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MAXIMAL QUOTIENT RINGS AND S§-RINGS

E. P. ARMENDARIZ AND GARY R. McDONALD

Throughout, we assume all rings are associative with identity and all
modules are unitary. See [7] for undefined terms and [3] for all homological
concepts.

Let R be a ring, E(R) the injective envelope of zR, and
H = Homz(E(R), E(R)). Then we obtain a bimodule zE(R)y. Let
Q = Homyz(E(R), E(R)). Q is called the maximal left quotient ring of R. Q has
the property thatif p, ¢ € Q, p # 0, then there exists # € R such that 7p = 0,
rq € R, i.e., Qis a ring of left quotients of R.

Aleftideal I of R is denseif for every x,y € R,x 5 0, there exists7 € R such
thatrx #£ 0,7y € I. An alternate descriptionof Qis Q = {x € E(zR) : (R: x)
is a dense left ideal of R}, where (R:x) = {r € R:rx € R}.

The left singular ideal of R is Z;(R) = {r € R:1lx(r) is an essential left
ideal of R}, where lz(r) = {x € R:xr = 0}. If Z,(R) = (0), then Q is a left
self-injective von Neumann regular ring [7, § 4.5]. Most of the previous work
on maximal left quotient rings has been done in this case. For example, Q is
semisimple Artinian if and only if Z;(R) = (0) and R is finite-dimensional [14].

Our principal object is to study the maximal left quotient ring of a ring R
whose left singular ideal is not necessarily zero. We begin in § 1 by considering
right S-rings and, more generally, S-modules. The class of right S-rings con-
tains all quasi-Frobenius and commutative perfect rings. We restrict our
attention to maximal left quotient rings which are right S-rings.

In § 2, we show that the maximal left quotient ring Q of R is a semiprimary
right S-ring if and only if (1) Q4 = Q for every dense left ideal 4 of R, (2)
dense left ideals can be lifted modulo P(Q) M R, and (3) P(Q) M R is nil-
potent, where P (Q) denotes the prime radical of Q. Rings R for which Q is a
left Artinian right S-ring are also characterized, and these results are applied
to local rings. Various descriptions of the ideal P(Q) M R are obtained.

In § 3, we consider maximal left quotient rings which are left self-injective
semiprimary and quasi-Frobenius rings. We also show that if R has a left
Artinian classical left quotient ring Q, then Q is a left and right S-ring if and
only if Igrzg(P(R)) = P(R) and 7glz(P(R)) = P(R). This result is applied
to quasi-Frobenius rings.

1. Srings. Let z-# denote the category of left R-modules. Then
T = {M € gt :Homz(M, E(zR)) = (0)} is a hereditary torsion class, i.e.,
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J is closed under homomorphic images, arbitrary direct sums, extensions, and
submodules. The filter associated with.7 is # = {I : Iis aleft ideal of R such
that R/I €.} = {I: I is a dense left ideal of R}..# has the following
properties:

1) fLEF and L C L' C R, then L' € .

(2) If L, L' €¢#,then LNL' ¢ %.

(3) f L €% andr € R, then (L:7) € F.

(4) If L, L' ¢ %, then LL' ¢ #.

For a proof, see {1, Proposition 1.2.8].

If M € g, let T(M) denote the.7 -torsion submodule of M, i.e., T (M)
is the (unique) submodule of M maximal in the set of submodules 4 of M for
which Hom (4, E(xR)) = (0). Then the maximal left quotient ring Q of R
is given by Q = T(E(zR)/R) = {x € E(zR) : (R: x) is a dense left ideal of
R} (see [18]). We will use this characterization of Q extensively.

The dense left ideals of R and Q are related in the following way.

LeEmmA 1.1. Let Q be the maximal left quotient ring of R, and let T be a sub-
ring of Q such that R © T C Q. Then:

(1) If A s a dense left ideal of R, then TA is a dense left ideal of T.

(2) If B is a dense left ideal of T, then B (M R 1s a dense left ideal of R.

Before proceeding with our study of quotient rings, we will introduce
S-modules. In particular, we will consider S-rings and their relationship to
dense left ideals and maximal quotient rings.

Definition. gM is an S-module if M contains a copy of each of its simple
images.

ProrositioN 1.2. Let M be a left R-module and E = Endg(M). Consider the
following conditions:

(1) M is an S-module;

(2) for every submodule N # M, rz(N) # (0);

(3) for every essential submodule N % M, rg(N) #% (0);

(4) for every maximal submodule N of M, rz(N) 5= (0).
Then (1) if and only if (4), (2) if and only if (3), and (2) implies (4). Furiher-
more, if M is finitely generated, then (4) implies (2), so all four conditions are
equivalent.

Proof. Trivially, (2) implies (3) and (4). That (1) and (4) are equivalent
follows easily from the fact that a submodule 4 of M is maximal if and only if
M/4 is simple. Assume (3) holds, and let N be a proper submodule of M.
Choose K & M maximal with respect to N/ K = (0). Then N + K is an
essential submodule of M. If N + K = M, then rz(IN) D rg(N + K) = (0)
by (3). If N4+ K = M, then M = N@ K, and there exists 0 # f € E
defined by f(n, k) = k, where n € N, k € K. Thus (3) implies (2). If M is
finitely generated, then every proper submodule of M is contained in a maxi-
mal submodule of M, so (4) implies (2).
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Remark. An arbitrary direct sum of S-modules is an S-module, but a direct
summand of an S-module need not be an S-module.

