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Relative Discrete Series Representations for
Two Quotients of p-adic GL,,

Jerrod Manford Smith

Abstract. We provide an explicit construction of representations in the discrete spectrum of two
p-adic symmetric spaces. We consider GL,, (F) x GL, (F)\GL2,(F) and GL, (F)\GL, (E), where
E is a quadratic Galois extension of a nonarchimedean local field F of characteristic zero and odd
residual characteristic. The proof of the main result involves an application of a symmetric space
version of Casselman’s Criterion for square integrability due to Kato and Takano.

1 Introduction

Let F be a nonarchimedean local field of characteristic zero and odd residual charac-
teristic. Let G = G(F) be the F-points of a connected reductive group defined over
F. Let 6 be an F-involution (order two F-automorphism) of G and let H = GY(F)
be the group of 0-fixed points in G. The quotient H\G is a p-adic symmetric space.
An irreducible representation of G that occurs in the discrete spectrum of H\G (an
irreducible subrepresentation of L?(ZgH\G), where Z is the centre of G) is called
a relative discrete series (RDS) representation. In this paper, we construct an infinite
family of RDS representations for H\G that do not appear in the discrete spectrum
of G. We consider the following two cases. (1) The linear case: G = GL,,(F) and
H = GL,(F) x GL,(F). (2) The Galois case: G = GL,(E) and H = GL,(F), where
E/F is a quadratic extension. In a more general setting, Murnaghan has constructed
relatively supercuspidal (Definition 4.4) representations that are not supercuspidal
[32,33]. Her construction is also via parabolic induction from representations of 8-
elliptic Levi subgroups (Definition 3.6) and provided the initial motivation for this
work. We obtain a special case of Murnaghan’s results in our setting (Corollary 6.7);
however, we apply completely different methods.

The study of harmonic analysis on H\G is of interest due to connections with the
non-vanishing of global period integrals, functoriality, and poles of L-functions. See,
for instance, the works [9,22,24]. For example, often GL,,(F) x GL,, (F)-distinction of
arepresentation of GL,, (F) is equivalent to the existence of a nonzero Shalika model
(Remark 7.4). In addition, H\G is a spherical variety and its study fits into the gen-
eral framework of [39]. In a broad sense, the work of Sakellaridis—Venkatesh lays the
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formalism and foundations of a relative Langlands program [37]. The aim of such a
program is to fully understand the link between global automorphic period integrals
and local harmonic analysis. For certain p-adic spherical varieties X, Sakellaridis and
Venkatesh give an explicit Plancherel formula describing L*(X) up to a description of
the discrete spectrum [39, Theorem 6.2.1]. In addition, their results include a descrip-
tion of the discrete spectrum of p-adic symmetric spaces in terms of toric families of
RDS. In fact, they showed that [39, Conjecture 9.4.6] is true for strongly factorizable
spherical varieties. The decomposition of the norm on the discrete spectrum L3, (X)
provided by this result is not necessarily a direct integral; the images of certain inter-
twining operators packaged with the toric families of RDS may be non-orthogonal.
On the other hand, Sakellaridis and Venkatesh believe that their conjectures on X-
distinguished Arthur parameters may give a canonical choice of mutually orthogonal
toric families of RDS that span L3, (X) [39, Conjectures 1.3.1,16.2.2]. However, they
have not given an explicit description of the RDS required to build the toric families.
For this reason, an explicit construction of RDS for p-adic symmetric spaces is a step
towards completing the picture of the discrete spectrum of H\G. Kato and Takano
showed that any H-distinguished discrete series representation of G is an RDS [26].
Thus, we are interested in constructing RDS representations of G that are in the com-
plement of the discrete spectrum of G.

We state our main theorem below, after giving the necessary definitions. A 0-stable
Levi subgroup L of G is 8-elliptic if it is not contained in any proper 8-split parabolic
subgroup, where a parabolic subgroup P is 0-split if §( P) is opposite to P. An element
g € G is said to be -split if 6(g) = g~'. An F-torus S is (6, F)-split if it is F-split and
every element s € S is 0-split. A representation 7 of a Levi subgroup L of G is regular if
for every non-trivial element w € Ng(L)/L we have that the twist ¥ 7 = 7(w™ (- )w)
is not equivalent to .

Let n > 2 (respectively, n > 4) and let G be equal to GL,,, (F) (respectively, GL, (E))
and let H be equal to GL,, (F) x GL, (F) (respectively, GL, (F)). Let Ao be a 8-stable
maximal F-split torus of G containing a fixed maximal (6, F)-split torus Sp. Let
Lo = Cs((A9)°) be a minimal 6-elliptic Levi subgroup of G containing Ao. We make
a particular choice A®"! of simple roots for the root system @ (G, Ag) (Section 5.2).
The F-split component of the centre of L, is determined by a proper nonempty subset
Al of A°ll A Levi subgroup L is a standard-6-elliptic Levi subgroup if L is standard
with respect to A®!! and contains Lo. The main result of this paper is the following.

Theorem (Theorem 6.3) Let Q' c Al be a proper subset such that Q! con-
tains AL . Let Q = Qqen be the proper A -standard parabolic subgroup associated
with the subset Q%Y. The parabolic subgroup Q is 0-stable and has 0-stable standard
6-elliptic Levi subgroup L = Loe. Let T be a regular L°-distinguished discrete series
representation of L. The parabolically induced representation m = 137 is an irreducible
H-distinguished relative discrete series representation of G. Moreover, 7 is in the com-

plement of the discrete series of G.

Remark 1.1 The representations constructed in Theorem 6.3 are induced from dis-
crete series, and are therefore tempered (generic) representations of G. In particular,
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one observes that L?(Zs H\G) contains the H-distinguished discrete series represen-
tations of G [26], as well as certain tempered representations that do not appear in
L*(ZG\G).

Outside of two low-rank examples considered by Kato and Takano [26, §5.1-5.2],
Theorem 6.3 provides the first construction of a family of non-discrete relative dis-
crete series representations. In Corollary 7.17, we show that there are infinitely many
equivalence classes of representations of the form constructed in Theorem 6.3. How-
ever, we do not prove that our construction exhausts the discrete spectrum in these
two cases (Remark 6.6). It appears that the major obstruction to showing that an ir-
reducible H-distinguished representation of G is not relatively discrete is establishing
non-vanishing of the invariant forms rpA defined by Kato and Takano [25] and by
Lagier [28] (Section 4.5).

The author carried out a similar, more restricted, construction for the case G =
GL;,(E) and H = Ug/p, a quasi-split unitary group [41, Theorem 5.2.22]. It is a work
in progress to extend the construction to arbitrary symmetric quotients of the general
linear group. Some modification will be required for this generalization; the represen-
tations constructed in Theorem 6.3 are generic and no such representation can be dis-
tinguished by the symplectic group [20]. It is expected that the Speh representations
form the discrete spectrum of Sp,, (F)\GL,,(F) [34,39].

We now give an outline of the content of the paper. In Section 2, we establish nota-
tion and our conventions in the linear and Galois cases. In Section 3 we review basic
results on tori and parabolic subgroups relevant to the study of harmonic analysis on
H\G. Here we introduce the notion of a 8-elliptic Levi subgroup. Section 4 contains
a review of Kato and Takano’s generalization of Casselman’s Criterion, preliminaries
on distinguished representations, and some results on the exponents of induced rep-
resentations. The most important results in this section are Proposition 4.22, Lemma
4.16, and Proposition 4.23. In Section 5 we give explicit descriptions of the tori, para-
bolic subgroups, and simple roots needed for our work in the linear and Galois cases
(Propositions 5.4 and 5.12). The main result, Theorem 6.3, is stated and proved in
Section 6; however, several preliminary results required for the proof are deferred
until Section 8. In Section 7 we briefly survey the literature on distinguished discrete
series representations in the linear and Galois cases. In addition, we establish the ex-
istence of infinite families of inducing representations in Lemma 715 from which we
can deduce Corollary 7.17. Finally, in Section 8 we assemble the technical results on
the exponents and distinction of Jacquet modules required to prove Theorem 6.3. The
main results of the final section are Propositions 8.5 and 8.7.

2 Notation and Conventions

Let F be a nonarchimedean local field of characteristic zero and odd residual charac-
teristic. Let Of be the ring of integers of F with prime ideal pr. Let E be a quadratic
Galois extension of F. Fix a generator ¢ of the extension E/F such that E = F(¢). Let
o € Gal(E/F) be a generator of the Galois group of E over F.

Let G be a connected reductive group defined over F and let G = G(F) denote the
group of F-points. Let e be the identity element of G. We let Z¢ denote the centre of
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G while A denotes the F-split component of the centre of G. As is the custom, we
will often abuse notation and identify an algebraic group defined over F with its group
of F-points. When the distinction is to be made, we will use boldface to denote the
algebraic group and regular typeface to denote the group of F-points. For any F-torus
A of G, we let A’ denote the group of O-points A' = A(OF).

Let P be a parabolic subgroup of G and let N be the unipotent radical of P. The
modular character of P is given by 8p(p) = |det Ad,(p)|, for all p € P, where Ad,
denotes the adjoint action of P on the Lie algebra n of N [7].

Let 0 be an F-involution of G, that is, an order-two automorphism of G defined
over F. Define H = G? to be the closed subgroup of §-fixed points of G. The quotient
H\G is a p-adic symmetric space.

Definition 2.1 We say that an involution 0; of G is G-conjugate (or G-equivalent)
to another involution 0, if there exists g € G such that 6; = Int g™" 0 6, o Int g, where
Int g denotes the inner F-automorphism of G given by Int g(x) = gxg ™", forall x € G.
We write g - § to denote the involution Int g™' 0 6 o Int g.

Let GL, denote the general linear group of # x n invertible matrices. As is custom-
ary, we denote the block-upper-triangular parabolic subgroup of GL,, corresponding
to a partition (m) = (my, ..., my) of n, by P, with block-diagonal Levi subgroup
M, = Hle GL,,, and unipotent radical N,,). We use diag(ay,as,...,a,) to de-
note an # x n diagonal matrix with entries ay, ..., a,.

For any g,x € G, we write é£x = gxg~'. For any subset Y of G, we write §Y =
{8y:y € Y}. Let Cg(Y) denote the centralizer of Y in G and let Ng(Y) be the nor-
malizer of Y in G. Given a real number r, we let | r| denote the greatest integer that

is less than or equal to r. We use O to denote that a symbol is omitted. For instance,
diag(ai, az, ..., a,) may be used to denote the diagonal matrix diag(as, ..., an).

