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1. LET US denote by a, the set of n real numbers av ..., an, and by ck(x) and
hk(n) the elementary and complete symmetric functions of degree k in alt ...,an,
and by ck(a) and hk(a) the elementary and complete symmetric functions of
degree k in alt ..., an, i.e. ck(x) is the sum of all possible products of k different
at and hk(a) is the sum of all possible products of k a,-, where now in any
product one or more a,- may be repeated any number of times. We shall prove,
for at > 0, /3{ ^ 0, that the following inequalities hold :

(i) {cfc(a)}* + {

,

(iii) {hk(x)}l + {hk(P)}l > {hk

The first inequality is, of course, a particular case of the second, but it
will make for a more intelligible exposition if we prove the first in detail and
then use the ideas so developed to prove the others in succession.

To the best of my knowledge, no proof of the second or third inequalities
exists so far in the literature, but the first has been recently proved in (1) by
a different method from that which we shall adopt. I t is also conjectured
that there is a fourth inequality which extends (iii) in the same way as (ii)
extends (i), namely

\
h,(P) j

but the truth of this remains unproved.
I am much indebted to Professor A. C. Aitken, not only for suggesting

the topic of these inequalities, but also for directing my attention to the work
of Sylvester and Boole on unisignant determinants, on which the proofs given
below hinge.

2. Let us first introduce the following notation. Let ct_i;1(a) [or, more
shortly, just Cfc_i; i] denote the elementary symmetric function of degree k— 1
in a2, a3, ..., an ; and similarly for Ci_1;r(a). Let ck_2; i,2(«) [or, more shortly,
just Ct_ 151,2] denote the elementary symmetric function of degree k — 2 in
a8, a4, ..., an ; and similarly for Ct_o;r]8(a). If r — s, we define ck^2-,r,s to be
zero.

We shall prove the following

Lemma. The determinant | Cjt_2;»•,«(«) | ** unisignant, each term in the
E.M.S.—o

https://doi.org/10.1017/S0013091500021921 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500021921


212 J. B. McLEOD

expansion having the sign (— I)""1. (By saying that a determinant is unisignant,
we mean that on expansion it consists of a sum of terms each of the same
sign, this sign being either positive or negative according to the context.)

Proof. An equivalent statement is that the determinant | — Ct_2;r,« | is
n

negatively unisignant. If we denote E c^^^-.Tt by Er, then we may write

I -C£^2;r,« I a s

;l,n ~~C*^2; 1,2-•• — Ci -2

— ck-i-2;n,l — Ck-2;n,2---—

when it takes a form discussed by Sylvester (2). [See also Muir, Theory of
Determinants, Vol. II, p. 457 et seq.] Sylvester gives a rule for evaluating
such a determinant which is as follows : the value of the determinant is given
by formally multiplying together the elements on the diagonal and rejecting
in the expansion of this product all terms containing a cycle of indices, i.e.
any term involving

ck^2;r,sck-2;s,r Or C^-2; r,sck-2; sjfik~2; t,r

would be rejected, and similarly for higher cycles.
In our application of Sylvester's rule, we notice that the diagonal elements

(and hence their product) are equal to zero, and that the value of the deter-
minant is therefore given by the negative of the terms rejected by the rule.
To prove the lemma, we must show that such rejected terms as do not cancel
one another are positively unisignant.

Let us look at the product of the diagonal terms more closely. The product
is

If we choose Er from each bracket, then no cycles of indices can occur, there
are therefore no rejections, and we need not consider this further. This
applies again if we choose ET from every bracket except one.

To consider what happens when we choose Sr from fewer brackets, i.e.
from n — 2 or less, let us denote the aggregate of all terms rejected when we
choose Er from every bracket except m by 8m. Thus <Sm consists of the sum
of all terms which may be obtained by choosing Er from every bracket except
m and which contain one or more cycles of indices.

Then in S2 the only type of cycle possible is a cycle on two indices, and so
a typical term in S3 is

In S3, cycles on three indices are possible, but also, of course, cycles on
two indices, and amongst the latter is a typical term
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for any r. Adding these terms for all possible values of r, we obtain

.En_3En_2(Ck- 2; n^\,rfik-2; n,n-l),

which cancels the typical term above in 82. Thus the terms in S3 more than
cancel those in S2, and the sum S3 + S2 is unisignant with sign that of S3, i.e.
(-1)—3.