ProposITION 1.3. If pM is a finitely generated S-module such that Z (M) = (0),
then M 1s completely reducible.

Proof. Let N be a maximal submodule of M. Then M contains a copy of
M/N, so Z(M/N) = (0). Assume N is an essential submodule of M. If
0= m' € M/N, then (V: m) is essential, so 0 = m’ € Z(M/N). But this is
a contradiction, so IV is not essential. If 4 is a proper essential submodule of 47,
then 4 C K for some maximal submodule K of M since M is finitely generated.
Then K is essential since 4 is essential, but we proved above that no maximal
submodule of M is essential. Thus M has no proper essential submodules,
so M is completely reducible.

ProposiTiON 1.4. Let R be a semiprime ring. If M is a finitely generated
projective S-module, then M is completely reducible.

Proof. Let N be a maximal submodule of M. Since M is an S-module, M
contains a copy of M/N. Also M can be embedded in a finite direct sum of
copies of R since M is finitely generated projective. Thus there exists a homo-
morphism 0 # f € Homz(M/N, R). Since M/N is simple, I = f(M/N) is a
minimal left ideal of R. Then I = Re, ¢ an idempotent in R, since R is semi-
prime. Thus M/N =< f(M/N) = Re is projective, so N is a direct summand
of M. Hence every maximal submodule of M is a direct summand. Thus M is
completely reducible as in the previous proposition.

Definition. gM is semiprime if for every 0 = m € M, there exists
f € Homg (M, R) such that f(m)m = 0.

ProrosiTiON 1.5. If zM is a finitely generated semiprime S-module, then M
1s completely reducible.

Proof. Let A be a maximal submodule of M. There exists a submodule
K of M such that K = M/A.Let0 % x € K. Then K = Rux since K is simple.
Since M is semiprime, there exists f € Homg (M, R) such that f(x)x # 0.
Then f(K) 5~ (0), so f(K) is a minimal left ideal of R. K = Rf(x)x, so
0) # f(K) = f(Rf(x)x) = Rf(x)% Hence f(x)* = 0, so f(K)? # (0). There-
fore, M/A = K = f(K) = Re, ¢ an idempotent of R. Now proceed as in the
proof of the previous proposition.

Definition. R is a right (left) S-ring if each proper left (right) ideal of R has
nonzero right (left) annihilator.

ProrosiTioN 1.6. The following are equivalent.

(1) R s a right S-ring.

(2) R contains a copy of each simple left R-module.
(3) R has mo proper dense left ideals.
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Proof. See [6, Theorem 3.2].
COROLLARY. R is a right S-ring if and only if grR is an S-module.

ProrosiTioN 1.7. Let R be a commutative ring. Then R is a right S-ring if
and only if R has a fasthful finitely generated projective S-module.

Proof. If R is a right S-ring, then pR is a faithful finitely generated pro-
jective S-module. Assume R has a faithful finitely generated projective
S-module zM. Then M is a generator in the category of R-modules [20, Propo-
sition 1.3], so every simple R-module is a homomorphic image of M. Let K be
a simple R-module. Since M is an S-module and K is a homomorphic image of
M, there exists a submodule L of M such that L = K. Also there exists
f € Homg(M, R) such that f(L) £ (0) since M is finitely generated pro-
jective. Thus R contains a copy of every simple R-module, so R is a right
S-ring.

ProrosiTioN 1.8. If R 1s a right S-ring which salisfies the descending chain
condition on left annihilators, then R/J(R) 1s semisimple Artinian.

Proof. Since R is a right S-ring, every simple left R-module is isomorphic
to a minimal left ideal of R. Hence J(R) = [z(T"), where T is the left socle
of R. But R satisfies the descending chain condition on left annihilators, so
there exist x1,...,%, € 7" such that J(R) = Ig(x1) M ... N\ Ig(x,). Then
Rx1 @ ... & Rx, is a finite direct sum of simple left R-modules, and there
exists a monomorphism from R/J(R) into Rx; @ ... @ Rx,. Thus R/J(R)
is semisimple Artinian.

Definition. Let I be a two-sided ideal of R. We say that dense left ideals
can be lifted modulo I if whenever 4 is a left ideal of R such that (4 + I)/I
is a dense left ideal of R/I, then A is a dense left ideal of R.

ProrositioN 1.9. Let R be a left Noetherian right S-ring. The following are
equivalent:

(1) R is left Artinian.

(2) R satisfies the regularity condition.

(38) Dense left ideals can be lifted modulo P (R).

(4) R satisfies the descending chain condition on left annihilators and J(R) is
nilpotent.

Proof. (1) implies (2) by Small’s theorem [15; 16]. (4) implies (1) by
Proposition 1.8, and clearly (1) implies (4). R is its own maximal left quotient
ring Q since it is a right S-ring. Hence P(Q) M R = P (R). Thus (3) implies (1)
by Theorem 2.9 (see § 2). It remains only to show that (2) implies (3). Suppose
Iisaleftideal of R such that (I + P(R))/P(R) isa dense leftideal of R/P (R).
Then (I + P(R))/P(R) contains a regular element ¢ + P (R) since R/P (R)
is semiprime left Goldie [12, Lemma 5]. By Small’s theorem, R has a classical
left quotient ring Q. Then 1 = o« € Q(I + P(R)). Suppose x € (R:a™1).
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Thenx =x-1=xa"a € Ra ST+ P(R),so (R:a!) C I+ P(R). Hence
I 4 P(R) is a dense left ideal of R, so I + P(R) = R since Risa right S-ring.
This implies that I = R since P (R) is small in R, so I is a dense left ideal of R.
Thus (2) implies (3).