2.1 The Linear Case

In the linear case, we set G = GL,,(F), where n > 4 is an even integer. Let 6 denote
the inner involution of G given by conjugation by the matrix

We = L : >
that is, for any g € G, we have 0(g) = Intw,(g) = wegw,'. The element w, is diago-
nalizable over F; in particular, there exists x, € GL, (F) such that
XgWeXg_l = diag(ln/z, —ln/z),
where 1,,/, denotes the 7/2 x /2 identity matrix. It follows that H = x;'M (nj2,n/2)Xes

where M(,,/2,4/2) is the standard Levi subgroup of G of type (1/2, n/2). Thus, in the
linear case, H = G? (F) is isomorphic to GL,, (F) x GL,,(F).

https://doi.org/10.4153/CJM-2017-047-7 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2017-047-7

Relative Discrete Series Representations for Two Quotients of p-adic GL, 1343
2.2 The Galois Case

In the Galois case, for n > 4, we let G = Rg/rGL, be the restriction of scalars of GL,
with respect to E/F. We identify the group G of F-points with GL, (E). The non-
trivial element o of the Galois group of E over F gives rise to an F-involution 8 of G
given by coordinate-wise Galois conjugation 6((a;;)) = (0(a;;)), where (a;;) € G.
In the Galois case, we have that H = G? (F) is equal to GL,, (F).

2.3 Choices of Particular Group Elements and Supplementary Involutions

For a positive integer r, we will write G, for GL, with F-points G, in the linear case,
and similarly for Rg/rGL, with F-points G, =~ GL,(E) in the Galois case. Write J, for
the r x r-matrix in G, with unit anti-diagonal

Jr=
1

Note that we = J,,. In the linear case, 6, will denote the inner involution Int J, of G,
with fixed points H,. In the Galois case, we let 8, denote the F-involution of G, given
by coordinate-wise Galois conjugation. Then H, = GL,(F) is the group of F-points
of the 8,-fixed subgroup of G,. In the Galois case, for any positive integer r, there
exists y, € G, such that y.'0,(y,) = J, € H,. For instance, if r is even, then we may
take

1 1

=& &

where E = F(¢), and if 7 is odd, then we set

1 1
1 0 1
Yy = 0 1 0
-¢ 0 ¢

—-€ €

Define y = y,, € G and note that w, = J,, = y"'6(y) is an order-two element of H.
In the Galois case, we define a second involution 9 of G that is G-conjugate to 0
by declaring that 9 = y - 6 (Definition 2.1). Explicitly,

2.1) 9(g) =y '0(ygy )y
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for any g € G. Since wp = y'0(y) is 0-fixed, we have that
(2.2) 9 =Intwpo 6 =0o0Intw,.
Similarly, for any positive integer r, we define
(2.3) 9, =9,-0,=IntJ, 06, =0,0Int],.
In both cases, define w, € GL,(F) c GL,(E) to be the permutation matrix corre-
sponding to the permutation of {1, ..., n} given by
2i -1 i for1<i<|n/2]+1,

2imsn+1-i forl<i<|n/2],
when 7 is odd, and by

2i—-1+i forl1<i<n/2,
2imn+l-i forl<i<n/2

when 7 is even. Remember that in the linear case we will always assume that 7 is even.
Finally, define

(2.4) wy in the linear case: G = GL,,(F), n > 4 even,
. wo =
T rwy = yw.y~'  in the Galois case: G = GL,(E), any n > 4.

3 Symmetric Spaces and Associated Parabolic Subgroups

For now, we work in general and let G be an arbitrary connected reductive group over
F, with 6 and H as in Section 2. An element g € G is said to be 0-split if (g) = g™
A subtorus S of G is 0-split if every element of S is 6-split.

3.1 Tori and Root Systems Relative to Involutions

An F-torus S contained in G is (0, F)-split if S is both F-split and 6-split. Let Sp
be a maximal (6, F)-split torus of G. By [18, Lemma 4.5(iii)], there exists a 0-stable
maximal F-split torus Ay of G that contains Sy. Let ®g = ®(G, Ay) be the root system
of G with respect to Ag. Let Wy be the Weyl group of G with respect to Ay. Since Ay is
0-stable, there is an action of 6 on the F-rational characters X*(A) of A. Explicitly,
given y € X*(Ao), wehave (0x)(a) = x(0(a)), forall a € Ag. Moreover, @y is stable
under the action of @ on X*(A,). Let ®¢ denote the subset of 6-fixed roots in @y.

Definition 3.1 A base Ay of @y is called a 0-base if, for every positive root a € Of
with respect to Ag that is not fixed by 6, we have that 0(«) € @j.

As shown in [15], a 6-base of @ exists. Let Ag be a 0-base of ®g. Let p: X*(Aq) —
X*(So) be the surjective homomorphism defined by restricting the F-rational char-
acters on Ay to the subtorus Sy. The kernel of the map p is the submodule X*(A)?
of X*(Ay) consisting of 0-fixed F-rational characters. The restricted root system of
H\G (relative to our choice of (Ag, Sy, Ag)) is defined to be

D = p(Do) \ {0} = p(Do \ D).
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The set @, coincides with the set ®(G, Sy) of roots with respect to Sy and this is a
(not necessarily reduced) root system by [18, Proposition 5.9]. The set

Ao = p(Ag) N {0} = p(Ag ~ AD)

is a base for the restricted root system ®,. Indeed, the linear independence of A,
follows from the fact that A is a 6-base and that ker p = X*(A,)?. Given a subset
@ c Ay, define the subset [@] = p™!(®) U Af of A,. Subsets of A, of the form [@],
for ® c Ay, are said to be §-split. The maximal §-split subsets of Ag are of the form
[Ao ~ {&}], where & € A.

3.2 Parabolic Subgroups Relative to Involutions

Given a subset ® of Ay, one may canonically associate a Ag-standard parabolic sub-
group Pg of G and a standard choice of Levi subgroup. Let ®g be the subsystem of
@, generated by the simple roots ®. Let @ be the set of positive roots determined
by ®. The unipotent radical Ng of Pg is generated by the root groups N, where
a € Of \ ©F. The parabolic subgroup P admits a Levi factorization Pg = MgNe,
where Mg is the centralizer in G of the F-split torus Ag = (Nyee ker a)°. Here (-)°
indicates the Zariski-connected component of the identity. In fact, Ag is the F-split
component of the centre of Mg, and @ is the root system ®(Meg, Ag) of Ag in Me.

Remark 3.2 When considering standard parabolic subgroups Pg associated with
® c Ay, we will always work with the Levi factorization Py = MgNg, where Mg =
Ci(Aep) is the standard Levi subgroup of Pe.

Let M be any Levi subgroup of G. The (0, F)-split component of M is the largest
(8, F)-split torus Sy contained in the centre of M. In fact, we have that S, is the con-
nected component (of the identity) of the subgroup of 8-split elements in the F-split
component Ay, that is,

(3.1) Su=({xeAy:0(x)=x"})°.

A parabolic subgroup P of G is called 0-split if 0(P) is opposite to P. In this case,
M = Pn6(P) is a O-stable Levi subgroup of both P and 8(P) = P°P. Given a 0-split
subset ® c Ag, the Ag-standard parabolic subgroup Py = MeNpg is 0-split. Any
Ao-standard 0-split parabolic subgroup arises from a 8-split subset of Ay [25, Lem-
ma 2.5(1)]. Let Sg denote the (6, F)-split component of Mg. We have that

(3.2) So=({seAg:0(s)=s"1)°=( N ker(a:Sy— F*))°.
aep(®)

For the second equality in (3.2), see [26, §1.5]. For any 0 < € < 1, define
(3.3) So(e) ={seSe:|a(s)|r<e foralla e Ag \ O}.

We write Sg for Sg (1) and refer to Sg as the dominant part of Se.

By [17, Theorem 2.9], the subset Ag of 6-fixed roots in Ay determines the Ay-stan-
dard minimal 6-split parabolic subgroup Py = PAO"' By [18, Proposition 4.7(iv)], the
minimal 8-split parabolic subgroup P, has standard 6-stable Levi My = C5(S). Let
Py = MyNj be the standard Levi factorization of Py.
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Lemma 3.3 Let P be a 0-split parabolic subgroup with 0-stable Levi M = P n 6(P).
The Levi subgroup M is equal to the centralizer in G of its (0, F)-split component S .

Proof The lemma follows immediately from [18, Lemma 4.6]. |

Lemma 3.4 If M is the centralizer in G of a non-central (6, F)-split torus S, then M
is the Levi subgroup of a proper 0-split parabolic subgroup of G.

Proof Let Sp be a maximal (0, F)-split torus of G containing S and A, a -stable
maximal F-split torus of G containing Sg. Let Py = Mo Ny be a minimal §-split para-
bolic subgroup containing Sq. The subgroup M = C(S) is a 0-stable Levi subgroup
of G since S is a 0-stable F-split torus. Since S is not central in G, M is a proper Levi
subgroup. Moreover, since S is contained in Sg, we have that M, is contained in M.
Let P = MN,. Note that P is a closed subgroup containing P,; therefore, P is a proper
parabolic subgroup of G with Levi subgroup M. It remains to show that P is 8-split.
Since Py is 6-split, we have that 0(Ny) = N;” is the opposite unipotent radical of No.
Since M is -stable, it follows that 0(P) = MN,”? and this is the parabolic opposite to
P. |

The minimal 8-split parabolic subgroups of G are not always H-conjugate [18, Ex-
ample 4.12]. On the other hand, the following result holds.

Lemma 3.5 ([25, Lemma 2.5]) Let Sq c Ay, Ay, and Py = MyNy be as above.

(i)  Any 0-split parabolic subgroup P of G is conjugate to a Ag-standard 0-split para-
bolic subgroup by an element g € (HM,)(F).

(i) If the group of F-points of the product (HMy)(F) is equal to HM,, then any
0-split parabolic subgroup of G is H-conjugate to a Aq-standard 0-split parabolic
subgroup.

Let P = MN be a 0-split parabolic subgroup and choose g € (HM,)(F) such
that P = gPeg~! for some Aq-standard 6-split parabolic subgroup Pg. Since g €
(HM,)(F), we have that g7'0(g) € My(F). Thus, we may take Sy; = gSeg ™. For a
given € > 0, one may extend the definition (3.3) of Sg to the non-Ag-standard torus
Sum. Indeed, we may set Sy;(€) = gSg(€)g ™" and we define Sy; = S3;(1) with S}, =
Sm(OF), as above.

We have the following definition, following the terminology of Murnaghan [33],
in analogy with the notion of an elliptic Levi subgroup.

Definition 3.6 A 0-stable Levi subgroup L of G is 8-elliptic if and only if L is not
contained in any proper 0-split parabolic subgroup of G.

We note the following simple lemma, which follows immediately from Defini-
tion 3.6.

Lemma 3.7 If a 0-stable Levi subgroup L of G contains a 0-elliptic Levi subgroup,
then L is 0-elliptic.
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The following characterization of the 0-elliptic property is also useful.

Lemma 3.8 A 0-stable Levi subgroup L is 0-elliptic if and only if S, = Sg.

Proof IfL = G, then there is nothing to do. Without loss of generality, L is a proper
subgroup of G. Suppose that L is 0-elliptic. We have that Ag is contained in A} and
it follows that Sg is contained in S. If S; properly contains Sg, then L is contained
in the Levi subgroup M = Cg(Sy). By Lemma 3.4, M is a Levi subgroup of a proper
0-split parabolic subgroup. It follows that L c¢ M is contained in a proper 8-split
parabolic subgroup. This contradicts the fact that L is 8-elliptic, so we must have that
St =Se6.

