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Rationality and Orbit Closures

Jason Levy

Abstract. Suppose we are given a finite-dimensional vector space V equipped with an F-rational action

of a linearly algebraic group G, with F a characteristic zero field. We conjecture the following: to each

vector v ∈ V (F) there corresponds a canonical G(F)-orbit of semisimple vectors of V . In the case of

the adjoint action, this orbit is the G(F)-orbit of the semisimple part of v, so this conjecture can be

considered a generalization of the Jordan decomposition. We prove some cases of the conjecture.

0 Introduction

Let G be a linearly reductive algebraic group defined over a field F of characteristic 0,
and write F for an algebraic closure of F. Consider the action of G on its Lie algebra
L(G). To any point v ∈ L(G), we can assign a canonical point that has a Zariski-
closed G-orbit: the semisimple part s of the Jordan decomposition of v. We also have

the rationality result that if v lies in V (F) then so does s.

Suppose now that we are given an action defined over F of G on a vector space V .

There is no canonical map from V to V assigning to a point v a point s with a Zariski-
closed G-orbit—this difficulty appears even with direct sums of the adjoint action.
However one does have the following weaker result: given any vector v ∈ V (F), the
Zariski closure G · v of g ·v in V (F) contains a unique closed G(F)-orbit. In the special

case that the action is the adjoint action Ad of G on L(G), this orbit is just G(F) · s.

In this paper our interest is a generalization of the rationality result above. One

can hope to canonically assign to v ∈ V (F) a single G(F)-orbit in the F-rational
points of the unique closed G(F)-orbit in the closure of the orbit of v—recall that the
F-rational points in a G(F)-orbit may consist of many G(F)-orbits. We formulate a
conjecture (1.5) that allows just this. Conjecture 1.5 can be viewed as a weakening

of the Jordan decomposition that is expected to hold for all representations. This
conjecture is important in the development of extensions of the Arthur-Selberg trace
formula, such as the relative trace formula.

In Section 1, we define a “rational closure”, the 1PS closure, of G(F) · v. The 1PS
closure is G(F)-invariant, strictly contained in the Zariski closure, and it contains a

G(F)-orbit. Conjecture 1.5 states that it contains a unique G(F)-orbit. The remainder
of this paper is devoted to proving the conjecture for those classes of representations
that are easiest to analyze. In Section 2 we deal with the case that G has rank 1. In
Section 3 we deal with the case that the representation is a finite direct sum of copies

of Ad.
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1 Definition of the Closure

Let G be a linearly reductive (not necessarily connected) algebraic group, defined
over a field F of characteristic zero, and write F for an algebraic closure of F. Since
char F = 0, we know that the connected component G0 of the identity in G is re-
ductive. Given an algebraic representation, defined over F, of G on a vector space

V , we will write g · v for the action of g ∈ G on v ∈ V , and S · W for the set
{g · v | g ∈ S, v ∈ W} for S ⊆ G(F), W ⊆ V (F). We will call the set G(F) · v the geo-

metric orbit of v ∈ V (F), and G(F) · v the rational orbit or simply orbit of v ∈ V (F).
We say that an element v ∈ V (F) is semisimple if its geometric orbit is Zariski closed

in V . (This property has had other names in the literature—for example, the non-
zero semisimple elements are called “nice semistable” in [7].) An element v ∈ V (F)
is said to nilpotent if the Zariski closure of its orbit contains 0 ∈ V (F). Notice that
with this terminology, the vector 0 is both semisimple and nilpotent. We will also

call the geometric or rational orbit of a semisimple (or, respectively, nilpotent) vector
v ∈ V (F) semisimple (or, respectively, nilpotent); every element of a semisimple (or,
respectively, nilpotent) orbit is semisimple (or, respectively, nilpotent). If V is the Lie
algebra of G, with the adjoint action, then this definition of semisimple and nilpotent

agrees with the more usual one. It also agrees with Richardson’s usage in [11].
The following lemma is well-known (cf. [7, Lemma 2.3]).

Lemma 1.1 The (Zariski) closure of any orbit contains a unique semisimple geometric

orbit.

Luna proved in [6] a refinement, which he called property (A), of this lemma,

in the case F = R: the closure with respect to the usual topology on V (R) of any
rational orbit contains a unique rational semisimple orbit. This refinement has been
more recently proven in [8] in the case that F is a p-adic field; in both these cases it
follows from an application of the implicit function theorem.