The following theorem is known [19, Theorem 3.2].

THEOREM 1.10. Let Q be the maximal left quotient ring of R. The following are
equivalent:

(1) Q is a right S-ring.

(2) QA4 = Q for every dense left ideal A of R.

3) Ker(R ® pM — Q @ M) = T (gM) for every left R-module M.

COROLLARY. Suppose the maximal left quotient ring Q of R is a right S-ring.
If A is a flat left R-module, then T (g4) = (0).

COROLLARY. If the maximal left quotient ring Q of R is a right S-ring, then
l.gl.dim.R = l.gl.dim.Q.

Proof. Let M be a left Q-module, and let - - - — Py — P, — Py — M — (0)
be a projective resolution of M as a left R-module. Then because 7'(P;) = (0)
and Q is a right S-ring, - - - > Q0 P> Q0@ P1—>QQ Py—Q ® M — (0)
is a projective resolution of M =~ Q ® M as a left Q-module. Hence
pd(oM) = pd(gM). The result follows.

Example. Let 0 < n < . Then there exists a ring R with maximal left
quotient ring Q such that l.gl.dim.R = » and l.gl.dim.Q = 0.

Case 1: » = 0. Let R be any semisimple Artinian ring. Then R = Q, and
lLgl.dim.R = 0.

Case 2: 0 <n <oo. Let K be a field and R = K[xy,...,%,]. Then
gl.dim.R = = [3, IX, 7.11]. R is a commutative domain, so R has a classical
quotient ring Q which is a field. Then Q is the maximal quotient ring of R, and
gl.dim.Q = 0.

Case 3: n = . Let K be a field, and let R be the subring of K[[x]] consist-
ing of all power series without terms of degree 1. R is a local ring [3, Exercise 10,
p. 160]. Also R is a commutative domain, so it has a classical quotient ring Q
which is a field. Then Q is the maximal quotient ring of R, and gl.dim.Q = 0.
Let 4 be the R-module consisting of all power series without a constant term.
Then pdgd4 = oo [3, Exercise 10, p. 160]. Hence gl.dim.R = 0.

If R has a minimal dense left ideal D, then the maximal left quotient ring Q
of R is isomorphic to Homz(D, D) [7, Corollary 3, p. 97]. For example, if R
is right perfect, then R has a minimal dense left ideal, and this case has been
studied by Storrer [17]. In particular, Storrer obtained the following result.

ProrositioN 1.11. Let R be a ring which has a minimal dense left ideal D.
Then the maximal left quotient ring Q of R is a right S-ring if and only if gD is
finitely generated projective.
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Proof. See [17, Theorem 5.6].

Proposition 1.11 has immediate consequences when combined with some
results of Mares and Ware. The following definition is due to Mares.

Definition. Let P be a projective R-module. P is a semiperfect module if
every homomorphic image of P has a projective cover. P is perfect if for every
index set I, every homomorphic image of @ > i, P has a projective cover.

ProrositioN 1.12. Let R be a ring which has o minimal dense left ideal D.
Then the maximal left quotient ring Q of R is a semiperfect (left perfect) right
S-ring if and only if gD is a finitely generated projective semiperfect (perfect)
module.

Proof. The proof follows immediately from Proposition 1.11, Proposition 5.1
of [20] and its converse due to Mares [9], and the fact that Q = Homg(D, D).

Definition [20]. Let P be a nonzero projective R-module. P is local if P has
a unique maximal submodule which contains every proper submodule of P.

ProrosiTioN 1.13. Let R be a ring which has a minimal dense left ideal D.
The maximal left quotient ring Q of R is a local right S-ring if and only if D 1s a
Jfinitely generated projective local R-module.

Proof. The proof follows from Proposition 1.11 and [20, Theorem 4.2].

Definition [20]. Let P be a projective R-module. P is regular if every cyclic
submodule of P is a direct summand.

ProposiTiON 1.14. Let R be a commutative ring which has a minimal dense
ideal D. The maximal quotient ring Q of R is a finite direct sum of fields if and
only if gD is a finitely generated projective regular module.

Proof. Q = Hompg(D, D) is a regular S-ring if and only if zD is a finitely
generated projective regular module by Proposition 1.11 and [20, Corollary
3.10]. If Q is a finite direct sum of fields, clearly Q is a regular S-ring. If Q is a
regular S-ring, then Z,(Q) = (0), so Q is semisimple Artinian by Proposition
1.3. Since Q is also commutative, Q is a finite direct sum of fields.

Let R be a ring which has a classical left quotient ring Q. If I is a left ideal
of Q, then I = QI M R). This property does not hold in general for maximal
left quotient rings, even if they are left Artinian (see [17, Example 7.2]).
However, this problem is eliminated when the maximal left quotient ring is a
right S-ring.

LemMma 1.15. Suppose the maximal left quotient ring Q of R is a right S-ring,
and let J be a left ideal of Q. Then J = Q(J M R).