On the other hand, suppose that S, is equal to Sg. Argue by contradiction and
suppose that L is contained in a proper 8-split parabolic P = M N with 6-stable Levi
subgroup M = P n 6(P). We have that L = 8(L) is contained in M and Sy c Sg. By
Lemma 3.3, M is the centralizer of its (6, F)-split component Sy. Since M is a proper
Levi subgroup of G, we have that Sy properly contains Sg. However, by assumption
St = Sg, which implies that M = G, and this is impossible. We conclude that L must
be 0-elliptic. ]

The next proposition first appeared in [33].

Proposition 3.9  Let Q be a parabolic subgroup of G. If Q admits a 0-elliptic Levi
factor L, then Q is O-stable.

Proof The subgroup L is 0-stable by definition. For any root « of Ay in G, one
can show that Oa = a. It follows that the unipotent radical of Q, hence Q, must be
0-stable. [ |

4 Distinguished Representations and the Relative
Casselman Criterion

4.1 Distinguished Representations

All of the representations that we consider are on complex vector spaces. A repre-
sentation (7, V') of G is smooth if for every v € V the stabilizer of v in G is an open
subgroup. A smooth representation (77, V') of G is admissible if, for every compact
open subgroup K of G, the subspace of K-invariant vectors VX is finite-dimensional.
A smooth one-dimensional representation of G is a quasi-character of G. A character
of G is a unitary quasi-character. Let (7, V') be a smooth representation of G. If w is a
quasi-character of Zg, then (7, V) is an w-representation if 7 has central character .
Let x be a quasi-character of H. We also let 7 denote its restriction to H.

Definition 4.1 If the space Hompy (7, x) is nonzero, then the representation 7 is
called (H, y)-distinguished. If x is the trivial character of H, then we refer to (H,1)-
distinguished representations simply as H-distinguished.
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Of course, in Definition 4.1, the subgroup H = G® may be replaced by any closed
subgroup of G; however, we are only concerned with the symmetric subgroup setting.
As a first observation, we record the following lemma.

Lemma 4.2 Let (m,V) be a finitely generated admissible representation of G. If
(m, V) is H-distinguished, then there exists an (irreducible) H-distinguished sub-quo-
tient of (w1, V).

The next lemma shows that distinction, relative to an involution 0, depends only
on the equivalence class of 8 under the right action of G on the set of involutions
(Definition 2.1).

Lemma 4.3  The subgroup G&° of g - 0-fixed points in G is G-conjugate to G%. Pre-
cisely, we have G89 = ¢g71(G%)g. Moreover, a smooth representation (1, V) of G is
GO-distinguished if and only if m is G&°-distinguished.

Proof Leth € GY. Then we have that

g-0(g'hg) =g '0(gg " hgg ' )g =g 0(h)g =g "hg,
so g 'hg is g - O-fixed. It follows that g™'(G%)g ¢ G&?. Since conjugation by g is an
automorphism of G, it follows that G8¢ = ¢71(G?)g.
Let A be a nonzero element of Homge (7,1). Define A’ = Ao 7z(g) and observe that
A" is a nonzero G¢%-invariant linear functional on V. It follows that the map A + A o
n(g) is a bijection from Homgo (77, 1) to Homggo (71,1) with inverse ' — A om(g™).
In particular, 7 is G?-distinguished if and only if 77 is G&%-distinguished. ]

4.2 Relative Matrix Coefficients

Let (7, V) be a smooth H-distinguished representation of G. Let A € Hompg(7,1)
be a nonzero H-invariant linear form on V and let v be a nonzero vector in V. In
analogy with the usual matrix coefficients, define a complex-valued function ¢, , on
G by ¢1,,(g) = (A, m(g)v). We refer to the functions ¢, , as relative matrix coef-
ficients (with respect to A) or as A-relative matrix coefficients. Since 7 is a smooth
representation, the relative matrix coefficient ¢, , lies in C*(G), for every v € V.
In addition, since A is H-invariant, the functions ¢, , descend to well-defined func-
tions on the quotient H\G. In analogy with the classical case, one makes the following
definitions.

Definition 4.4 'The representation (7, V') is said to be

(i) (H,A)-relatively supercuspidal, or relatively supercuspidal with respect to A, if and
only if all of the A-relative matrix coeflicients are compactly supported modulo
ZG H;

(ii) H-relatively supercuspidal if and only if 7 is (H, A)-relatively supercuspidal for
every A € Hompy(m,1).

Let w be a unitary character of Zg and further suppose that 7 is an w-representa-
tion.
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Definition 4.5 The representation (7, V') is said to be

(i) (H,A)-relatively square integrable, or relatively square integrable with respect to
A, if and only if all of the A-relative matrix coefficients are square integrable
modulo ZgH;

(ii) H-relatively square integrable if and only if 7 is (H, A)-relatively square inte-
grable for every A € Hompy(7,1).

Notice that we must also take the quotient of G by the (noncompact) centre Zg
in order to make sense of compactly supported (respectively, square integrable) func-
tions on H\G. Moreover, to integrate relative matrix coefficients over ZgH\G we
need a G-invariant measure on the quotient Zg H\G. The centre Z¢ of G is unimod-
ular since it is abelian. The fixed point subgroup H is also reductive [8, Theorem 1.8]
and thus unimodular. It follows that there exists a G-invariant measure on the quo-
tient Zg H\G by [38, Proposition 12.8].

Note  When H is understood, we refer to H-relatively supercuspidal (respectively,
H-relatively square integrable) representations simply as relatively supercuspidal (re-
spectively, relatively square integrable).

Definition 4.6 If (m, V) is an irreducible subrepresentation of L?(ZgH\G), then
we say that (71, V') occurs in the discrete spectrum of H\G. In this case, we say that
(7, V) is a relative discrete series (RDS) representation.

4.3 Parabolic Induction and Jacquet Restriction

Let P be a parabolic subgroup of G with Levi subgroup M and unipotent radical N.
Given a smooth representation (p, V, ) of M we may inflate p to a representation of P,
also denoted p, by declaring that N acts trivially. We define the representation 1§ p of

G to be the induced representation Ind$ (8},/ >®p). We refer to the functor p 1S pas
(normalized) parabolic induction. When it is more convenient (see Observation 6.4
and Sections 7-8), we also use the Bernstein-Zelevinsky notation for parabolic in-
duction on general linear groups [4,42].

Let (71, V) be asmooth representation of G. Let (7y, Vi) denote the Jacquet mod-

ule of 7 along P, normalized by 8;1/ ?. Explicitly, if
V(N) =span{n(n)v—v:neN,veV},

then Vi = V/V(N) and 7 (p) (v + V(N)) = 8,"*(p)n(p)v + V(N), for all p € P,

v+ V(N) € Vy. Since 8p is trivial on N, we see that (7y, Vi) is a representation of
P on which N acts trivially. We will regard (7y, Vi) as a representation of the Levi
factor M = P/N of P.

We will now give a statement of the Geometric Lemma [4, Lemma 2.12], which is
a fundamental tool in our work and the study of induced representations in general.
First, we recall two results on double-coset representatives.

Lemma 4.7 ([7, Proposition 1.3.1]) Let ® and Q be subsets of Ay. The set
[Wo\Wo/Wa]={weWy:wQ,w'®cd'}
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provides a choice of Weyl group representatives for the double-coset space Pg\G/Pq.

Proposition 4.8 ([7, Proposition 1.3.3]) Let ®,Q c A and let w € [We\Wo/Wq].

(i)  The standard parabolic subgroup Penyq is equal to (Pg N " Pq) ¥ Ng.

(ii) The unipotent radical of Porwq is generated by ¥ N and Ng " Ny, where Ny is
the unipotent radical of the minimal parabolic subgroup corresponding to & c Ay.

(iii) The standard Levi subgroup of Perwaq is Menwa = Me N wMqw ™.

(iv) The subgroup Pe n* Mgq is a wQ-standard parabolic in M,,q =" Mq with unipo-
tent radical Ne¢ N" Mq and standard Levi subgroup Menwa = Me N" Mg.

When applying the Geometric Lemma along two standard parabolic subgroups Pg
and Pg, associated with ®, Q ¢ A, we will always use the choice of “nice” represen-
tatives [ We \ Wy/ Wq ] for the double-coset space Pg\G/Pq.

Lemma 4.9 (The Geometric Lemma) Let Pq and Pg be two Ag-standard parabolic
subgroups of G. Let p be a smooth representation of Mq. There is a filtration of the space
of the representation (1§ p)n, such that the associated graded object is isomorphic to
the direct sum

VB e, ()
we ® 0 Q

We write Fg(p) = Iy, (p) to denote the representation ’I\A:I[gﬁWPn (("P)Non* M)
OfM@.

4.4 Distinction of Induced Representations

Lemma 4.10 is well known and follows from an explicit version of Frobenius Reci-
procity due to Bernstein and Zelevinsky [3, Proposition 2.29]. Let Q = LU be a
0-stable parabolic subgroup with 8-stable Levi factor L and unipotent radical U. Note
that the identity component of Q% = LU? is a parabolic subgroup of H°, with the
expected Levi decomposition [18], [13, Lemma 3.1]. Let y be a positive quasi-invariant
measure on the (compact) quotient QB\H [3, Theorem 1.21].

Lemma 4.10 Let p be a smooth representation of L and let 7 = tgp. The map A~ A©
is an injection of Homye (832/), 8qo) into Hompy (7, 1), where A is given explicitly by

2,90 = [ (o) duh

A7 0) = J ooy () )

for any function ¢ in the space of 7.

Corollary 4.11 If8}2/2 restricted to L® is equal to 8o, then the map A — AC is an
injection of Homy o (p, 1) into Homp (1,1). In particular, if p is L°-distinguished, then

7 is H-distinguished.

Proof Observe that Hom;e (832;), dqe¢) = Hompe (p, 83/2|La 8qs)- [ |
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Alternatively, the H-invariant linear form on 7 = zg p may be understood to arise
from the closed orbit in Q\G/H via the Mackey theory.

4.5 Invariant Linear Forms on Jacquet Modules

Let (7, V') be an admissible H-distinguished representation of G. Let A be a nonzero
element of Hompy/(7,1). Let P be a 0-split parabolic subgroup of G with unipotent
radical N and 6-stable Levi component M = P n 6(P). One may associate with 1 a
canonical M?-invariant linear form rpA on the Jacquet module (7y, Viy). The con-
struction of rpA, via Casselman’s Canonical Lifting [7, Proposition 4.1.4], was discov-
ered independently by Kato-Takano and Lagier. We refer the reader to [25,28] for the
details of the construction. We record the following result [25, Proposition 5.6].

Proposition 4.12  Let (71, V') be an admissible H-distinguished representation of G.
Let A € Hompg(7,1) be nonzero and let P be a 6-split parabolic subgroup of G with
unipotent radical N and 6-stable Levi component M = P n 6(P).

(i)  The linear functional rpA: Vy — Cis MO -invariant.
(ii) The mapping rp: Hompy(7,1) > Hom e (71N, 1), sending A to rp), is linear.

Kato and Takano used the invariant forms rpA to provide the following character-
ization of relatively supercuspidal representations [25, Theorem 6.2].

Theorem 4.13 Let (71, V') be an admissible H-distinguished representation of G and
let A be a nonzero H-invariant linear form on V. Then (7, V) is (H, A)-relatively su-
percuspidal if and only if rpA = 0 for every proper 0-split parabolic subgroup P of G.