For these fields, given any γ ∈ V (F) we can assign a unique rational semisimple
orbit in G · γ. In the case of the adjoint representation, we can of course do more—
given γ we can assign a canonical point in this rational semisimple orbit, namely the

semisimple part of the Jordan decomposition of γ. The following proposition implies
that such a refinement cannot be expected for general representations.

Proposition 1.2 If G = SL(2) acts on V = sl(2) ⊕ sl(2), then there does not exist a

canonical function s : V (F) → V (F) satisfying the following three properties for every

γ ∈ V (F):

(i) s(γ) is semisimple.

(ii) s(γ) ∈ G · γ.

(iii) For any g ∈ G(F), s(g · γ) = g · s(γ).

Note By a canonical function we mean a function s : V (F) → V (F) such that for
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every F-vector space automorphism h of V (F) that preserves the G(F)-action, we
have hs = sh.

Proof Suppose that such an s did exist. Then by (i) and (ii), we have that

s

((

1 0
0 −1

)

,

(

1 1
0 −1

))

∈ G(F) ·

((

1 0
0 −1

)

,

(

1 0
0 −1

))

= G(F) ·

((

1 0

0 −1

)

,

(

1 0

0 −1

))

,

so

s

((

1 0
0 −1

)

,

(

1 1
0 −1

))

=

(

(Ad x)

(

1 0
0 −1

)

, (Ad x)

(

1 0
0 −1

))

for some x ∈ G(F). Now, given any a, a ′ ∈ F×, and n, n ′ ∈ F, with n/a 6= n ′/a ′,

consider the automorphism h on V (F) given by

h(X1, X2) =
(

(a − n)X1 + nX2, (a ′ − n ′)X1 + n ′X2

)

.

Since s is canonical,

s

((

a n

0 −a

)

,

(

a ′ n ′

0 −a ′

))

= s

(

h

((

1 0
0 −1

)

,

(

1 1
0 −1

)))

= h

(

s

((

1 0

0 −1

)

,

(

1 1

0 −1

)))

= h

(

(Ad x)

(

1 0
0 −1

)

, (Ad x)

(

1 0
0 −1

))

=

(

(Ad x)

(

a 0
0 −a

)

, (Ad x)

(

a ′ 0
0 −a ′

))

.

But this contradicts (iii), if we take g =
(

1 1
0 1

)

for example.

Remark Luna’s property (A) is stronger than the property (A) mentioned in [1] and

[9]. The latter was proven by Kempf in [4], and is an essential tool in this paper.
We want to write down and test a version of Luna’s property (A) that does not

require a topology on the field F. To do this, we need a notion of the closure of an
orbit that could conceivably distinguish between rational semisimple orbits.

Before we can introduce this notion, we must first review some definitions and
theorems in geometric invariant theory. Let X∗(G) denote the set of one-parameter
subgroups λ : GL(1) → G, and let X∗(G)F denote the set of λ ∈ X∗(G) defined over
F. Given λ ∈ X∗(G)F , γ ∈ V (F), we say that the limit

lim
t→0

λ(t) · γ
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exists and equals v if there is a (necessarily unique) morphism ` : A
1 → V with

`(t) = λ(t) · γ for t 6= 0 and `(0) = v. Notice that for γ ∈ V (F), λ ∈ X∗(G)F , if the

above limit exists, it must lie in V (F). We will apply this definition not just for repre-
sentations, but for any variety with a G-action, such as G itself, under conjugation.

Let γ be in V (F), and let G(F) · v be the unique semisimple geometric orbit given
by Lemma 1.1, with v ∈ V (F). Then the Hilbert-Mumford theorem, as refined by

Kempf and Rousseau (cf. Corollary 4.3 of [4]) says the following.

Lemma 1.3 G(F) · v ∩V (F) contains points of the form

lim
t→0

λ(t) · γ,

with λ ∈ X∗(G)F .

This lemma leads to a new notion of closure:

Definition 1.4 The one-parameter subgroup closure, or 1PS-closure of the rational
orbit G(F) · γ, γ ∈ V (F), is the set

G(F) · {lim
t→0

λ(t) · γ | λ ∈ X∗(G)F and the limit exists}

= {lim
t→0

λ(t)g · γ | λ ∈ X∗(G)F , g ∈ G(F), and the limit exists}.