Proof. Clearly, Q(U N R) S QJ C J. Now let x € J. (R: x) is a dense left
ideal of R, so Q(R:x) = Q since Q is a right S-ring. Hence x € Qx =
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QR :x)x = Q(Rx N R) € Q(J N R). Therefore J € Q(J N R), so we have
equality.

COROLLARY. Suppose the maximal left quotient ring Q of R is a right S-ring,
and let J be a two-sided ideal of Q. Then J* = QU N R)* fork =1,2,3,... .

Proof. We observe that

JE=J=QU N R) = <1 NR) = QN R) = ...
= JJN R = Q(J N R~

LemMMA 1.16. Let R be a ring whose maximal left quotient ring Q is a right
S-ring, and let J be a two-sided ideal of Q. Then:

1) R+ J)/J is an essential left (R + J)/J)-submodule of Q/J.

(2) If A/J is an essential left ideal of Q/J, then (A/J) N\ (R + J)/J is an
essential left ideal of (R + J)/J.

(3) If B is a left ideal of R such that (B + J)/J is an essential left ideal of
R+ J)/J, then (Q/J) - (B + J)/J is an essential left ideal of Q/J.

(4) Q/J is a ring of left quotients of (R + J)/J.

(5) Let {A;:1 € I} be a collection of left ideals of R. Then Q2 .c14:) =
2 erQ4 .

Proof. We will prove only statements (1) and (5) since the proofs of (2)-(4)
use similar techniques. Let x € Q/J. Then Q(R : x) = Q since Q is a right
S-ring. Suppose Rx M R C J. Then x € Qx = Q(R:x)x = QRx N R) C
QJ = J, which is a contradiction. Hence Rx N\ R & J. Thus (1) holds. Now
let {4;:4 € I} be a collection of left ideals of R. Clearly Q(3-4;) C >.Q4..
Letx € 2.Q4;,. Thenx = 3 gja;,a; € A;forsomei; € I.Let B = N (R : g;).
B is a dense left ideal of R, so OB = Q. Hence there exist p; € Q, b, € B such
that 1 = 3 ppby. Then x = 1-x = 3 pibrgia; € Q3 4;). Thus > Q4, C
Q(X A4.), so we have equality, and (5) holds.

2. Artinian maximal quotient rings which are S-rings.

ProrosiTiON 2.1. Let Q be the maximal left quotient ring of R, and let
N = P(Q) N\ R. Q s a right S-ring such that Q/P(Q) is semisimple Artinian
if and only if

(1) Q4 = Q for every dense left ideal A of R, and

(2) dense left ideals can be lifted modulo N.

Proof. Let us first assume that R satisfies conditions (1) and (2). Q is a
right S-ring by (1). We claim that Q/P(Q) is a right S-ring. Suppose I/P is a
dense left ideal of Q/P, where P = P(Q). Then (I N\ R)/N is a dense left ideal
of R/N, so I N\ R is a dense left ideal of R by (2). Hence I = QI N\ R) = Q
by (1). Thus Q/P has no proper dense left ideals, so Q/P is a right S-ring.
Then Q/P is semisimple Artinian by Proposition 1.4. Conversely, assume Q
is a right S-ring such that Q/P is semisimple Artinian. R satisfies (1) since Q
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is a right S-ring. Now let 4 be a left ideal of R such that (4 + N)/N is a dense
left ideal of R/N. Then (Q/P)((4 + P)/P) = (QA + P)/P is an essential
left ideal of Q/P, so Q/P = socle;(Q/P) € (QA + P)/P.Hence Q4 + P = Q,
so QA = Q. Let Y qua;+ A4 € (04 N R)/A. Then (4 : 3 qia;) is a dense
left ideal ot R, so R(X qua;+ A)=R/(4:3 qa;) €. Hence
Homz(C, E(R)) = (0) for every cyclic submodule C of (Q4 M R)/A, so
Homz((Q4 N R)/A, E(R)) = (0). Therefore, R/A = (QA N R)/A € 9 ,s0
4 is a dense left ideal of R. Consequently, R satisfies (2). This completes the
proof.

THEOREM 2.2. Let Q be the maximal left quotient ring of R, and let
N = P(Q) N\ R. Q is a semiprimary right S-ring if and only if

(1) QA4 = Q for every dense left ideal A of R,

(2) dense left ideals can be lifted modulo N, and

(3) N is nilpotent.

Proof. Assume R satisfies conditions (1)-(3). By Proposition 2.1, it suffices
to show that P(Q) is nilpotent. But this follows from (3) and the corollary to
Lemma 1.15. The other half of the theorem follows immediately from
Proposition 2.1.

THEOREM 2.3. Let Q be the maximal left quotient ring of R, and let
Ny = QN* N\ R, where N = P(Q) M R. Q is a left Artinian right S-ring if and
only if

(1) QA = Q for every dense left ideal A of R,

(2) dense left ideals can be lifted modulo N,

(3) N 1s nilpotent, and

(4) R/Ny is finite-dimensional (k = 1,2,3,...).