4.6 Exponents and the Relative Casselman Criterion

Let (71, V') be a finitely generated admissible representation of G. Recall that A de-
notes the F-split component of the centre of G. Let y be a quasi-character of Ag. For
n € N, n > 1, define the subspace

Vin={veV:(n(z) - x(z))"v=0forallze Ag},

and set Vy oo = U;2; Vy,n. Each V), is a G-stable subspace of V and V, o, is the
generalized eigenspace in V for the Ag-action on V by the eigencharacter y. By [7,
Proposition 2.1.9], we have that

¢ Visadirectsum V = @, V, o, where y ranges over quasi-characters of Ag;

* since V is finitely generated, there are only finitely many y such that V, o, # 0.

Moreover, there exists n € N such that V) o = V, ,, for each y.

Let Exp, (1) be the (finite) set of quasi-characters of Ag such that V, o # 0. The
quasi-characters that appear in Exp, () are called the exponents of 7. The second
item above implies that V has a finite filtration such that the quotients are y-represen-
tations, for y € Exp , (7). From this last observation, we obtain the following lemma.

Lemma 4.14  The characters x of A that appear in Exp , () are precisely the central
quasi-characters of the irreducible subquotients of 7.
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Note that the same analysis as above can be carried out for any closed subgroup Z
of Zg, i.e., we can consider the generalized Z-eigenspaces in V. Moreover, we have
the following.

Lemma 4.15 Let Z, > Z, be two closed subgroups of the centre Zg of G. The map of
exponents Exp, (m) — Exp, () defined by restriction of quasi-characters is surjective.

Proof Let y € Exp, (). By assumption, there exists a nonzero vector v € Vy,c. In
particular, there is an irreducible subquotient of V, ., hence of (7, V'), where Z, acts
by the character y. On this irreducible subquotient, by Schur’s Lemma, the subgroup
Z; must act by some extension ¥ of y. By Lemma 4.14, ¥ must occur in Exp,, (7). W

For our purposes, we are interested in the exponents of parabolically induced rep-
resentations.

Lemma 4.16 Let P = MN be a parabolic subgroup of G, let (p,V,) be a finitely
generated admissible representation of M, and let w = 1§ p. The quasi-characters x €
Exp 4 (1) are the restriction to Ag of characters y of Ay appearingin Exp, (p).

Proof Without loss of generality, assume that P = MN is a proper parabolic sub-
group of G. Given a € Ag, we have that §p(a) = 1, since a is central in G. It follows
that for any f in the space V of 7 we have

@) (n(a)f)(g) = f(ga) = f(ag) = 8} (a)p(a)f(g) = p(a)(g),

forall a € Ag and g € G. Suppose that x € Exp, () and f € Vo is nonzero. Fix
go € G such that w = f(go) is nonzero. There exists n € N, n > 1 such that f € V, ,.
More precisely, (7(a) — x(a))"f = Oy, for all a € Ag, where 0y: G — V, is the zero
function. By induction and using (4.1), we see that

0=[(m(a) - x(a))"f1(g0) = (p(a) - x(a)) " (f(g0)) = (p(a) - x(a))"w,

for any a € Ag. Thatis, w € (V)00 and (V,)y,00 is nonzero; moreover, y €
&xp,,.(p)- By Lemma 4.15, the map Exp, (p) — Exp,_(p) defined by restriction is
surjective. In particular, there exists u € Exp, (p) such that y is equal to the restric-
tion of y to Ag. ]

Let (71, V') be a finitely generated admissible representation of G. Let P = MN bea
parabolic subgroup of G with Levi factor M and unipotent radical N. It is a theorem
of Jacquet that (7y, V) is also finitely generated and admissible [7, Theorem 3.3.1].
Applying [7, Proposition 2.1.9], we obtain a direct sum decomposition

VN = &) ( VN)x,oo >
XGEXPAM (mn)
where the set Exp, (7y) of quasi-characters of A, such that (Vi) .00 # 0, is finite.
The quasi-characters of Ay appearing in Exp, (7y) are called the exponents of 7
along P.
Suppose, in addition, that (7, V) is H-distinguished. Fix a nonzero H-invariant
form A on V. For any closed subgroup Z of the centre of G, Kato and Takano [26]
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defined
(4.2) Exp,(m,A) = {x € Exp,(m) : Alv,.. #0},

and refer to the set Exp, (7, 1) as exponents of 7 relative to A. The next result, by
Kato and Takano [26, Theorem 4.7], is a key ingredient used in the proof of our main
theorem.

Theorem 4.17 (The Relative Casselman Criterion) Let w be a unitary character of
Zg. Let (7, V) be a finitely generated admissible H-distinguished w-representation of
G. Fix a nonzero H-invariant linear form A on V. The representation (7, V') is (H, A)-
relatively square integrable if and only if the condition

(4.3) lx(s)| <1 forall y e Expg, (nn,7rpA) and all s € Sy~ S6Sy

is satisfied for every proper 0-split parabolic subgroup P = MN of G.

Remark 4.18 Note that the Relative Casselman Criterion reduces to Casselman’s
Criterion in the group case: G = G’ x G" and H = AG 2 G’ is the diagonal subgroup.

Corollary 4.19 (Kato-Takano) If (7, V) is an H-distinguished discrete series repre-
sentation of G, then m is H-relatively square integrable.

The next two lemmas let us prove Proposition 4.22, which allows us to reduce to
checking the Relative Casselman Criterion along maximal Ay-standard parabolic sub-
groups (under an additional assumption).

Lemma 4.20 Let P = MN be a proper 0-split parabolic subgroup of G. Assume that
P is H-conjugate to a Ay-standard 6-split parabolic subgroup Pe. If P = hPgh™, where
h € H, then there is a bijection

Exps, (MNg> TP A) — Expg(nn,TpA)  x' +— "y,

h

with inverse given by x — B X-

Proof The bijection between Expg (7n,) and Expg(my) is automatic from the
equality S = hSeh™! (and holds for h € (HM;)(F)). Using that h € H and H-
invariance of A, one can show that if rp, A is nonzero on (Vy, ), 00> then rpA is
nonzero on (Vi) ,c0, where y = "y, [ |

Lemma 4.21 Assume that any 0-split parabolic subgroup P of G is H-conjugate to
a Ag-standard 0-split parabolic. If the condition (4.3) holds for all Ay-standard 0-split
parabolic subgroups of G, then (4.3) holds for all 0-split parabolic subgroups of G.

Proof Let P = MN be a proper 0-split parabolic subgroup of G. By assumption,
there exists h € H and a 6-split subset ® c Aq such that P = hPgh™. In particular,
the (6, F)-split component S of P is equal to hSeh™'; moreover, S~ = hSgh™'. Let

x € Expg(mn, rpA). By Lemma4.20, y' = My Exps, (TNe»> TPoA). Lets € STNSSy,.
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Thens’ = h™'sh € Sg \ S Sa,. It follows that |x(s)| = |x(hs'h™)| = [x(s")| < 1, where
the final inequality holds by the assumption that (4.3) holds for Pg. ]

Proposition 4.22  Let m be an H-distinguished representation of G and let A be a
nonzero H-invariant linear form on the space of m. Assume that any 0-split para-
bolic subgroup P of G is H-conjugate to a Ag-standard 0-split parabolic. Then 7 is
(H, A)-relatively square integrable if and only if the condition (4.3) holds for all Ay-
standard maximal 0-split parabolic subgroups of G.

Proof Apply Lemma 4.21, [26, Lemma 4.6], and Theorem 4.17. ]

The next result is key in our application of Theorem 4.17. It allows us to ignore
“bad” exponents relative to A, as long as the appropriate subquotients are not distin-
guished.

Proposition 4.23  Let (71, V') be a finitely generated admissible representation of G.
Let y € Exp, () and assume that none of the irreducible subquotients of (1, V') with
central character x are H-distinguished. Then for any A € Hompy(m,1), the restriction
of A to Vy o is equal to zero, i.e, Aly, , =0.

Proof Suppose, by way of contradiction, that A|y, . # 0. Then (n]v, .., Vy,0) is an
admissible finitely generated H-distinguished representation of G. By Lemma 4.2,
some irreducible subquotient (p, V,) of V, ., must be H-distinguished. However,
the representation (p, V, ) is also an irreducible subquotient of (77, V') and has central
character x. By assumption, no such (p, V,) can be H-distinguished; therefore, we
must have that A|y, __ is identically zero. ]

5 Tori and Parabolic Subgroups: The Linear and Galois Cases

For the remainder of the paper we work in the linear and Galois cases. Refer to Sec-
tions 2.1 and 2.2 for notation.

5.1 Tori and Root Systems Relative to

In the linear case, let A be the diagonal maximal F-split torus of G. Note that A, is
0-stable. Let Sy be the (0, F)-split component of Ag. It is straightforward to check
that
So = {diag(al,...,a%,aél,...,afl) ra; e F1<i< 2},

Moreover, Sy is @ maximal (6, F)-split torus of G. Indeed, it is readily verified that
the upper-triangular Borel subgroup of G is a minimal 6-split parabolic subgroup
with Levi subgroup Aj. It follows from [18, Proposition 4.7 (iv)] that Sy is a maximal
(8, F)-split torus of G contained in Ay. In the Galois case, the torus T, obtained as
the restriction of scalars of the diagonal torus of GL,,, is a maximal non-split F-torus
of G. We identify T = T(F) with the diagonal matrices in GL,(E). Define Ty = ¥ T,
where y is described in Section 2.3. Then Ay = ¥ Ar is the F-split component of Tj.
The tori T, Ar, Tp, and Ay are all 0-stable. As above, and using (2.2), it is readily
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verified that
So = {”diag(al,...,a[%J,Ia[%J,...,afl) ra; e F1<i<|2]},

is a maximal (0, F)-split torus of G contained in A,.

In both cases, let ©y = ®(G, Ag) be the set of roots of G relative to A. Explicitly,
in the linear case, we have ®g = {¢; —¢; : 1 < i # j < n}, where ¢; € X*(Ay) is the
i-th coordinate (F-rational) character of Ag. Let Ag = {€; —€;11 : 1< i < n—1} be the
standard base of @,. The set @] of positive roots (determined by Ay) is

Oy ={e;—¢:1<i<j<n}

In the Galois case, we relate @, to another collection of roots, those relative to Ar.
Let ® = O(G, Ar) be the root system of G with respect to A7 with standard base A.
We observe that @ = Y@, where, given a root § € ®, we have

("B)(a) = B(" a) = B(y'ay),
for a € Ag. Moreover, Ay = 7 A is a base for @, and it is clear that
Of ={"(ei—€j):1<i<j<n},

where, as above, ¢; is the i-th coordinate (F-rational) character of the diagonal F-split
torus Ar. It is elementary to verify the following.

Lemma 5.1 The set of simple roots Ag of @ is a 0-base for @y. In addition, the subset
of 0-fixed roots in Oy is empty.

Corollary 5.2  The Borel subgroup Py = Py = MoNy corresponding to @ C Ag is a
minimal 0-split parabolic subgroup of G.