It is clear that the 1PS-closure of on orbit G(F) · γ does not depend on the point
γ in the orbit, and that if F is a topological field, then the 1PS-closure of G(F) · γ is

contained in its topological closure. Notice though that the inclusion may be strict: if
the representation is SL(2) acting on the space of binary cubic forms, the 1PS-closure
of the orbit of x2 y does not contain x3, while the topological closure does, cf. [3].

If F is real or p-adic, then Luna’s property (A) holds, and combined with

Lemma 1.3 it implies that the 1PS-closure of a rational orbit contains a unique semi-
simple rational orbit. This latter property does not require a topology on the field,
and so it can be seen as an extension of Luna’s property (A). It seems natural to con-
jecture that it also always holds.

Conjecture 1.5 Suppose we are given an algebraic representation of a linearly reduc-
tive algebraic group G on a finite-dimensional vector space V , all defined over a field
F of characteristic zero. Then for any γ ∈ V (F), the 1PS-closure of G(F) · γ contains

a unique semisimple rational orbit.

For the remainder of this paper we will prove some special cases of this conjecture
in a way that does not depend upon the field.

Remarks (1) The results of Kempf and Rousseau on the Hilbert-Mumford theorem

do not address this conjecture, because they only identify “optimal” classes of one-
parameter subgroups λ such that the limit limt→0 λ(t) · γ exists, but do not describe
the possible limit points under the action of other one-parameter subgroups. On the
other hand, their result is essential to all the results in this paper.
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(2) Since X∗(G) = X∗(G0), it is sufficient to prove Conjecture 1.5 for connected
groups.

(3) The conjecture is trivial if γ is nilpotent because then the semisimple geomet-
ric orbit given by Lemma 1.1 is the set {0}.

(4) The conjecture is also trivial if the F-rank of G is zero, because then the only

one-parameter subgroup λ in X∗(G)F is the constant function e.

(5) If the conjecture holds for any given representation then it holds for any sub-
representation.

The following basic rationality lemma is important for our proofs.

Lemma 1.6 Let N be a unipotent algebraic group defined over F, acting on a vec-

tor space V by a representation defined over F. The given a point γ ∈ V (F), the set
(

N(F) · γ
)

∩ V (F) of rational points in the geometric N-orbit of γ consists of a single

N(F)-orbit.

Proof This is an elementary application of Galois cohomology. Write Nγ for the
stabilizer in N of γ, so that Nγ is a unipotent group defined over F. Since char F is
zero, Nγ is connected, so H1(F, Nγ) = 0 (cf. [12, 4.1]). Since N/Nγ is isomorphic,

as a set with both Gal(F/F)- and N-actions, to the orbit N · γ, Proposition 2.1(2) of
[12] implies the desired result.

We will require a little more notation. Suppose that G is connected. Write X∗(G)
for the set of characters π : G → GL(1), and X∗(G)F for the set of those π ∈ X∗(G)

defined over F; these are both abelian groups. There is a natural non-degenerate bi-
linear pairing (χ, λ) 7→ χ(λ) ∈ Z between X∗(G)F and X∗(G)F , given by χ

(

λ(t)
)

=

tχ(λ), χ ∈ X∗(G)F , λ ∈ X∗(G)F . Write G1 for the subgroup

⋂

π∈X∗(G)F

ker π

of G; it is a semisimple group defined over F, whose rank is the semisimple rank of G.
Given H ≤ G and π ∈ X∗(H), write V π for {v ∈ V | h · v = π(h)v, for all h ∈ H},

the π-weight space of V .

2 Rank One Groups

In this section we will prove Conjecture 1.5 given a strong restriction on G.

Theorem 2.1 If the semisimple F-rank of G0 is at most one, then Conjecture 1.5 holds.

If G is semisimple, then the proof goes roughly as follows: if v is a semisimple
vector in the 1PS-closure of a vector γ ∈ V (F), then either v = γ or for some

minimal parabolic subgroup P with maximal split torus A, the vector v lies in the
0-weight space with respect to A, and γ lies in the sum of v and the direct sum of the
positive weight spaces. Given two such vectors v and v ′, there are only two non-trivial
cases to consider: when neither equals γ or when exactly one (say v ′) does. In the first
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case, one obtains two maximal split tori, which are conjugate by an element g of G(F),
and we show that with an appropriate choice of g, v ′ is g−1 · v. In the second case, we

know that v = g ·γ for some g ∈ G(F). Using the Bruhat decomposition with respect
to P and basic knowledge of the action of each term of the Bruhat decomposition
(M = ZG(A), N = Ru(P), and W ) on the weight spaces in V , we conclude that for
some n2 ∈ N(F) we have n2 · γ = v, at which point Lemma 1.6 lets us conclude that

v ∈ G(F) · γ.