Proof. Suppose R satisfies conditions (1)—(4). Then Q is a semiprimary
right S-ring by Theorem 2.2. R/N; = R/(QN* "\ R) = R/(P(Q)* "\ R) =
(R + P(Q)*)/P(Q)*. Denote P(Q) = J(Q) by J. (R + J*)/J* is essential in
Q/J¥ by Lemma 1.16, so Q/J* is finite-dimensional by (4). J*1/J¥ C
socle;(Q/J*), which is a finite direct sum of simples. Hence J*~1/J* is either a
finite direct sum of simples or zero. Since Q is semiprimary, we get a composi-
tion series for Q, so Q is left Artinian. Conversely, if Q is a left Artinian right
S-ring, then R satisfies (1)—(3) by Theorem 2.2. Q/J* is a ring of left quotients
of (R + J*¥)/J* by Lemma 1.16, so Q/J* can be embedded in the maximal left
quotient ring of (R + J*)/J*. Therefore, R/N, = (R + J¥)/J* is finite-
dimensional since Q/J* is finite-dimensional. Hence R satisfies condition (4),
and the proof is complete.

THEOREM 2.4. The maximal left quotient ring of R is a semiprimary (left
Artinian) right S-ring if and only if the maximal left quotient ring of R, is a
semiprimary (left Artinian) right S-ring for every n = 1.

Proof. Let Q be the maximal left quotient ring of R. Half of the theorem is
trivial, so let us suppose that Q is a semiprimary (left Artinian) right S-ring.

https://doi.org/10.4153/CJM-1972-083-3 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1972-083-3

MAXIMAL QUOTIENT RINGS 843

Then Q, is the maximal left quotient ring of R,, and Q, is semiprimary (left
Artinian). Then Q, has a minimal dense left ideal D, and D is a two-sided
ideal [17, Proposition 1.1]. There exists an ideal J of Q such that D = J,
[10, Theorem 2.24]. 7o(J) = (0) since 74,(J,) = (0). Hence J is a dense left
ideal of Q, so J = Q since Q is a right S-ring. Thus D = J, = Q,, so Q, is a
right S-ring.

Example. Rosenberg and Zelinsky [13, p. 375] have given a ring R which
has only the left ideals (0), NV, and R, where N  (0) and N2 = (0). Ris a
left Artinian right S-ring which is not right Artinian.

Example. Let F be a field, and let

a 0 0
R=<|b a O0|:a,bd,e€ F).

d 0 e

R is a left and right Artinian ring which is a right, but not a left, S-ring
[17, Example 7.2].

Example. Let F be a field, and let

F F
k=|o 1.
Then R is left and right Artinian, and Q = F,is the maximal left and maximal
right quotient ring of R [4]. Hence R is neither a left nor a right S-ring (other-
wise it would be left or right rationally complete). R is also a left and right
QF-3 ring by [5, Theorem 5]. However, R is not quasi-Frobenius for then it

would be both a left and a right S-ring.

We will now specialize some of the above results to the case where Q is a
local ring. This case is of particular interest for then Q is the classical left
quotient ring of R.

PROPOSITION 2.5. Let Q be the maximal left quotient ring of R, and let
N = P(Q) M R. Q is local with milpotent radical if and only if

(1) QA = Q for every dense left ideal A of R,

(2) dense left ideals can be lifted modulo N,

(8) N is milpotent, and

(4) R/N 1is a finite-dimensional domain.
In this case, Q is the classical left quotient ring of R.

Proof. Suppose R satisfies (1)—(4). Then Q is a semiprimary right S-ring by
Theorem 2.2. Let P = P(Q). Since R/N == (R + P)/P is a finite-dimensional
domain, it has a classical left quotient ring Q" which is a division ring. Then
Q' is the maximal left quotient ring of (R + P)/P. Q/P is a ring of left
quotients of (R 4+ P)/P, so we can assume that Q/P C (’. Every nonzero
element of (R 4+ P)/P is invertible in Q/P, so Q/P = (Q'. Hence Q/P is a
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division ring, so Q is a local ring. Also J(Q) = P(Q) is nilpotent since Q is
semiprimary. Conversely, suppose Q is local with nilpotent radical. Then Q
is a semiprimary right S-ring, so R satisfies (1)-(3) by Theorem 2.2.
R/N= (R+ P)/P C Q/P and Q/P is a division ring, so R/N is a domain.
Also Q/P is a ring of left quotients of (R + P)/P and Q/P is finite-dimen-
sional, so R/N =< (R + P)/P is finite-dimensional. Thus R satisfies (4).

Let us now assume that R satisfies the conditions and show that Q is the
classical left quotient ring of R. By the above proof, Q/P is the classical left
quotient ring of (R 4+ P)/P. Let x € R be regular. Then x ¢ P since P is
nilpotent. Therefore, x + P is invertible in Q/P, so there exists ¢ € Q such
that x¢ — 1 € P and g¢v — 1 € P. But this implies that x¢ and ¢x are inver-
tible in Q, so x is invertible in Q. Thus every regular element of R is invertible
in Q. Letq € Q. Then (R : ¢) is a dense left ideal of R, so Q(R : ¢) = Q. Hence
(R:q) &€ P, so there exists a unit # € Q such that u € (R : q) since Q is a
local ring. Then u is a regular element of R and ¢ = =7 for some r € R. Thus
Q is the classical left quotient ring of R. This completes the proof.