Proof The subset A§ is a minimal §-split subset of Ag; therefore, the parabolic P A?
is a minimal standard 6-split parabolic subgroup [26]. Since A§ = @, we have Pyo =
Py = Py. In the linear case My = Ay, and in the Galois case My = Cg(Ag) = To. W

Following Section 3.1, since A§ = @, the restricted root system is just the image of
@, under the restriction map p: X*(Ag) - X*(So). That is, we have @y = p(Dy)
A n

and Ag = p(Ay). Explicitly, in the linear case, Ag = {& — €11 :1<i < -1} u{2é1 },
where €; € X*(Sp) is the i-th coordinate character of Sy given by

éi(diag(al,...,ag,a?,...,al‘l)) = a;.
Similarly in the Galois case, we have that
Ao ={76-"é:1<i<|2]-1} u{a},

where & =€/ 2) when n is odd, and & = 2V€; when n is even. The following result is
now an immediate consequence of Lemma 5.1.
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Lemma 5.3 Forl<k

< | %], let © denote the | 5 | maximal 0-split subsets of Ag. In
the linear case, for1 < k < n

/2-1
Ok = [Ao ™ {€k —€ks1}] = Ao ~ {€ex — €xs1r €nmk — Enksr )
O =[Ag~{261}] = Ao~ {en —ex}.

n
2

Respectively, in the Galois case, for1 < k < |5]-1

Ok = [Ao N {76k = Yéxa}] = Do~ {Y(ek — €ks1), Y (€nk — €n—ks1) }>

Oy =[Ao~{a}] = Ao~ p{a},

where & = yé[%J when n is odd, and a = 2”6% when n is even.

Note  Whennisodd, ®z) = Ao\ {7 (€2 —€241),7 (€]
niseven, @x = Ag N {7 (ex —€ny)}.

1~ el%J+2)}’ and when

n
2

The next proposition follows immediately from Lemma 5.3.

Proposition 5.4  The Ay-standard maximal 0-split parabolic subgroups of G are:

L _1in the linear case,

Py :=Pg, = P(k,rt—zk,k) 1<k< Z
k 1<k <|%]|-1inthe Galois case.

YP(k -2k, k)
and
P(a,n in the linear case since n is even,
Pn):=Pg, =1 "Px ) in the Galois case when n is even,
2 L3 (33

YP(\z),2)) in the Galois case when n is odd.

Remark 5.5 In both cases, P, = My Ny, where My = Mg, is the standard Levi
factor and Ny is the unipotent radical of P,. We write A for the F-split component
and Sy, for the (6, F)-split component of M.

In preparation for our proof of Proposition 8.7, we determine the 8-fixed points of
the Levi subgroups My, 1< k <[4 |. Recall from (2.1) that, in the Galois case, 9 is the
involution y - 6 = Intwg o 8 = 0 o Int w,. The following is a special case of Lemma 4.3
and also holds for 6, and 9, (see (2.3)).

Lemma 5.6  Assume that we are in the Galois case. An element of G of the form ¥x
is 0-fixed (respectively, 0-split) if and only if x is 9-fixed (respectively, 9-split).

Proposition 5.7 Let1< k < |%]. In the linear case, the group M{ of 6-fixed points
in My = Mk, n—2k,k) is equal to

H _ {diag(A,B,Gk(A)):AeGk,BeHn_Zk} sz%n/z,
(bn=2bk) 71 (diag(A, 0k (A)) : A € Gy} ifk = n/2.
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In the Galois case, My =V Mk, n—2k,k) and M,f is G-conjugate to H . ,_ak, k. Explicitly,
we have that H i n_k k) = Y(k,n—Zk,k)M(Sk,n—zk,k))/(_}:,n—zk,k) and

M} = yMl s ai )Y = VY honzby Hkon—2k ) Y (kon-2k k)Y
where Y(k,n-2k,k) = diag(y, yn-2k> V&) € Mk, n-2k,k)-

Proof Letl<k<|%|andlet My = My y_2kk)» (respectively, M, 2 n/2)) when n is
even and k = n/2. In the linear case, My = M, while, in the Galois case, My = ¥ M,.
The statement in the linear case follows from the proof in the Galois case (note the
relationship between 0 and 9, (2.2)). Without loss of generality, we work in the Galois
case and assume that k < 1/2. By Lemma 5.6, we have M{ = ¥(MJ). Let 'm € My,
where m € M,. Explicitly, we have m = diag(A, B, C), where A,C € Gy and B «
G,—2k- One may verify that

9(m) =Intw, o 0(m) = diag( 9(C), 9u_2k(B), % (A)).
It follows that
M} = {diag( A, B, 9(A)) : A€ Gy, B€Gyak, B=9,-2k(B)}.

Conjugating M? by the element y, = diag(yk, yu_2k, yk) in M. and applying Lem-
ma 5.6, we obtain that M? is M,-conjugate (and F-isomorphic to) the subgroup H,.
|

The next result will allow us to apply Proposition 4.22.

Lemma 5.8 Any 0-split parabolic subgroup P of G is H-conjugate to a Ay-standard
0-split parabolic subgroup P, for some ® c A,.

Proof One can check that the degree-one Galois cohomology of AgnH (respectively,
Ty N H) over F is trivial. By a standard argument, we have that (HA)(F) = HA,
(respectively, (HT)(F) = HT,). The proposition follows from Corollary 5.2 and
[25, Lemma 2.5 (2)]. [ |

5.2 A Class of 6-elliptic Levi Subgroups and 6-stable Parabolic Subgroups

The next two lemmas may be readily verified by hand.

Lemma 5.9  The Levi subgroup Ly = C((AY)°) of G is O-elliptic and A% = (A%)° =
Ayr,. Moreover, Ly is minimal among 0-elliptic Levi subgroup of G that contain A,.

Proof First, we observe that since (A9)° is 0-stable, the Levi subgroup Ly is 6-stable.
It is immediate that the maximal F-split torus A is contained in Ly (since Ag is
abelian).

Now, we show that Ly is 8-elliptic. First, note that the (6, F)-split component Sg of
G is the trivial group. Indeed, in the linear case, 0 is inner and we have that A = F* is
pointwise 0-fixed. It follows from (3.1) that Sg = ({ze})° = {e}. Again, in the Galois
case, 0 acts trivially on the F-split component of the centre Ag of G and Sg = {e}. In
both the linear and Galois cases, it is readily verified that the F-split component of the
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centre of Ly is equal to (A9)°, thatis, A, = (A9)°. Moreover, in both cases, we have
that (A9)° = AY. In particular, Ay, is contained in H and it follows that S, = {e}
[16, §1.3]. By Lemma 3.8, L, is 0-elliptic.

Finally, we prove that L, is minimal among 0-elliptic Levi subgroups containing
Ay. Suppose that L c Ly is a proper Levi subgroup of L, that contains Ay. We argue
that L cannot be 6-elliptic. Since L is proper in Ly, we have that A7, = (49)°isa
proper sub-torus of A;. Following [16, §1.3], we have an almost direct product Ay, =
(Ai )°Sy. Observe that, since A; c Ay, we have

(A9)° = (AL N AS)® = (AL N AL,)° = Ay,

Since Sg = Sz, = {e} c A, = (A%)°and A} = (A9)°S; properly contains Ay, it
must be the case that S¢ is a proper subtorus of Sy; in particular, Sy is non-trivial. It
follows from Lemma 3.8 that L is not 8-elliptic and this completes the proof. ]

Lemma 5.10 In the Galois case, conjugation by y maps Ng(Ar) to Ng(Ao) and
induces an explicit isomorphism of the Weyl group Wr = W(G, Ar), with respect to
Ar, with the Weyl group Wy = W (G, Ao), with respect to Ay. Moreover, we identify
Wr with the group of permutation matrices in G (isomorphic to the symmetric group
&,,) and Wy with the y-conjugates of the permutation matrices.

In both the linear and Galois cases, define A" = woAg, where wy is defined in
(2.4). Since A®"" is a Weyl group translate of Ag, we have that A®" is a base of ®. In
both cases, set Agqq = {€; — €;41 : iis odd}, and in the Galois case further denote
Ag,0dd = ' Aodd € Ag =V A. In the linear case, define the subset A‘;lllin of Al by Afllllin =
WoAoqq and in the Galois case, define Afﬂn = woAg,0dd. In both cases, the subset Afllllin
is exactly the subset of A!! that cuts out the torus A% from A,. In particular,

(5.1) A =Apa = ( n ker(B: Ag — F*))
min T gepell

o
>
and Lo = Lyt = Cg(Apen ). Write Aeyen = {€; €151 :2<i<n—1, iiseven}.
min min

Definition 5.11 A Levi subgroup L of G is a standard-0-elliptic Levi subgroup if
and only if L is A®!!-standard and contains L.

The next proposition characterizes the inducing subgroups in Theorem 6.3.
Proposition 512  Let Q' ¢ A®! such that Q" contains A .
(i)  The A"-standard parabolic subgroup Q = Qqen associated with Qe js §-stable.
(ii) In particular, the unipotent radical U = Ugqe is 0-stable.

(i) The Levi subgroup L = Lo = Cg(Aqen) is a standard-6-elliptic Levi of G.
(iv) The modular function 8¢ of Q satisfies
/2 _
89" | o = 8qe-
(v) We have that

k 0k
(5.2) L2T1Gp, and L°=2T]Hp,

i=1 i=1
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where X m; = n, such that when n is odd, exactly one m; is odd, and when n
is even, all of the m; are even.

Proof Since A¢L c Q¢! it follows from (5.1) that A} = Agen is contained in Ay, =
A8, Tt follows that L, is contained in L and L is a standard-6-elliptic Levi subgroup
by Lemmas 3.7 and 5.9. By Proposition 3.9, Q is a 6-stable parabolic subgroup with
0-stable unipotent radical U = Ugen.

In the Galois case, the statement about modular functions is [13, Lemma 5.5], a
proof is given in [29, Lemma 2.5.1]. In the linear case, one may compute the mod-
ular functions by hand to verify the desired equality. We omit the straightforward
computation.

Finally, we explicitly describe both L and L?. Note that, in the Galois case, y cen-
tralizes A% and by Lemma 5.6 we see that A = yA%y~! = A9 In both cases, it follows
that A is equal to the w, -conjugate of the F-split torus

A o1 = {diag(ai, a1, az,az, . .. ’“l%J’“l%J’E) ta,a; € F*},

corresponding to the partition (2,...,2,1) of n. Precisely, Aj = w+A(2’m’2;Dw;1;
moreover, it follows that Lo = w, M, _,3w;". Furthermore, we can realize Q¢!' =
wo 2, where Q) ¢ Aj contains Ay4q4, respectively Ag oqq4. In the linear case, Q' =w, 0
since wy = w,, while in the Galois case, Q! = w,Q = wiyQ, where Q = ' Q
A contains Aygq. It follows that L = Lgen is the w,-conjugate of a block diagonal

seee

(my,...,my) of nis refined by (2,...,2,1). In particular, when # is even, each m; is
even and when 7 is odd, exactly one m; is odd.