For general reductive groups of semisimple rank 1, the proof is somewhat more

involved and ends with some geometry on X∗(G)F ⊗ R.

Proof Assume that G is connected; this can be done without loss of generality by
Remark 1.5 (2). Suppose we are given γ ∈ V (F) and λ, λ ′ ∈ X∗(G)F , v, v ′ ∈ V (F),

with

lim
t→0

λ(t) · γ = v, lim
t→0

λ ′(t) · γ = v ′,

and v, v ′ semisimple. We must show that v ′ ∈ G(F) · v.

Write Z for the maximal split torus contained in the centre of G. Decompose V

into weight spaces according to the action of Z,

V =

⊕

ν∈X∗(Z)F

V ν ,

and for each vector x ∈ V , write suppZ(x) for the set of weights ν ∈ X∗(Z)F such
that the component of x in V ν is non-zero. Since Z is central in G, the action of G

preserves each weight space V ν .

By our assumption of the limit points v, v ′, they lie in the same G(F)-orbit, so
that suppZ v = suppZ v ′ ⊆ suppZ γ, and so replacing γ with its component in
⊕

ν∈suppZ (v) V ν will not change v or v ′. Hence we may assume, without loss of gen-

erality, that suppZ v = suppZ γ. If we write γν for the projection of γ to V ν , for
ν ∈ suppZ γ, and similarly with v, v ′, we must have

vν
= lim

t→0
λ(t) · γν and (v ′)ν

= lim
t→0

λ ′(t) · γν , for all ν ∈ suppZ γ.

If both one-parameter subgroups λ, λ ′ lie in X∗(Z)F , then the existence of the
limits v and v ′ implies that both v and v ′ equal γ, hence are equal. We may therefore
assume, writing im(λ) for the image in G of λ, that G has semisimple rank 1 and that

the product im(λ)Z is a maximal split torus T of G. Then the torus A = (T ∩ G1)0

is a maximal F-split torus of G1, and T = AZ. Let $ be the generator of X∗(A)F
∼= Z

such that $(λ) > 0. The map ι : X∗(T) → X∗(Z) ⊕ X∗(A) sending χ ∈ X∗(T)
to (χ|Z , χ|A) is clearly injective and Gal(F/F)-invariant. Given (ν, i$) ∈ X∗(Z) ⊕
X∗(A) (so that i ∈ Z), write V ν,i for the weight space of V under the action of T

corresponding to χ ∈ X∗(T)F if ι(χ) = (ν, i$), and the trivial subspace if (ν, i$)
is not in the image of X∗(T)F under ι. Notice that for ν ∈ suppZ γ, V ν is the direct
sum of the V ν,i , i ∈ Z.
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The group (A ∩ Z)(F) is finite; write f for its order. The one-parameter subgroup
λ f , defined by λ f (t) = λ(t f ), can be written uniquely as a product of two one-

parameter subgroups, λ f (t) = λ1(t)λ2(t) with λ1 ∈ X∗(A)F and λ2 ∈ X∗(Z)F .
Notice that the limit point vν also equals the limits

vν
= lim

t→0
λ(t) · γν

= lim
t→0

λ f (t) · γν
= lim

t→0
tν(λ2)λ1(t) · γν .