COROLLARY. Let Q be the maximal left quotient ring of R and let N, = QN* M R,
where N = P(Q) M R. Q s a local left Artinian ring if and only if

(1) QA = Q for every dense left ideal A of R,

(2) dense left ideals can be lifted modulo N,

(3) N s nilpotent,

(4) R/Ny is finite-dimensional (k = 1,2,3,...), and

(5) R/Ni is a domain.
In this case, Q is the classical left quotient ring of R.

Proof. The proof follows immediately from Theorem 2.3 and Proposition 2.5.

ProprositioN 2.6. Let Q be the maximal left quotient ring of R, and let
N = P(Q) N\ R. Q is a local, left Artinian, principal left ideal ring if the follow-
ing conditions are satisfied:

(1) QA = Q for every dense left ideal A of R.

(2) Dense left ideals can be lifted modulo N.

(3) R/N 1is a finite-dimensional domain.

(4) N = Rx for some x € R.

Proof. N is nil, so x is nilpotent. Also N* = Rx* for every positive integer &,
so IV is nilpotent. Therefore, Q is local with nilpotent radical by Proposition 2.5.
J(Q) = P(Q) = QN = QRx = Qx, so every left ideal of Q is of the form
J(Q)F = Qx* by [11, Proposition 2.1]. Hence Q is a principal left ideal ring.
Thus Q is left Noetherian and semiprimary, so Q is left Artinian.

In general, the ideal N = P(Q) M R need not be the prime radical of R.

We will now give various descriptions of this ideal. The following notation
will be used:
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S1 = {4 : 4 is a two-sided ideal of R, 4 € P(R), and A4Q C QA4}.

Se = {4 : 4 is a left ideal of R and QA4 is nilpotent}.

Sy = {4 : 4 is a two-sided ideal of R, 4 C P(R), and 4 is the right anni-
hilator of a subset of Q}.

ProrositioN 2.7. Assume R is left Goldie and the maximal left quotient ring
Q of R is a right S-ring. (Note that these conditions are satisfied if Q is a left
Artinian right S-ring.) Then N = P(Q) M R can be described in the following
Ways:

1) N=>1{4:4 ¢ Si}.

Q) N=3X1{4:4 € S,}.

(3) N =2 {1(Q/04) : A € Si.

Also,
(4) N D > {4 : A € S;} with equality if P(Q) is a right annihilator in Q, and
(B) PONR={QA"NR:4 € S5} =0N""\R.

Proof. (1) Let A € S1. Then A is nilpotent since 4 is nil and R is left Goldie.
Hence QA is nilpotent since AQ € QA. Therefore,

ACQANRCPQ)NR=N.

Thus > {4 : 4 € Si} € N. But N € S1, so we have equality.

(2) If 4 € Sy, then Q4 € P(Q),s0 A C N. Hence >_ {4 : 4 € Sy} C N.
Also N € .S,.

(3) Let A € Sy, and let B = [5(Q/QA). Then BQ C QA4, so

BCBONRCQANRCSQONNR=PQ) NR=N.

Hence N D Y {Iz(Q/QA4) : A € S1}. Now let x € N. By (1) there exist
Ay, ..., 4, € Sy such that x € 4, + ...+ 4,. But 4:1+ ...+ 4,)0C
AQ+ ...+ 4,0C04:+ ... +Q4, =QA4:+ ...+ 4,) by Lemma
1.16. Hence 41+ ...+ A4, € 51, so x € 4 for some 4 € S;. Then

x(Q/Q4) € 4(Q/04) = (0)

since AQ C QA. Therefore, x € 15(Q/QA), so N C 3 {Ir(Q/QA4) : A € Si}.
(4) Let 4 € S5, say A = rx(X), where X C Q. Then

ACAQN R Cra(X) = A4,

so A = AQ N R. Suppose Y x:q: € AQ, x; € A, ¢;: € Q. B =N (R: x.q,) is
a dense left ideal of R, so QB = Q since Q is a right S-ring. Hence 1 = > pb,,
p; €Q, b; € B. Now X = 2 pbxq: € QAQ N R) = Q4. Hence
AQ C QA,s0 A4 € Si. Hence N D > {4 : 4 € S5} by (1). If P(Q) is a right
annihilator in Q, then N € .S;, so we have equality.

B)YPQO)*NR = (ON)"\ R = QN"MN R by the corollary to Lemma 1.15.
Now use (1).
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In the remainder of this section, we will reconsider the results obtained in
the first part of the section, this time restricting ourselves to certain classes of
rings R. We begin by considering commutative rings.

THEOREM 2.8. Let R be a commutative ring, Q the maximal quotient ring of R.
Q s semiprimary if and only if

(1) Q4 = Q for every dense ideal A of R,

(2) dense ideals can be lifted modulo P(R), and

(8) P(R) s milpotent.

Proof. First note that P(R) = P(Q) M R since in a commutative ring the
prime radical is just the set of nilpotent elements. Also a commutative semi-
primary ring is a right S-ring. Hence the theorem follows immediately from
Theorem 2.2.

THEOREM 2.9. Let R be a left Noetherian ring. Then the maximal left quotient
ring Q of R is a left Artinian right S-ring if and only if

(1) QA4 = Q for every dense left ideal A of R, and

(2) dense left ideals can be lifted modulo N = P(Q) M R.

Proof. Since R is left Noetherian, R/(QN* M R) is finite-dimensional for
all k. Also NV is nilpotent since N is nil and R is left Noetherian. The theorem
now follows from Theorem 2.3.