Let ! = w,mw.' € L, wherem ¢ M = Mm,,...,m)- To determine LY, we treat the
linear and Galois cases separately. Starting in the linear case, we see that [ is 0-fixed
if and only if m is fixed by the involution 6, = w, - 6 = Int(w;'wew, ). The element
wi'wew, is the permutation matrix

—_— O
S =

w;lw.«;w+ = >
0 1
1 0

which lies in M, ,) ¢ M. We observe that, since each m; is even, 0, acts on the
i-th block G, = GL,,, (F) of M as conjugation by
0 1
1 0

—_— O
O -
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Moreover, W, is G, -conjugate to [, (see §2.3). It follows that 6, acting on M is
M-equivalent to the product involution 0,,, x --- x 0, ; therefore, by Lemma 4.3 we
have

k k
L% =w, MO w ' = M% = [1(G,)?™ = ] Hp,,
i=1 i=1

where the second isomorphism is given by conjugation by an element of M. In the
Galois case, note that w, is 8-fixed and M is 6-stable. Then [ = w, mw;1 is O-fixed if
and only if m is 0-fixed. It follows that L% = w, M®w! and we have that

k k
L% =w, MW 2 MO = [1(Gp, )™ = T] Hp,,
i=1 i=1
as claimed. |

6 Construction of Relative Discrete Series: The Main Theorem

Definition 6.1 A smooth representation 7 of a Levi subgroup L of G is regular if for
every non-trivial element w € N (L)/L we have that ¥ 7 2 7, where "7 = 7o Intw ™.

For general linear groups, we can immediately translate Definition 6.1 into the fol-
lowing result.

Lemma 6.2 Let (my, ..., my) be a partition of n. Let 7; be an irreducible admissible
representation of G, for 1 < i < k. The representation 7, ® -+ ® T of My, ... m,) i
regular ifand only if ; % 1), forall1< i # j<k.

Now we come to the main result of the paper.

Theorem 6.3 Let Q = LU be a proper A®'-standard 6-stable parabolic subgroup of
G with standard-0-elliptic Levi factor L and unipotent radical U. Let T be a regular
L9-distinguished discrete series representation of L. The parabolically induced represen-
tation 7 = 181 is irreducible and H-relatively square integrable.

Proof By assumption, 7 is unitary and regular; therefore, 7 is irreducible by a result
of Bruhat [5] (¢f. [7, Theorem 6.6.1]). Since 7 is Le—distinguished, 7 is H-distinguished
by Proposition 5.12(iv) and Corollary 4.11. Let A denote a fixed nonzero H-invariant
linear form on 7. By Proposition 7.1, A is unique up to scalar multiples. To complete
the proof, it remains to show that 7 satisfies the Relative Casselman Criterion.

By Lemma 5.8 and Proposition 4.22, it is sufficient to verify that (4.3) is satisfied for
every Ag-standard maximal 6-split parabolic subgroup. By assumption, Q = Qgqen for
some proper subset Q' = w(Q of A®!! containing A% | where Q c A. Let Pg be a
maximal Ag-standard 6-split parabolic subgroup. It follows from Lemma 4.7 that the
set [ We\ Wo/ Wq ]-wy" provides a “nice” choice of representatives for the double-coset
space Po\G/Q.

By the Geometric Lemma 4.9 and Lemma 4.14, the exponents of 7 along Pg are
given by the union

Expy (TNe) = U Expy, (F5(7)),
ye[Wo\Wo/Wa]-wy!
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where the exponents on the right-hand side are the central characters of the irre-
ducible subquotients of F (7). By Lemma 4.15, the map from Spre(?g(T)) to
Expg, (Ne>TPeA) defined by restriction of characters is surjective. Set y = wwg L
where w € [We\Wy/Wq]. If " Mq S Mg, then the parabolic subgroup Pe n¥ Mq of

¥ Mg is equal to ¥ M. The containment ¥ Mg S Mg occurs in two cases.

Case I: when ¥ Mg = Mg, which occurs if and only if w € [ We\ W, /W ]nW(©, Q),
where W(©, Q) = {w e Wy : wQ = ®}, and

Case 2: when w € [ Wg\Wp/Wq] is such that " Mg ¢ Mg is a proper Levi subgroup
of M@.

In both cases, F (7) is not Mg)—distinguished by Proposition 8.7 and the unitary
exponents ye,, of 7, (1) do not contribute to Expg,_ (7, 7pe ) by Proposition 4.23
(cf (4.2)).

Otherwise, if " Mg ¢ Mg, we have that Pg N M, is a proper parabolic subgroup
of ¥ Mq. By Proposition 8.5, we have that [y(s)[¢ < 1, for all y € Expg_ (T (7)), and
all s € Sg \ S§Sa,. In particular, (4.3) holds for all exponents y € Exps, (N> TPoA)
relative to A along all maximal Ay-standard 6-split parabolic subgroups Pg. By The-
orem 4.17, we conclude that 7 is (H, A)-relatively square integrable. ]

Observation 6.4 A representation 7 of G is H-distinguished if and only if 7 is
¢ H-distinguished; in particular, the property of distinction only depends on the G-
conjugacy class of H (or the G-equivalence class of 8, Lemma 4.3). Thus, taking into
account Proposition 5.12 and Lemma 6.2, we may rephrase Theorem 6.3 as follows.

(1) Assume that n is even. Let (my, ..., my) be a partition of n such that each
m; is even. Let 7y,. .., Ty be pairwise inequivalent H,,,-distinguished discrete series
representations of G,,,. The parabolically induced representation 7; x --- x 7 is an
irreducible H-distinguished relative discrete series representation of G.

(2) If nisodd, then we must be in the Galois case. Let (m;, .. ., my ) be a partition
of n such that exactly one m; is odd, and all other m; are even. Let 1y, .. ., T be pair-
wise inequivalent GL,,, (F)-distinguished discrete series representations of GL,,, (E).
The parabolically induced representation 7; x - - - x 7 is an irreducible GL,, (F)-distin-
guished relative discrete series representation of GL, (E).

Corollary 6.5 Letn = 181 be as in Theorem 6.3. The representation 1 is a relative
discrete series representation that does not lie in the discrete spectrum of G.

Proof By Theorem 6.3, 7 isirreducible and H-relatively square integrable; therefore,
7 is a relative discrete series. Since 7 = 181, where Q is proper in G, it follows from
the work of Zelevinsky [42] that 7 does not occur in the discrete spectrum of G. W

Remark 6.6 At present, the author does not know if the construction outlined in
Theorem 6.3 exhausts all non-discrete relative discrete series in the linear and Galois
cases. In order to show that a representation is not (H, 1)-relatively square integrable,
it is necessary to show that rpA is non-vanishing on the generalized eigenspace cor-
responding to an exponent y € Expg (7, 7pA) that fails the condition (4.3). The
non-vanishing of rpA is obscured by the nature of the construction of the form via
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Casselman’s Canonical Lifting. Due to this lack of precise information, we cannot
exclude the possibility that certain representations are RDS. For instance, it may be
possible to relax the regularity condition imposed in Theorem 6.3, which is essential
in the proof of Proposition 8.7. At this time, the author does not have a method to re-
move the assumption of regularity from Proposition 8.7, due to a lack of information
regarding the support of the 7pA.

By [25, Theorem 6.2] (see Theorem 4.13) and the proof of Theorem 6.3, one may
obtain the following.

Corollary 6.7 Let Q = LU be as in Theorem 6.3. If T is a regular L°-distinguished
supercuspidal representation of L, then m = 181 is H-relatively supercuspidal.

Remark 6.8 Note that Corollary 6.7 can be obtained by more direct methods. See,
for instance, the work of Murnaghan [33] for such results in a more general setting.

7 Distinguished Discrete Series: Known Results and Inducing Data

In this section, we survey the known results on distinguished discrete series represen-
tations in the linear and Galois cases. Our ultimate goal is to prove Proposition 7.16
and thus Corollary 717. First, we note that in the linear case multiplicity-one is due
to Jacquet and Rallis [22]. In the Galois case, multiplicity-one is due to Flicker [10].

Proposition 7.1 Let i be an irreducible admissible representation of G. If m is H-dis-
tinguished, then Hompy (7,1) is one-dimensional.

Jacquet and Rallis [22] also proved the next proposition.

Proposition 7.2 Let M be a maximal Levi subgroup of GL,,(F), where m > 2. Let 7t
be an irreducible admissible representation of GL, (F). If m is M-distinguished, then nt
is equivalent to its contragredient T.

Flicker [10] used the methods of [12] to prove the following result.

Proposition 7.3  Let  be an irreducible admissible representation of GL,, (E), where
m > 2. If m is GL,, (F)-distinguished, then m = 7.

7.1 Distinguished Discrete Series in the Linear Case

In this subsection, unless otherwise noted, we let G = GL,, (F), where n > 2 is even,
and we let H = GL,,/,(F) x GL,/,(F).

Remark 7.4 It is known that an irreducible square integrable representation 7 of G
is H-distinguished if and only if 77 admits a Shalika model. It was shown by Jacquet
and Rallis [22] that if 7 is an irreducible admissible representation of G that admits
a Shalika model, then 7 is H-distinguished. For irreducible supercuspidal represen-
tations, the converse appears as [23, Theorem 5.5]. Sakellaridis and Venkatesh, and
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independently Matringe, proved the converse result for relatively integrable and rela-
tively square integrable representations by the technique of “unfolding” [39, Example
9.5.2], [31, Theorem 5.1]. In fact, Sakellaridis—Venkatesh proved that there is an equi-
variant unitary isomorphism between L*(H\G) and L*(S\G), where S is the Shalika
subgroup. Several analogous global results appear in [11].

Let 7 be a discrete series representation of GL,, (F), m > 2. Denote by L(s, 7w x 7)
the local Rankin-Selberg convolution L-function. It is well known that L(s, 77 x 7) has
a simple pole at s = 0 if and only if 7 is self-contragredient [21]. By [40, Lemma 3.6],
we have a local identity

(71) L(s, 7 x m) = L(s, m, A*)L(s, m, Sym?),

where L(s, 7, A2), respectively L(s, 77, Sym?), denotes the exterior square, respectively
symmetric square, L-function of 7 defined via the Local Langlands Correspondence
(LLC). It is also well known [6,27] that L(s, 7, A*) cannot have a pole when m is odd.

Theorem 7.5 ([31, Proposition 6.1]) Suppose that m is a square integrable represen-
tation of G. Then m is H-distinguished if and only if the exterior square L-function
L(s,,A?) has a pole at s = 0.

Remark 7.6 It is now known that for all discrete series (and when n is even, all ir-
reducible generic representations), the Jacquet-Shalika and Langlands-Shahidi local
exterior square L-functions agree with the exterior square L-functions defined via the
LLC [19, Theorem 4.3, §4.2], [27, Theorems 1.1, 1.2].

Let p be an irreducible unitary supercuspidal representation of GL,(F), r > 1
For an integer k > 2, write St(k, p) for the unique irreducible (unitary) quotient
of the parabolically induced representation v p x v¥p X - X v%p of GLg,(F)
[42, Proposition 2.10, §9.1], where v(g) = | det(g)|r, for any g € GL,(F). The repre-
sentations St(k, p) are often called generalized Steinberg representations and they are
exactly the nonsupercuspidal discrete series representations of GLy, (F) [42, Theorem
9.3]. The usual Steinberg representation St, of GL, (F) is obtained as St(#,1). Note
that St(ky, p1) is equivalent to St(k,, p,) if and only if k; = k, and p; is equivalent to
p2 [42, Theorem 9.7 (b)].