We similarly decompose a power of λ ′ as (λ ′) f ′

= λ ′
1λ

′
2 with λ ′

2 ∈ X∗(Z) and λ ′
1 a

(now possibly trivial) one-parameter subgroup in a maximal split torus A ′ of G1.
For each ν ∈ suppZ γ, the existence and non-vanishing of the limit vν =

limt→0 λ(t) · γν implies that the number iν = −ν(λ2)/$(λ1) is an integer, that

γν lies in the subspace

(2.1)
⊕

j≥iν

V ν, j

of V , and that vν equals γν,iν , the component of γ in the weight space V ν,iν .
Let P be the minimal parabolic subgroup of G1 defined over F that has M =

CG1 (A) ⊇ A as a Levi component, and whose positive roots are positive multiples of

$. Write N for the unipotent radical of P. Both M and N are defined over F. Pick a
representative w ∈ G1(F) for the non-trivial element of the Weyl group of the rank
one group G1, so that {1, w} is a set of representatives of the Weyl group. Then the
Bruhat decomposition says that for any field F ′ containing F, G1(F ′) is the disjoint

union of P(F ′) = M(F ′)N(F ′) and N(F ′)wM(F ′)N(F ′) = M(F ′)N(F ′)wN(F ′).

Remark 2.1 The Bruhat decomposition is important for our purposes because the
behaviour of M, N , and w on weight spaces is relatively simple: M preserves every

weight space, w is an isomorphism from V ν, j to V ν,− j , ν ∈ suppZ γ, j ∈ Z. The im-
age of the action of N on a weight space V ν, j is more complicated, but the following
fact is elementary and sufficient for our purposes: given n ∈ N and x ∈ V ν, j , the
point n · x lies in x +

⊕

l> j V ν,l.

Let us first suppose that λ ′ lies in X∗(Z), so that λ ′
1 is trivial. The condition

suppZ γ = suppZ v ′ implies that v ′ = γ. By assumption, both γ and v =
∑

ν∈suppZ γ γν,iν are semisimple, so that for some element g ∈ G(F), we have g · γν =

γν,iν for each ν ∈ suppZ γ. We will show that if the Bruhat decomposition of wg is
of the form n1xm1n2, with n1, n2 ∈ N(F), m1 ∈ M(F), x ∈ {1, w} (with the proviso

that n1 = 1 if x = 1), then

(2.2) n2 · γ
ν ∈ V ν,iν , for all ν ∈ suppZ γ.

By Remark 2.1, this implies that n2 · γ =
∑

ν∈suppZ γ γν,iν = v, and Lemma 1.6 will

then imply that v and v ′ = γ are in the same N(F)- and hence G(F)-orbit, proving
the result in this case.

While proving (2.2), we fix ν ∈ suppZ γ, and write i for iν . If g lies in M(F)N(F),
say g = mn, then n2 = n and n · γν = m−1 · γν,i ∈ V ν,i , so (2.2) holds.
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If instead g lies in N(F)wM(F)N(F), say g = n ′wmn, then the first form of mn ·
γν = w−1(n ′)−1 · γν,i clearly has a non-zero component in V ν,i , while the second

form clearly has a non-zero component in V ν,−i . Since mn · γ lies in the space (2.1),
we see that i ≤ 0.

Suppose first that i = 0. Then

(2.3) wmn · γν ∈
⊕

j≤0

V ν, j and (n ′)−1 · γν,i ∈ γν,0 +
⊕

j>0

V ν, j .

Since these two vectors are equal, wmn · γν must equal γν,0. If n ′ = 1, then n2 = n

and n ·γν ∈ (wm)−1 ·V ν,0 = V ν,0, so (2.2) holds. If n ′ 6= 1, then wn ′w /∈ M(F)N(F)
so x = w and the Bruhat decomposition of wg is wg = n1wm1n2, for some n1, n2 ∈
N(F), m1 ∈ M(F). Then

n1wm1n2 · γ
ν

= wg · γν ∈ w ·V ν,0
= V ν,0,

and we obtain as in (2.3) that wm1n2 ·γ
ν and hence n2 ·γ

ν lies in V ν,0 and (2.2) holds.

If i < 0, then since wmn · γ has a non-trivial component in V ν,−i , while n ′wmn ·
γν = γν,i does not, the element n ′ is not 1. Therefore we again have that x =

w, so wn ′wmn = n1wm1n2, for some n1, n2 ∈ N(F), m1 ∈ M(F). Notice that
wn ′wmn·γν = w ·γν,i ∈ V ν,−i , so that n2 ·γ

ν = m−1
1 w−1n−1

1 ·(w ·γν,i) ∈
⊕

j≤i V ν, j .

On the other hand, we know that n2 · γ
ν ∈

⊕

j≥i V ν, j , so that n2 · γ ∈ V i , so (2.2)

holds.