ProrosiTioN 2.10. Let R be a right Noetherian ring. Then the maximal left
quotient ring Q of R is a semiprimary right S-ring if and only if

(1) QA4 = Q for every dense left ideal A of R, and

(2) J(Q) N\ R 1is nilpotent.

Proof. If Q is a semiprimary right S-ring, then R clearly satisfies (1) and (2).
Now suppose conditions (1) and (2) are satisfied. Q is a right S-ring by (1).
Also J(Q) is nilpotent by (2) and the corollary to Lemma 1.15. Hence it
suffices to show that Q/J(Q) is semisimple Artinian. By Proposition 1.8, we
need only show that Q satisfies the descending chain condition on left anni-
hilators. Suppose [o(X1) D 14o(X2) D ... . Intersecting each term of the
chain with R we obtain the chain [z(X;) D Iz(Xs) D ... . But then
relr(X1) C rrlp(X2) C ..., so there exists an n such that rzlz(X,) =
relr(Xut1) = ... since R is right Noetherian. This implies that [z(X,) =
lg(Xpy1) = ..., s0

lo(Xy) = QUe(Xy) N R) = Qla(Xy) = Qle(Xpt1) = Lo(Xpt1) = ... .

Thus Q satisfies the descending chain condition on left annihilators, so Q/J(Q)
is semisimple Artinian. This completes the proof.

ProposiTION 2.11. Let R be a ring such that Z,(R) = P(R), and let Q be the
maximal left quotient ring of R. Q is a semiprimary right S-ring if and only if
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(1) Q4 = Q for every dense left ideal A of R,
(2) dense left ideals can be lifted modulo P (R),
(3) P(R) s nilpotent, and

(4) R/P(R) is left Goldie.

Proof. Suppose Q is a semiprimary right S-ring. Then P (Q) is nilpotent, so
P(Q) M R is nilpotent. Therefore, P(Q) M R C P(R). Also P(R) = Z,(R) =
Z,(Q) YR, so P(R) C QP(R) = Q(Z.,(Q) "R) = Z,(Q). Since Q is semi-
primary, Z,(Q) is a nil ideal, so Z;(Q) € J(Q) = P(Q). Hence

PR)S Z(QQN RS PQ)NR,
so P(R) = P(Q) N\ R. Thus R satisfies conditions (1)—(3) by Theorem 2.2. Also
R/P(R) = (R + P(Q))/P(Q),

and Q/P(Q) is a ring of left quotients of (R 4+ P(Q))/P(Q). Therefore,
R/P(R) is finite-dimensional since Q/P (Q) is finite-dimensional. In addition,
Q/P(Q) satisfies the ascending chain condition on left annihilators, so
(R 4+ P(Q))/P(Q) has the property since it is a subring of Q/P(Q). Thus
R/P(R) is left Goldie, so R satisfies (4).

Assume conditions (1)—(4) are satisfied. By Theorem 2.2, it suffices to show
that P(R) = P(Q) N R. Since R/P(R) is a semiprime left Goldie ring and
((P(QY)NR) + P(R))/P(R) is a nil ideal in R/P(R), we have

PQ) N\ RS P(R).

Also Z,(Q) "R = Z(R) = P(R) is nilpotent, so Z;(Q) is nilpotent by the
corollary to Lemma 1.15. Hence Z,;(Q) € P(Q), so

P(R) =Z,(QQ RS PQ)NR.
Consequently, P(R) = P(Q) M R. This completes the proof.

3. Quasi-Frobenius quotient rings. Since the maximal left quotient ring
Q of R is given by Q = {x € E(gR) : (R:«x) is a dense left ideal of R},
Q = E(gR) if and only if (R : x) is a dense left ideal of R for every x € E(zR).
Also Q = E(gR) if and only if Q is left self-injective [7, Proposition 3, p. 95].
Using this fact, one can obtain the following two theorems. The proofs are
contained in [2].

THEOREM 3.1. Let Q be the maximal left quotient ring of R. Q is a left self-
injective semiprimary ring if and only if

1) (R:x) s a dense left ideal of R for every x € E(gR),

(2) QA = Q for every dense left ideal A of R, and

() Zi(R) s nilpotent.

THEOREM 3.2. Let Q be the maximal left quotient ring of R. Q is quasi-
Frobenius if and only if
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(1) (R : x) is a dense left ideal of R for every x € E(gR),

(2) QA4 = Q for every dense left ideal A of R,

3) Z,(R) is nilpotent, and

(4) R/[QZ,(R)* N\ R] is finite-dimensional (k = 1,2,3,...).

We will now turn to classical left quotient rings. An element a € R is
regular if Iz(a) = rz(a) = (0). Q is the classical left quotient ring of R if
Q D R, every regular element of R is invertible in Q, and given g € Q, there
exist ¢, 7 € R, a regular, such that ¢ = ¢~'7. Lance Small [15; 16] has given
necessary and sufficient conditions for R to have a left Artinian classical left
quotient ring Q.

THEOREM 3.3. Suppose R has a left Artinian classical left quotient ring Q.
Then:

(1) Qs a right S-ring if and only if lgrg(P(R)) = P(R).

(2) Qs a left S-ring if and only if rglrg(P(R)) = P(R).

Proof. Let P = P(Q) and N = P(R). By the proof of Small’s theorem, we
know that PN\ R = N. Hence P = QN.