More generally, every type of cycle or combination of cycles possible in
$»i-i is possible also in Sm, along with new combinations, and, by the same
argument as in the last paragraph, the appearance of any cycle or combination
of cycles in Sm_x is cancelled by its appearance in Sm, so that $„, + $,„_! is
unisignant with sign that of Sm, i.e. ( — l)n~m.

Thus the terms rejected by Sylvester's rule are in all

#„ + £„_!+.
and, if we pair these as

we see from the above paragraph that the rejected terms are positively
unisignant, which proves the lemma.

3. As a further preliminary to the proof of the first inequality, we observe
that we may assume throughout the proof that the inequality is satisfied if
the vectors a, ft are of dimension less than n. For, if we succeed in using this
as an induction hypothesis to prove that the inequality also holds when a, fi
are of dimension n, then we know that the inequality must hold whatever the
dimension of a, p provided that it holds when their dimension is one. But
this last is trivial, for either k = 1 and both sides of the inequality become
ai+ft> or fc>l and both sides of the inequality become zero. The induction
hypothesis that the inequality holds when a, ft are of dimension less than n
will therefore be assumed without further mention in what follows.

We shall now use this induction hypothesis to prove first that the inequality
holds for a, fi of dimension n when one or more af and one or more J8J vanish
simultaneously. The corresponding results for the other two inequalities will
also be required later, and it will be convenient to prove all three results in
this section.

In the case of the first inequality, we may suppose without loss of generality
that ax = 0. If /?i = 0, the result follows at once from the induction hypothesis,
since in effect both a, /? reduce to dimension n — 1. If /Jx ̂  0, we may suppose
without loss of generality that j82 = 0.

Now introduce the vectors a*, /}*, where a* = a, and /}* is the same as /}
except that the first and second coordinates are interchanged. Then we have

and, since a*, /J* have a1* = ^31* = 0 and so are in effect of dimension TO—1,
we obtain, using the induction hypothesis, that

1 = {ck(a*)}\ + {ck(p*)}\ < {ck{c* + p*)}L
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The result we require is therefore proved if we can show that

{ck(a* + p*)
i.e. that

But this last inequality is certainly true, for the two sides contain the same
terms except that there are terms on the right-hand side involving the product
ag/?!, and such terms cannot occur on the left-hand side.

This scheme of argument applies equally well for the other two inequalities,
with only the final step in the proof requiring separate consideration. In the
case of the second inequality, we have to show that

i.e. that
c*(a + /*)cfc+J(a* + /J*K c,(«* + P*)ck+l(* + /*)•

We have already seen that Cj(a + /}) and cj(a* + /}*) differ only in terms involving
a2/5j, so that we may write

and similarly

Then the inequality required becomes

-2;l,2(« + P)>0,
where the argument a + /? may now safely be omitted. The terms involving
aji-i in the left-hand side are

a-i§l{cl-2\\t2
ck + l-2\l,2 — cfc + J-2; l,2cZ-2; 1,2};

which is obviously zero ; the terms involving a2 (but not J8J) are

a-2{cl-l; l,2ch + 1-2; 1,2— C i + J - 1 ; l ,2cJ-2; 1,2} 5 ..(3.1)

those involving j3x (but not a2) are

Plicl-1; l,2Ck + l - 2 ; 1,2 — Ci +l-j; 1,2^-2; 1,2} ; (3-2)

those involving neither a2 nor ^ are
cl; 1,2% +1-2; 1,2 — ck +1; l,2cZ-2; 1,2 > (3-3)

and that each of (3.1), (3.2) and (3.3) are non-negative follows at once from
the lemma which closes this section.

In the case of the third inequality, the inequality to be proved is that

Now on the left-hand side those terms involving a2, & to a total degree of m
(O^rra^fc) are just those terms involving (a2+j31)

m. On the right-hand side,
in the corresponding terms, (a2 + /3j)m is replaced by
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Since
(a, + j3j)m > a2

m + oj"-1]^ +.. . + ft",

the inequality is proved. •

Lemma. If p + q = r + s (p~^q,r^s), then cvcQ — crcs is positively unisignant
if p — q<r — s, whatever may be the dimension of the vector which is the argument
°f ci» c«> cr> cs-

Proof. The proof is by induction. We suppose the lemma true when
p + q^m, and then prove it for p + q = m + l. It is easily seen to be true in
the first applicable case, i.e. when p+q=r+s—2 and p = 2, q = 0, r=s = l.