We have proven the theorem in the case that λ ′
1 is trivial. We now suppose that

λ ′
1 lies in X∗(A ′)F \ {1}. The maximal F-split tori A and A ′ of G1 are conjugate over

G1(F), so for some g ∈ G(F), we have A ′ = g−1Ag, and λ ′
A(t) = gλ ′

1(t)g−1 defines
a one-parameter subgroup in X∗(A)F \ {1} ⊆ X∗(G)F . In fact, by multiplying g on
the left by w if necessary, we can arrange to have $(λ ′

A) > 0. Since any m ∈ M(F)

commutes with A, we can take g to have Bruhat decomposition g = n ′xn, n, n ′ ∈
N(F), x ∈ {1, w}. Notice that

v ′
= lim

t→0
λ ′(t) · γ = lim

t→0
tν(λ ′

2 )λ ′
1(t) · γ = g−1 ·

(

∑

ν∈suppZ γ

lim
t→0

tν(λ ′

2 )
(

λ ′
A(t)g · γν

)

)

,

where the existence of each of the limits on the right-hand side is forced, and that it

suffices to show that this latter sum lies in G(F) · v.

If x = 1, then g lies in N(F), so that for each ν ∈ suppZ γ, g · γν − γν , and
hence g · γν − γν,iν , lies in

⊕

j>iν
V ν, j—see (2.1). The existence and non-vanishing

of the limit limt→0 tν(λ ′

2 )
(

λ ′
A(t)g · γν

)

with $(λ ′
A) > 0 implies that this limit equals

γν,iν = vν .

We are left with the case that x = w. Since limt→0 λ ′
A(t)n ′λ ′

A(t−1) = 1, the
existence of the limit

lim
t→0

tν(λ ′

2 )λ ′
A(t)g · γν

= lim
t→0

tν(λ ′

2 )
(

(

λ ′
A(t)n ′λ ′

A(t−1)
)

wλ ′
A(t−1)n · γν

)

,
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for each ν ∈ suppZ γ implies the existence of the limit

(2.4) lim
t→0

tν(λ ′

2 )λ ′
A(t−1)n · γν .

We now show that for each ν ∈ suppZ γ, (2.4) equals vν . This will complete the proof
of the theorem, as we then have that v ′ = g−1w · v.

Let us replace γ with n · γ; this does not change the limits vν = limt→0 λ(t) · γν ,
and simplifies (2.4) to

(2.5) lim
t→0

tν(λ ′

2 )λ ′
A(t−1) · γν .

Recall that vν has a very similar expression,

(2.6) vν
= lim

t→0
tν(λ2)λ1(t) · γν .

Let us write i ′ν for −ν(λ ′
2)/$(λ ′

A). Then the convergence of (2.5) and (2.6) implies
that for each ν ∈ suppZ γ,

γν ∈
⊕

j≤i ′ν

V ν, j , γν ∈
⊕

j≥iν

V ν, j ,

hence that i ′ν ≥ iν .

Since v is semisimple, there does not exist a Λ ∈ X∗(Z)F such that the limit
limt→0 Λ(t) · v exists and has support strictly contained in suppZ v. This implies
that 0 lies in the interior of the convex hull of suppZ v = suppZ γ, so that there exist

constants cν ∈ (0,∞), ν ∈ suppZ γ, such that
∑

ν∈suppZ γ cνν = 0. Therefore

0 =

∑

ν∈suppZ γ

cν
−ν(λ2)

$(λ1)
=

∑

ν∈suppZ γ

cν iν ≤
∑

ν∈suppZ γ

cν i ′ν = 0,

since iν ≤ i ′ν for all ν. This implies that iν = i ′ν , so that (2.5) equals γν,i ′ν = γν,iν =

vν .

3 m-Tuples in Lie Algebras

In this section we will prove Conjecture 1.5 given a strong restriction on the repre-

sentation of G. Write L(G) for the Lie algebra of G, and Ad for the adjoint action
of G on L(G). Given a positive integer m, write L(G)m for the space of m-tuples
{(x1, . . . , xm) | xi ∈ L(G)}.

Theorem 3.1 If G is a linearly reductive algebraic group defined over F, and m is a pos-

itive integer, set V = L(G)m, with G-action given by g · (x1, . . . , xm) =
(

Ad g(x1), . . . ,

Ad g(xm)
)

. Then Conjecture 1.5 holds.
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The main tool in our proof of this is the Levi decomposition in L(G)m, an analogue
of the Jordan decomposition in L(G), introduced by Richardson in [11]. If m = 1,

the Levi decomposition reduces to the Jordan decomposition, but for higher m, it
need not be unique.