(1) Assume Izrg(N) = N. Then P = QN = Qlgrg(N) = lgrg(N) =
lg7r(QN) = lgrg(P). But 7x(P) Cre(P), so lgrg(P) 2D lere(P). Hence
Lo q(P) S lgrr(P) = P S lgro(P), so P = lLere(P). Also P = J(Q) since
Q is left Artinian. Therefore, Q is a right S-ring [17, Proposition 5.1].

Conversely, assume Q is a right S-ring. By [17, Proposition 5.1], P = J(Q)
is a left annihilator, say P = [4(X). Since Q satisfies the descending chain

condition on left annihilators, there exist g¢i,...,¢, € X such that
P =1g(q1) N ...MN1g(¢g.). There exist a, y; € R, a regular, such that
gi = a ;. Letr € Ig(y1, ..., ¥,). Then raq; = raa='y; = ry, = 0 for each 1,

so ra € P. Hence r € P! M RC PN R = N. Thus Iz(y1,...,y.) € N.
Suppose s € N. sy, = saa™'y; = saq; for each . Also s € N implies
sa € NC P, so saq; = 0 for each 2. Therefore, sy, = 0 for each 7, so
s€lrgyy -y ¥n). Thus NClp(yy, ..oy ¥a), 50 N = lx(y1, ..., ¥u). There-
fore, N = lzrz(NV).

(2) Suppose 7zlr(N) = N. We will first show that [4(V) C [,(P). Since
Q satisfies the descending chain condition on left annihilators, there exist
qi, - -+ qn € P such that [4o(P) = lo(qy, . .., ¢.). Each ¢; can be written as
gi =a'%;, @€ R regular, x;€ N. Suppose c¢'d € [o(N). Then
(c7'da) (¢ %;) = ¢ 'dx; for each 7. But ¢dN = (0) implies dN = (0), so
dx; = 0 for each 7. Hence (¢c~'da)q; = 0 for each 4, so ¢~'da € 14,(P). Then
¢~'daP = (0) implies daP = (0), so daQP = (0) because QP = P. Also
aQ = Q since a is regular, so (0) = dQP = dP. Hence d € [4(P), so
¢7d € 1o(P). Thus Io(N) S 1o(P). But N C P implies [o(V) D 1o(P).
Hence [o(N) =1o(P). Now N = rxlpg(V) = 7x(Qlg(N)) = rglo(V) =
rrlo(P) = rolo(P) M R.Hence P = QN = Q(rolo(P) M R) = r4lo(P) since
rolo(P) is a two-sided (therefore, left) ideal of Q. Then Q is a left S-ring by
[17, Proposition 5.1].
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Now suppose Q is a left S-ring. Then 7,lo(P) = P by [17, Proposition 5.1],
s0 N =ryloq(P) YR = rglo(P) = rg[Qlg(P)] = rxlzg(P). Also N C P, so
Ir(N) D Iz(P). Hence N = rglp(P) D rglg(N) 2 N, so N = rglp(IV). This
completes the proof.

Suppose R has a classical left quotient ring, and let I be a left ideal of R.
Then I” = {r € R:ar € I for some regular element ¢ of R}. See [8] for
details regarding the operator 7. I is called a closed left ideal of R if I* = 1.

As an application of the preceeding theorem, we obtain the following
result.

THEOREM 3.4. Suppose R has a two-sided classical quotient ring Q which is
left Artinian. Then Q is quasi- Frobenius if and only if R satisfies

(x) if I © P(R) is a closed left (right) ideal of R, then I is a left (right)
annthilator in R.

Proof. First assume Q is quasi-Frobenius. Then every left (right) ideal of Q
is a left (right) annihilator. Let I € P(R) be a closed left ideal. Then
QI = [4(X) for some subset X C Q. Since Q satisfies the descending chain
condition on left annihilators, there exist qi,..., ¢, € X such that QI =
lo(q1, - - -, qn). Since Q is a classical right quotient ring of R, there exist
x5 b€ R, b regular, such that ¢; = x67!. Then I =1T=QINR =
Lr(xb™, ..., 2,07 ) = lg(xq, ..., %), 50 [ is a left annihilator in R. Similarly,
if I © P(R) is a closed right ideal of R, then I is a right annihilator in R.

Now assume R satisfies (x). P(R) = P(Q) M R since Q is left Artinian.
Therefore, P(R) is a closed left ideal and a closed right ideal, so P(R) is a
left and right annihilator by (*). Hence lz7z(P(R)) = rrlg(P(R)) = P(R),
so Q is a left and right S-ring by Theorem 3.3. P(Q) is therefore a left anni-
hilator and a right annihilator, so left and right annihilators can be lifted
modulo P(Q). Also Q/P(Q) is semisimple Artinian. Therefore, if I is a left
(right) ideal of Q such that I € P(Q), then I is a left (right) annihilator in Q.
Now let I € P(Q) be a left ideal of Q. Then I M R is a closed left ideal of R,
and INRC P(R). By (x), IN R = Iz(X) for some subset X of R. Then
I = 14(X), so I is a left annihilator in Q. Similarly, if J € P(Q) is a right
ideal in Q, then J is a right annihilator. Thus Q is a left Artinian ring such that
every left ideal of Q is a left annihilator and every right ideal of Q is a right
annihilator, so Q is quasi-Frobenius. This completes the proof.
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