Suppose then that p + q = m +1. We will consider the coefficients of a?, a3-
in cPcQ — crcs, for any j . If they are positive, then the result clearly follows.

The coefficient of a? is

which is positive by the induction hypothesis, and the same type of argument
shows that the coefficient of a,- is positive.

4. To prove the first inequality of §1, we consider a-f/f to be fixed. We
set a + P = a = (a1 an), and we shall assume that a{^0 (i = l, ..., n). (This
is no restriction, for if we prove the inequality in this case, then from continuity
the inequality still holds when one or more at is zero.) With a + /} = a thus
fixed, we may regard /} = a — a as a function of a, and we have to prove that
in the region R defined by 0^ai^ai (i = \, ..., n)

l 1 1

{cfc(a)}S + {ck(a - a)}* =* cs(a.)}£.

The left-hand member is a continuous function of a, and two possibilities
arise. The first is that it attains its greatest value on the boundary of R,
and we shall prove in §5 that the inequality is satisfied on this boundary.

Alternatively, any point a at which the left-hand member above attains its
greatest value must lie strictly inside R, and so must be a stationary value
of the function. Our next task will be to prove that inside R the only stationary
points occur when a, p are proportional, when, as is at once obvious, the
inequality becomes equality. This will complete the proof of the inequality.

The usual necessary conditions for a stationary point are here

\ C*-1;i(g) - I * - " < — « > . 0 ( i . i , . . . , » ) .
K(a )} 1 - ! *{cfc(a-«)}1~i

Since this set of equations is dimensionless, we may set a — ct = Ky, where K
is a constant to be suitably chosen, and we still have
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If we now choose K so that

then the set of equations simplifies to

Ci-i;i(«) = c*^1;i(y),

and all that remains is to prove that the only solution of this set of equations
is a=y. This will in fact be so if the Jacobian of the n functions C£.̂ 1;t(a)
with respect to the n variables at does not vanish inside R. But this Jacobian
is just the determinant of the lemma of §2.

5. We have now shown that if the inequality fails to hold at all, then it
fails to hold on the boundary of R, i.e. when at least one a{ or /3t is zero. In
particular, we may suppose without loss of generality that at least one a,-
is zero.

We shall now prove that if the inequality fails to hold when p of the a,-
are zero, then it fails to hold when p+1 are zero. For, if we prove this, it will
follow that if the inequality fails to hold at all, then it fails to hold when
sufficient a( are zero that cfc(a) = 0. But the inequality certainly does not fail
then, and so it always holds.

Suppose then that av ..., av are zero. We shall consider first the surface
S in R given by a1 = e1, ..., av = ev, where the e{ are small but strictly positive
constants. If the inequality fails to hold on this surface, then two possibilities
arise. The first is that it fails to hold on the boundary of S, i.e. when at least
one at or fi( (i # 1, ..., p) is zero, and this, as we shall see later, is what we want.

The second possibility is that the inequality fails to hold strictly inside S,
in which case the function

{ck(x)}l+{ck(a-n)}l

must attain its greatest value in S at a stationary value strictly inside S. The
necessary conditions for a stationary value are

and if again we put a — <x = Ky, so that ck(a) = ck(y), we have

Ci-i;i(a) = Ci_i;i(y) (5.1)

Again, this has a unique solution, for the Jacobian of the n —p functions
c*-i;t(«) with respect to the n—p variables aP+1, ..., an is a coaxial minor of
the determinant of the lemma of §2, and can be proved unisignant in the same
way as the determinant itself was. We should of course like the unique
solution of (5.1) to be a = y , but (5.1) in effect determines only the relationship
between aJ+,, ..., an and y,,+i, ..., yn, and not the relationship between av ...,ap

and yv ...,yp, which is determined by the choice of ev ..., eP, and for a general
choice of e]; ..., ev, this relationship between ax, ..., av and yx, ..., yv may not
be consistent with <x= y. In fact, if a= y, then a is proportional to a, and since
ax = €j, ..., dp = ep, it follows that ejc^ = e2/a2 = . . . = «v\o,v, which may not be so.
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However, we are going to allow ex, ..., ev to tend to zero, and it will not
matter how they tend to zero. Let us therefore choose ex, ..., ev so that
e1/o1=... = eP/as, and then a = y satisfies both this choice of e1; ..., ep and the
equations (5.1); i.e. <x = y is the unique solution of (5.1), and for this solution
the inequality becomes equality.