Let us briefly review the definitions and results of [11] that we will use.
Call a Lie subalgebra a of L(G) an algebraic Lie subalgebra of L(G) if there exists a

(necessarily unique) connected closed subgroup A of G such that L(A) = a. Given
γ = (γ1, . . . , γm) ∈ L(G)m, write a(γ) for the algebraic hull of γ1, . . . , γm, that is, the
smallest algebraic Lie subalgebra of L(G) containing γ1, . . . , γm, and write A(γ) for
the connected closed subgroup of G such that L

(

A(γ)
)

= a(γ).

We say that a decomposition γ = s + n is a Levi F-decomposition if γ, s, n ∈
L(G)m(F), A(s) is a Levi F-subgroup of A(γ), and A(n) ⊆ Ru

(

A(γ)
)

. The follow-
ing results about Levi F-decompositions follow from [11]: see 1.2.4, 3.6, 3.7, and
Section 5 there.

Proposition 3.2

(a) s is semisimple if and only if A(s) is reductive. n is nilpotent if and only if A(n) is a

unipotent group.

(b) Every γ ∈ L(G)m(F) has a Levi F-decomposition, and given any two decomposi-

tions γ = s + n = s ′ + n ′, the elements s, s ′ are in the same Ru

(

A(γ)
)

(F)-orbit.

(c) If γ = s + n is a Levi F-decomposition, then there exists λ ∈ X∗(G)F such that

limt→0 λ(t) · γ = s.

By Proposition 3.2(c), Theorem 3.1 is equivalent to the following statement.

Theorem 3.1 ′ If γ ∈ L(G)m(F) has Levi decomposition γ = s + n, then the unique

semisimple rational orbit in the 1PS-closure of G(F) · γ is the rational orbit of s.

Notice that the Levi decomposition gives a set of rational semisimple vectors, all

belonging to a single rational G(F)-orbit, while Conjecture 1.5 assigns the entire
G(F)-orbit.

We begin with a Lemma.

Lemma 3.3 Suppose that γ = s + n is a Levi F-decomposition in L(G)m, and that

γ0 = limt→0 λ(t) · γ exists, with λ ∈ X∗(G)F . Then s0 = limt→0 λ(t) · s and n0 =

limt→0 λ(t) · n also exist, and γ0 = s0 + n0 is a Levi F-decomposition.

Proof Since the limit limt→0 λ(t) · γ exists, γ and hence s and n lies in L
(

P(λ)
) m

, so

that the limit points s0 and n0 also exist and are in L(G)m(F). It remains to show that
A(s0) is a Levi F-subgroup of A(γ0) and that A(n0) ⊆ Ru

(

A(γ0)
)

.
Define the homomorphism hλ : P(λ) → Gλ by hλ(g) = limt→0 λ(t) · g, as in

[11, 2.2]. Then [11, 3.1] says that A(γ0) = hλ

(

A(γ)
)

, A(s0) = hλ

(

A(s)
)

, A(n0) =

hλ

(

A(n)
)

, and [2, 14.11] says that Ru

(

hλ

(

A(γ)
))

= hλ

(

Ru

(

A(γ)
))

. Putting these

facts together, we see that A(n0) = hλ

(

A(n)
)

⊂ hλ

(

Ru

(

A(γ)
))

= Ru

(

A(γ0)
)

.
Also, A(s0) is reductive, hence contained in a Levi F-subgroup of A(γ0); since on the
other hand A(γ0) = hλ

(

A(γ)
)

= hλ

(

A(s)
)

hλ

(

Ru

(

A(γ)
))

= A(s0)Ru

(

A(γ0)
)

, we
conclude that A(s0) is a Levi subgroup of A(γ0).
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Proof of Theorem 3.1 ′ Suppose that limt→0 λ(t) · γ exists and is a semisimple el-
ement s0. Then Ru

(

A(s0)
)

= {1}, so by Lemma 3.3, limt→0 λ(t) · n = 0 and

limt→0 λ(t) · s = s0. Now the reductive F-group A(s) ⊆ P(λ) is contained in a
Levi F-subgroup M of P(λ). Since Gλ is also a Levi F-subgroup of P(λ), there exists
u ∈ Ru

(

P(λ)
)

(F) such that uMu−1 = Gλ. Then u · s ∈ L(Gλ)m and s − u · s ∈

L
(

Ru

(

P(λ)
)

)m

, so that

s0 = lim
t→0

λ(t) · s = lim
t→0

λ(t) · (u · s) + lim
t→0

λ(t) · (s − u · s) = u · s.

