. Preliminaries
	3. Resonant wave triads: dynamics and evolution
	4. Phase-plane analysis
	4.1. Bifurcation with equal surface-wave amplitudes
	4.2. Fixed points as steady-state triads
	4.3. Bifurcation with unequal surface-wave amplitudes
	4.4. Optimal energy conversion

	5. Spatial dependency
	5.1. Travelling-wave solution with velocity v
	5.2. Spatio-temporal resonant interactions

	6. Discussion and concluding remarks
	References