Theorem 7.7 ([31, Theorem 6.1])  Suppose that n = kr is even. Let p be an irreducible
supercuspidal representation of GL,(F). Let m = St(k, p) be a generalized Steinberg
representation of G.

(i) If k is odd, then r must be even, and n is H-distinguished if and only if p is
GL,),(F) x GL,),(F)-distinguished.

(i) If k is even, then m is H-distinguished if and only if L(s, p, Sym®) has a pole at
s=0.

The following is a corollary of [14, Theorem 1.3] and [32, Proposition 10.1].
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Theorem 7.8  For any even integer n > 2,

(i)  there exist infinitely many equivalence classes of H-distinguished irreducible (uni-
tary) tame supercuspidal representations of G;

(ii) there exist infinitely many equivalence classes of self-contragredient irreducible
(unitary) tame supercuspidal representations of G that are not H-distinguished.

Finally, we note the following.

Proposition 7.9  For any even integer n > 2, there are infinitely many equivalence
classes of H-distinguished discrete series representations of G. Moreover,

(i) if n =2, there are exactly four H-distinguished twists of the Steinberg representa-
tion St; of G;

(ii) if n = 4, there are exactly four H-distinguished twists of the Steinberg representa-
tion Sty of G, and there are infinitely many equivalence classes of H-distinguished
generalized Steinberg representations of G of the form St(2, p);

(iii) ifn > 6, there are infinitely many equivalence classes of H-distinguished nonsuper-
cuspidal discrete series representations of G.

Proof The main statement follows from Theorem 7.8.

(i) The Steinberg representation St, has trivial central character and so it is H-
distinguished [36]. A twist y ® St; of St, by a quasi-character y of F* has trivial
central character ifand only if y is trivial on (F*)2. In particular, y must be a quadratic
(unitary) character and, since F has odd residual characteristic, there are four distinct
such characters.

(ii) By [11, Corollary 8.5 (ii)], a twisted Steinberg representation y ® Sty admits a
Shalika model if and only if y is trivial on (F*)?. In this case, y®St4 is H-distinguished
(Remark 7.4).

By Theorem 7.8 (ii), there exist infinitely many classes of self-contragredient super-
cuspidal representations p of G, that are not H,-distinguished. In particular, given
such a p 2 p, the Rankin-Selberg L-function L(s, p x p) has a pole at s = 0 [21]; how-
ever, by Theorem 7.5, L(s, p, A*) does not have a pole at s = 0. It follows from (7.1) that
L(s, p, Sym?) has a pole at s = 0. The claim follows from Theorem 7.7 (ii)

(iii) The last statement is an immediate consequence of Theorems 7.7 and 7.8. W

7.2 Distinguished Discrete Series in the Galois Case

In this subsection, unless otherwise noted, let G = Rg/pGL,(F), where n > 2. We
identify G with GL,(E). Let H = GL,(F) be the subgroup of Galois fixed points in
G. Let 1: E* — C* be an extension to E* of the character 7g/p: F* — C associated
with E/F by local class field theory. The following result is due to Anandavardhanan
and Rajan [2, §4.4], and also appears in [1, Theorem 1.3] and [30, Corollary 4.2].

Theorem 7.10  Let p be an irreducible supercuspidal representation of GL,(E). Then

the generalized Steinberg representation m = St(k, p) of GLk,(E) is GLg, (F)-distin-
guished if and only if p is (GL, (F), n’é}})-distinguished.

https://doi.org/10.4153/CJM-2017-047-7 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2017-047-7

Relative Discrete Series Representations for Two Quotients of p-adic GL, 1365

The next result is due to Prasad for n = 2 [35] and Anandavardhanan and Rajan
for n > 3 [2, Theorem 1.5].

Theorem 7.11 Let y be a quasi-character of F* and identify x with the quasi-character
x o det of H. The Steinberg representation St,, of G is (H, x)-distinguished if and only if
nisoddand x =1, or nis even and x = 1.

Corollary 7.12 If n = 2, then the twist y§ ® St, of the Steinberg representation St, of
G is H-distinguished.

The following is a corollary of the work of Hakim and Murnaghan [14, Theorem
1.1] and Murnaghan [32, Proposition 10.1].

Theorem 7.13

(i)  There are infinitely many equivalence classes of irreducible (unitary) supercuspidal
representations of G that are H-distinguished,

(ii)  There are infinitely many equivalence classes of irreducible (unitary) supercuspidal
representations of G that are (H, ng/p)-distinguished.

The next result is an immediate consequence of Theorems 7.10, 7.11, and 7.13.

Corollary 714 Let G = GL,(E) and let H = GL,(F).

(i) Ifn >4 is not an odd prime, then there are infinitely many equivalence classes of
H-distinguished nonsupercuspidal discrete series representations of G.

(ii) If nis an odd prime, then the Steinberg representation St, of G is a nonsupercus-
pidal H-distinguished discrete series.

Proof Assume that n > 4 is not an odd prime. Then n = kr for two integers
k,r > 2. Note that 5g/p is a quadratic character; in particular, if k is even, then
111’;7; = ngr and if k is odd, then qﬁﬁg = 1. By Theorem 7.13, there are infinitely
many equivalence classes of irreducible supercuspidal representations p of G, that are
(G, né}}:)—distinguished. By Theorem 7.10 and [42, Theorem 9.7 (b)], there are infin-
itely many equivalence classes of generalized Steinberg representations of G of the
form St(k, p) and that are H-distinguished. Of course, the generalized Steinberg rep-
resentations St(k, p) are nonsupercuspidal discrete series representations. The second
statement follows from Theorem 7.11. [ |

7.3 The Inducing Representations in Theorem 6.3

For the remainder of the paper, fix a proper A®"'-standard §-stable parabolic subgroup
Q = Qqan, for some proper subset Q! ¢ A®!! containing A¢!L . Asin Proposition 5.12,
the subgroup Q admits a standard-0-elliptic Levi subgroup L = Lqa and unipotent
radical U = Ugai. The nextlemma is straightforward to verify by using the description
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of LY, given in the proof of Proposition 5.12, and Lemma 4.3. The multiplicity-one
statement follows from Proposition 7.1.

Lemma 715 Let L = [1%,G,, be a standard-0-elliptic Levi subgroup of G. Let
T2 ®, 1, be an irreducible admissible representation of L where each ; is an irre-
ducible admissible representation of G,,,, 1 < i < k.

(i)  Then v is L?-distinguished if and only if t; is H ,,-distinguished for all 1< i < k.
(ii) If 7 is LO-distinguished, then Homye (7,1) is one-dimensional.

Proposition 716  Let L be a standard-0-elliptic Levi subgroup of G. There exist in-
finitely many equivalence classes of regular non-supercuspidal L°-distinguished discrete
series representations of L.

Proof By assumption n > 4 and # is always taken to be even in the linear case. We
have that L is isomorphic to a product [T5; G,,, of smaller general linear groups, for
some partition (m;, ..., my) of n. Let 7; be an irreducible admissible representation
of Gyn;, 1< i < k. By Lemma 6.2, the representation 73 ® - - - ® 7y of L is regular if and
onlyif 7; # 7jforall1< i # j < k. Moreover, 7y ® - -+ ® Ty is supercuspidal (square
integrable) if and only if every 7; is supercuspidal (square integrable). It is sufficient
to prove that for any relevant partition of n (see Proposition 5.12), there exist pairwise
inequivalent H,,,-distinguished discrete series representations 7; such that at least
one T7; is not supercuspidal.

In the linear case, by Proposition 5.12, each m; > 2 is even. By Theorem 7.8,
there are infinitely many equivalence classes of H,,,-distinguished irreducible su-
percuspidal representations of G,,,. By Proposition 7.9, there exists at least one
non-supercuspidal H,,,-distinguished discrete series representation of G,,, (infinitely
many when m; > 4). It follows from Lemma 715 that there exist infinitely many equiv-
alence classes of regular non-supercuspidal L%-distinguished discrete series represen-
tations of L.

In the Galois case, by Proposition 5.12, at most one m; is odd. Without loss of gen-
erality, assume that my is odd. By Theorem 7.11 (i), the Steinberg representation St,,,
of G, is a non-supercuspidal H,,, -distinguished discrete series. By Theorem 7.13,
there are infinitely many equivalence classes of H,,-distinguished irreducible super-
cuspidal representations of G,,. By Corollaries 7.12 and 7.14, there exists at least one
non-supercuspidal H,,,-distinguished discrete series representation of G,,, (infinitely
many when m; > 4 is not an odd prime). It follows from Lemma 715 that there ex-
ist infinitely many equivalence classes of regular non-supercuspidal L?-distinguished
discrete series representations of L. ]

Corollary 717  There are infinitely many equivalence classes of H-distinguished rel-
ative discrete series representations of G of the form constructed in Theorem 6.3. In

particular, there are infinitely many classes of such representations where the discrete
series T is not supercuspidal.

Proof This is immediate from Proposition 7.16 and from [42, Theorem 9.7 (b)]. W
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8 Computation of Exponents and Distinction of Jacquet Modules

We work under the hypotheses of Theorem 6.3 and use the notation from its proof.
In order to discuss Casselman’s Criterion for the inducing data of 77 = 18 7, we use the
following notation. If ®; ¢ ®, c Ay, then we define

Ag ={acAg, :|a(a) <1, forall @ e Ag \ Oy},
Ay ={acAp, :|B(a)|<1, forall fe @\ O}

The set A is the dominant part of Ag, in G, while A_®(:)2 is the dominant part of Ag,
in M@z.

In both the linear and Galois cases, we have that Q = wyPqw;" is a Weyl group
conjugate of a Ag-standard parabolic subgroup Pq, where Q¢! = w; Q). We also have
that L = woMqwy®. If 7y is a representation of Mq, then T = "1 is a representation
of L. Let Pg be a Aj-standard maximal 6-split parabolic subgroup corresponding to
a maximal proper 0-split subset ® c Aq. Below y = ww;! is a “nice” representative of
a double-coset in Pg\G/Q, where w € [ Wo\Wy/Wq] (Lemma 4.7).

Lemma 8.1 The exponents of T () are the restriction to Ae of the exponents of
Y10 along the parabolic subgroup Pe N'¥ Mq of " Mq. If T = "1 is a discrete series
representation of L, and the parabolic subgroup Pe n'* Mq of ¥ Mg is proper, then for
any exponent x € Exp, (T4 (7)) the inequality |x(a)|r < 1is satisfied for every a €
Aorwa > AonwaAwa:

Proof This is a special case of Lemma 4.16 and the usual Casselman’s Criterion ([7,
Theorem 6.5.1]) applied to the discrete series representation " 7o of ¥ Mq. ]

Lemma 8.2  Assume that T is a regular unitary irreducible admissible representation
of L. If y = wwg', where w € [Wo\Wy/Wq] is such that " Mq c Pe, then Ty () is
irreducible and the central character xe,y of Fp (T) is unitary.