This completes the proof.

Richardson in [11] defined a Levi decomposition in a more general context, and
the analogue of Theorem 3.1 ′ is valid in this context as well. We begin with notation,
and some assumptions that will hold for the remainder of this section.

Let G and Θ be linearly reductive algebraic groups defined over F. We say that G

is a Θ-group defined over F if Θ acts F-morphically on G in such a way that for every
θ ∈ Θ, the morphism G → G given by g 7→ Θ · g is an automorphism of algebraic

groups. In this case we write K = GΘ; it is a linearly reductive subgroup of G defined
over F [10, Prop. 10.1.5]. An important example of this is when Θ is a 2-element
group.

Given γ = (γ1, . . . , γm) ∈ L(G)m, m ≥ 1, we let aΘ(γ) be the algebraic hull of

{θ · γi | θ ∈ Θ, i = 1, . . . , m}, and AΘ(g) be the unique closed connected subgroup
of G such that L

(

AΘ(γ)
)

= aΘ(γ). We say that a decomposition γ = s + n is a Levi
Θ-decomposition of γ defined over F if γ, s, n ∈ L(G)m(F), AΘ(s) is a Θ-stable Levi
F-subgroup of AΘ(γ) and AΘ(n) ⊆ Ru

(

AΘ(γ)
)

. Consider the action of K on L(G)m.

Richardson proves [11], 12.1, 13.2–13.5] the following statements.

Proposition 3.4

(a) s is semisimple under the action of K if and only if AΘ(s) is reductive. n is nilpotent

under the action of k if and only if AΘ(n) is a unipotent group.

(b) Every γ ∈ L(G)m(F) has a Levi Θ-decomposition defined over F.

(c) If γ = s + n is a Levi Θ-decomposition defined over F, then there exists λ ∈ X∗(K)F

such that limt→0 λ(t) · γ = s.

We also have an analogue of Lemma 3.3.

Lemma 3.5 Suppose that γ = s+n is a Levi Θ-decomposition defined over F in L(G)m,

and that γ0 = limt→0 λ(t) · γ exists, with λ ∈ X∗(K)F . Then s0 = limt→0 λ(t) · s and

n0 = limt→0 λ(t) · n also exist, and γ0 = s0 + n0 is a Levi Θ-decomposition defined

over F.

Proof This is almost exactly the same as for Lemma 3.3. Notice that since λ ∈
X∗(K)F , the parabolic subgroup P(λ) is Θ-stable, and hλ commutes with Θ.

Theorem 3.6 If γ ∈ L(G)m(F) has Levi Θ-decomposition γ = s + n defined over F,

then the unique semisimple K(F)-orbit in the 1PS-closure of K(F) · γ is K(F) · s.
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Proof This is almost exactly the same as for Theorem 3.1 ′. The only addition we
need to make is to prove that u ∈ K. Since λ ∈ X∗(K)F , P(λ) and hence Ru

(

P(λ)
)

is

Θ-stable. Therefore for any θ ∈ Θ, θ(u) lies in Ru

(

P(λ)
)

and also satisfies
θ(u)Mθ(u)−1 = Gλ. Therefore u−1θ(u) both normalizes the Levi subgroup M of
P(λ) and lies in Ru

(

P(λ)
)

, hence is the identity, so u = θ(u). Since θ was arbitrary,
u ∈ K.

Corollary 3.7 Suppose that G and Θ are linearly reductive algebraic groups defined

over F, and that m is a positive integer. Set V to be the vector space L(G)m, with K-action

given by k · (x1, . . . , xm) =
(

Ad k(x1), . . . , Ad k(xm)
)

, or any K-invariant subspace.

Then Conjecture 1.5 holds.

Remark If Θ = {1, θ} with θ an involution of G defined over F, then the ±1-
eigenspaces k and p under the action of θ are invariant under the action of K, and

hence Conjecture 1.5 holds for representations of the form (k)m1 ⊕ (p)m2 .
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