Thus, with this choice of e1; ..., ev, we conclude that if the inequality fails
to hold on S, then it fails to hold on the boundary of S. Allowing the ef to
tend to zero, we have that if the inequality fails to hold when p of the a{ are
zero, then either it fails to hold when p +1 or more are zero (which is what we
want to prove) or it fails to hold when p of the a( are zero and one or more
j8j are zero, and this last possibility is excluded by §3. This completes the
proof of the inequality.

6. The Second Inequality

It is our aim now to prove that, for at- ̂ 0 , )3f ̂  0,

^ \
The scheme of the proof for this inequality is the same as that for the first

inequality, and the two proofs differ only in the mechanical details. In fact,
even these differ essentially only at two points ; the first of these was dealt
with in §3, and the second occurs when we show that, if we define the region
R as before, then

I - / _ —\ f > V\ c,(«0 J + 1 c((«-«) J ' ( '
regarded as a function of a for fixed a, cannot have a stationary value strictly
inside R other than one for which a, /}, a are proportional.

The necessary conditions for (6.1) to have a stationary value are

k \ c;(a)

[
* 1 c,(a-a)

These equations are dimensionless, and so continue to hold if we replace a —a.
by y, where y = K{a — at,), and if is a constant chosen so that

The equations then simplify to

where
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and all that remains to be proved is that the only solution to this set of equations
is a= y. This will be so if the Jacobian of the n functions /,(a) with respect to
the n variables at does not vanish.

To examine this Jacobian more closely, we observe that

and substitute these in the definition of f( to obtain

fi = ck +1-1; i<>l; i ~ Ck +1; ify-1; i-

It is now clear that/t- is independent of a,-, and so the elements on the diagonal
of the Jacobian are zero.

Furthermore, by the lemma at the end of §3, /,-, when expanded in a sum
of terms, is positively unisignant, and hence dfijda^i ̂ j) is positively unisignant.
Now, in proving the unisignancy of the determinant | ck^2-,r,e | in §2, the only
two properties of the ck^2;r,» which we used were that cj_2;r,r = 0 and that
Ck-2;r,s(r^s) *s strictly positive inside R. This is seen by repeating the proof
with Ctc-^rfi replaced by ars, where the ar>s are any numbers satisfying only
the conditions ar r = 0 and aftg(r^s) strictly positive inside R, and it will be
observed that the proof continues to hold good. In particular, it continues
to hold good for the determinant | 8fr/8as |, which is accordingly unisignant,
and the proof of the second inequality is complete.

7. The Third Inequality

It is now our aim to prove that

As with the second inequality, we may restrict ourselves to showing that the
function

l I

regarded as a function of a for fixed a, cannot have a stationary value strictly
inside R other than one for which a, /J, a are proportional.

The necessary conditions for a stationary value are

eht(a-a)
1 da.i

k
* {M)}1{ M a ) } * { A * ( a « ) } S

These equations are dimensionless, and so continue to hold if we replace a — a
by y, where y = K(a — a), and if is a constant chosen so that

The equations then simplify to

8hk(x) = dhk(y)
da( 8yf
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and all that remains is to prove that the only solution to this set of equations
is a = y. This will be so if the Jacobian of the n functions 9Afc(a)/Sat- with
respect to the n variables a,- does not vanish, i.e. if the Hessian

8ardas
does not vanish.

Each element in this Hessian consists of a sum of terms of the type

Ar^ab
2'...a

b
n%

where
b1 + b2+...+bn=k-2,

and ATtS is some constant independent of al5 a2, ..., a,,. It is obvious that in
fact

(7.1)

We now turn to a theorem due to Boole (3). [See also Muir, Theory of
Determinants, Vol. Ill , p. 98 et seq.] This runs as follows : if an axisymmetric
determinant has all its elements of the form

and if all the coefficients A, p, v, ... in all the diagonal elements are positive,
and if also all the coefficients joined to any one of the variables in any one
row are in order proportional to the coefficients of the same variable in any
other row, then the expansion of the determinant is positively unisignant.

The Hessian with which we are dealing satisfies all these requirements
except that the coefficients in the diagonal elements are, in view of (7.1),
larger than they should be to give proportionality. In other words, the Hessian
may be written as

where | ariS [ is a determinant of the type discussed by Boole, while | bTt3 | is
a determinant which has positive elements on the principal diagonal and
zeros elsewhere. If we now expand | ar>s + 6r>s | in the usual way as a sum of
determinants, it is at once obvious that the expansion is positively unisignant,
which completes the proof of the inequality.
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