Proof If"Mgq c Pg,then PgNn*Mq =¥ Mq, NeN"Mq = {e},and " Mg c Meg. It
follows that the representation (¥ 7o) nonvn, is equal to ¥ 7o and it is irreducible and
unitary. Moreover, since 7 is a regular representation of L, it follows that * 7y is regular
as a representation of " M, regarded as a Levi subgroup of Mg. By [7, Theorem 6.6.1],
the representation F (7) is irreducible and unitary. By the irreducibility of F7, (1),
the only exponent is its central character ye,,. Since I (7) is unitary, the character
Xe.y of Ag is unitary. ]

Remark 8.3 Recall that W(®, Q) = {w € Wy : wQ = @}. We find ourselves in the
situation of Lemma 8.2 in two cases.

Case I: w € [We\Wo/Wq | n W(®, Q), if and only if * Mq = Me,
Case 2: w € [ Wo\Wp/Wq ] is such that " Mo ¢ Mg is a proper Levi subgroup of Mg.

In order to apply the Relative Casselman Criterion (Theorem 4.17) using Lemma
8.1, we need the following technical fact.
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Lemma 8.4 Let Q be a proper subset of Ao such that Q' = wyQ contains A

Let © be a maximal 0-split subset of Ag. Let w € [We\Wy/Wq] such that Menwa =
Mg N wMqw™ is a proper Levi subgroup of M,,q = wMqw™". Then we have the
containment Sg \ S Sa, € Agrig N AgnwaAwo-

Proof Recall that for any F-torus A we write A" for the Op-points of A. First, Sg is
contained in Ag and since ® N w() is a subset of ®, we have that

Ag=(Nkera)’c( N kera)’=Agnwa-
ac®

ac®nwQ

At the level of F-points, we have Ag ¢ Agnwa, and similarly for the integer points
A}y c Al It follows that Se ¢ Agnwa and Sg c A, q- Also, we have Sy, ©
Ay, € Ag, and since Sy, = Sg is central in G, we have Sy, = wSy,w™! c wAqw™ =
Awq. We now observe that Ag c Aé’r"jﬁg and in particular that Sg c Ag;’}ﬁn; it is
clear that Sg c Ag. Note that wQ) is a base for the root system of M,,q relative to
the maximal F-split torus Ao. Suppose that a € Ag. Then |a(a)| < 1, for all a €
Ag \ ©. Moreover, since a € Ag, we have that |a(a)| = 1, for « € © as well. Let
B ewQ N (®nwQ). Then f = wa for some a € Q. Since w € [We\Wy/Wq], we
have that 8 = wa € @. Write § = 3., e - €, Where ¢, > 0, ¢, € Z. Then we have that

<1,

B@)l=] IT e(a)*| = T le(a)

since e(a)| < 1, for all € € Ay, and ¢, > 0. In particular, a € Ag*,. Putting this
together, we see that S Sa, © Sg N Ak, qAwa; therefore, to prove the desired result,
it suffices to prove the opposite inclusion.

It is at this point that we specialize to the linear and Galois cases. By assumption
© = Oy, forsomel < k < | 2|, asin Proposition 5.4. Suppose that s € SgNAf 0 Awa.
We want to show that s € SiSa,. Notice that S, = {e}; therefore, it is sufficient
to prove that s € Sg. By assumption, s = tz where t € Ay, and z € A,,q. Since
w € [ We\Wo/Wq ], we have that wQ c @} ; moreover, by the assumption that Mgnyq
is a proper Levi subgroup of M,,q, we have that ® n wQ ¢ wQ is a proper subset. It
follows that wQ cannot be contained in @ . Moreover, there exists & € wQ\ (@nwQ)
such that « € ©f and a ¢ @F. In the Galois case, there is a unique expression a =
Z;‘:_ll cj’(ej — €j+1), where ¢; € Z and c; > 0, such that, since ® = @ and a ¢ O,
at least one of ¢ or ¢,k is nonzero (c,, # 0, when n even, k = n/2). In the linear
case, y does not appear in the expression for a. First observe that a(s) = a(t)a(z) =
a(t) € OF, sincez € Ayq and f € Ao = Aenwa (OF). On the other hand, in the
Galois case, writing s explicitly as s = ¥s’, where

diag(a,...,a,1...,L,a™',...,a™") 1<k<|%],

diag(a,...,a,a™',...,a™) neven, k = n/2,
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(with s = s’ and # even in the linear case). Applying « to s, we have

a(s) = ( Z cjy(e] - 61+1)) (y = (ek - €k+1)(5,)ck(€n—k - en—k+1)(5,)cn7k

=gk gk

So in the Galois case, a(s) = a® € OF, where ¢ = ¢, + ¢,k (0r ¢ = 2cz when n is
even and k = n/2), and similarly in the linear case. Then we have |a|% = 1for c a
positive integer so |a|r = 1. In particular, we have that a € O}, and s € Sg = Se(OF),
as desired. ]

Proposition 8.5 Ify = wwy' € [Wo\Wo/Wq] - wy' is such that Pe N " Mg is a
proper parabolic subgroup of ™ M, then the exponents y € Expg_ (T (1)) of T (1)
satisfy |x(s)|r <L forall s € Sg ~ SgSa,-

Proof First by Lemma 8.4 we have that Sg \ SgSa, ¢ Agr, ~ Ay, 0Awa. By
Lemma 4.15, any exponent y € Expg, (F(7)) is the restriction to Se of an exponent
Xe&xpy, (Fo(7)); therefore, the result follows from Lemma 8.1. [ |

Finally, we study the M$ -distinction of the Jacquet module 7y, . In preparation
for this, we characterized the 0-fixed points of the standard Levi M, = Mg, of the
maximal 8-split parabolic subgroups P, = Pg, in Proposition 5.7. The characteriza-
tion is in terms of the groups M n-2e,r) and H(; n-2rr). First, we present Lemma
8.6, which characterizes the H,,,_,, ,)-distinction in the Galois case. We omit the
elementary verification (and the obvious modification when # is even and r = n/2).

Lemma 8.6  Assume that we are in the Galois case. Fix an integer 1 < r < | 5] and
assume that r # n/2. Let m ® m, ® w3 be an irreducible admissible representation of
M(r n=2r,r)- Then m ® my ® m3 is H(y y_oy r)-distinguished if and only if m is H, _5,-dis-
tinguished and 75 = O,

Proposition 8.7 Let T = @ 1; be an irreducible admissible regular representation
of L. Assume that 7 is L°-distinguished. Let Py be a maximal Aq-standard parabolic
subgroup corresponding to a maximal 0-split subset ® of Ag. Let y = ww,", where
w € [We\Wo/Wa]. In both Case 1 and Case 2, 5 (t) cannot be Mg-distinguished.

Proof By assumption, we are in either Case 1 or Case 2 of Remark 8.3. In particular,
we have that y = ww;', where w € [ We\ Wy/Wq ], such that

1 k
F(1) = g (1) = ey (o) and =0T = (@T)

is the representation of Mg corresponding to the representation 7 of L = Lqa =
woMqwy", where y simply does not appear in the linear case. By Lemma 715, T is
L9-distinguished if and only if each 7; is H,,,-distinguished for all 1 < i < k. By
Lemma 5.3, © is equal to ©, for some 1 < 7 < |2 | and M = Me, = M,. Without loss
of generality, r < n/2. By Proposition 5.4, in the linear case M, = M(; ,_,) and in
the Galois case M, =¥ M, ,_3,,r). We again use the shorthand M, = M(, ,_5,,,) and
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He = H(y y-2r,). The 0-fixed point subgroup of M, is described in Proposition 5.7.
In the linear case, we have that

M? = H, = {diag(A,B,0,(A)): A G,,Bec H, 2},
while in the Galois case, we have M? = yy;'H,y,y!, where
Yo = Y(r,n-2r,r) = diag()’r» Yn-2r> )/r) € M(r,n—2r,r)~

By Lemma 4.3, in the Galois case, T (7) is MJ-distinguished if and only if Vﬁlff"é (1)
is H,-distinguished.

Without loss of generality, we complete the proof in the Galois case. To obtain the
proof in the linear case replace the application of Proposition 7.3 with Propostion 7.2.

Case 1. Suppose that ® and Q are associate and w € [We\Wy/Wa] n W(O, Q).
Then Mg = ¥Mq and Fy(1) = Y19 = "¥(11 ® T, ® T3), where Ty, 73 are repre-
sentations of G, and T is a representation of G,,_,,. By convention, y~'wy is a per-
mutation matrix (c¢f. Lemma 5.10). Moreover, v (Fo(1)) = y_lwy(ﬁ ® T, ® T3) is
equal to T,y ® Ty(2) ® Ty(3), for some compatible permutation x of {1,2,3}. By
Lemma 8.6, V_lffg)(r) is H,-distinguished if and only if 7, (3) = 9’1’;\(1’) and 7,(y) is
H,_,,-distinguished. By Proposition 7.3, each 7; satisfies 7; Om; 7;. However, since T
is regular, Lemma 6.2 implies that the 7; are pairwise inequivalent. In particular, we
have that e'f;v(l) 2 Ty(1) £ Tx(3)- Therefore, v (T (1)) is not H,-distinguished and
F% () is not MY -distinguished.

Case 2. Suppose that w € [ We\Wy/Wq] is such that wMqw™ c Mg is a proper

Levi subgroup. In this case, ?é(T) = l%gﬁwpnw‘[g and by [7, Theorem 6.6.1], the

representation Vﬁl(’fg)(f)) is an irreducible unitary representation of M,. Indeed,
Me ="M, and Mq ="M, with Mq = M(; 3,y and M = My, . m,); MoOreover,
w’ = y~'wy is an element of [ Wy, \W/Wy,] and conjugates M into M,. Writing P
for P(y,,....m,)> We have

-1 -1/ M, -1 "M,
VIL)) =7 (1, T0) =7 (g™ (11 @ 7))
M,

4
M.mW’PW (n®- ),

=

and this representation is isomorphic to m; ® 7, ® 73, where 7y, 71, are irreducible
admissible representations of G, and 5 is an irreducible admissible representation
of Gu_y,. Since w' € [Wyy,\W/Wy], by Proposition 4.8, the group M, n ¥ P is a
parabolic subgroup of M, (a product of parabolic subgroups on each block of M,). It
follows that each of the 7, j = 1,2, 3, are irreducibly induced representations of the

form 7, x -+ x 7,,, for some subset of the representations {7y, ..., 7x}. Again, by
-1

Lemma 8.6 ¥ (J% (7)) is H.-distinguished if and only if 7, is G,-,-distinguished

and 73 = 7. Suppose that m; = 7, x -+ X T,,, and w3 = T}, X --- x Tp_. Then we

~ — ]
have that m; = 7, x -+ x T, = 6'"“11,11 X oo x MUT, o

7111. Moreover, we have
that m, = %7,. Since T is regular, by Lemma 6.2, the discrete series 7; are pairwise
inequivalent; therefore, by [42, Theorem 9.7(b)], we have that m; # m5. That is, we
have °7, = m; ¢ 3. In particular, v (T (7)) is not H,-distinguished, and F, (1) is

not M9 -distinguished.
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