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A HYPERSTABILITY RESULT FOR
THE CAUCHY EQUATION

JANUSZ BRZDĘK

Abstract

We prove a hyperstability result for the Cauchy functional equation f (x + y) = f (x) + f (y), which
complements some earlier stability outcomes of J. M. Rassias. As a consequence, we obtain the slightly
surprising corollary that for every function f , mapping a normed space E1 into a normed space E2, and
for all real numbers r, s with r + s > 0 one of the following two conditions must be valid:

sup
x,y∈E1

‖ f (x + y) − f (x) − f (y)‖ ‖x‖r ‖y‖s =∞,

sup
x,y∈E1

‖ f (x + y) − f (x) − f (y)‖ ‖x‖r ‖y‖s = 0.

In particular, we present a new method for proving stability for functional equations, based on a fixed
point theorem.
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1. Introduction

The main motivation for the investigation of the stability of functional equations was
given by Ulam in 1940 in his talk at the University of Wisconsin (see [17, 36]), where
he presented the following unsolved problem, among others.

Let G1 be a group and (G2, d) a metric group. Given ε > 0, does there exist δ > 0
such that if f : G1→G2 satisfies

d( f (xy), f (x) f (y)) < δ

for all x, y ∈G1, then a homomorphism T : G1→G2 exists with

d( f (x), T (x)) < ε

for all x, y ∈G1?
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For more information on this area of research and further references, see [18, 21].
Let us only mention that the following theorem seems to be the most classical result
concerning stability of the Cauchy equation

T (x + y) = T (x) + T (y). (1.1)

T 1.1. Let E1 and E2 be two normed spaces, with E2 complete. Take c ≥ 0 and
let p , 1 be a fixed real number. Let f : E1→ E2 be a mapping such that

‖ f (x + y) − f (x) − f (y)‖ ≤ c(‖x‖p + ‖y‖p), x, y ∈ E1 \ {0}.

Then there exists a unique solution T : E1→ E2 of (1.1) with

‖ f (x) − T (x)‖ ≤
c‖x‖p

|1 − 2p−1|
, x ∈ E1 \ {0}.

Theorem 1.1 is due to Aoki [1] for 0 < p < 1 (see also [31]); Gajda [16] for p > 1;
Hyers [17] for p = 0; and Th. M. Rassias [32] for p < 0 (see [33, page 326] and [4]).
Quite often the result contained in the theorem is described as the Hyers–Ulam–
Rassias stability of the Cauchy equation (1.1). It has motivated J. M. Rassias [29, 30]
(see also [21, pages 50–51]) to prove the following theorem.

T 1.2. Let E1 and E2 be two normed spaces, with E2 complete. Take c ≥ 0 and
let p, q be real numbers with p + q ∈ [0, 1). Let f : E1→ E2 be an operator such that

‖ f (x + y) − f (x) − f (y)‖ ≤ c‖x‖p‖y‖q, x, y ∈ E1 \ {0}.

Then there exists a unique solution T : E1→ E2 of (1.1) with

‖ f (x) − T (x)‖ ≤
c‖x‖p+q

2 − 2p+q
, x ∈ E1 \ {0}.

We provide a complement for this result in the case p + q < 0; moreover, we do so
on a restricted domain. Namely, we prove the following theorem (in which N denotes
the set of positive integers).

T 1.3. Let E1 and E2 be normed spaces, and X ⊂ E1 \ {0} be nonempty. Take
c ≥ 0 and let p, q be real numbers with p + q < 0. Assume that there exists a positive
integer m0 with

nx ∈ X, x ∈ X, n ∈ N, n ≥ m0. (1.2)

Then every operator g : E1→ E2, satisfying the inequality

‖g(x + y) − g(x) − g(y)‖ ≤ c‖x‖p‖y‖q, x, y ∈ X, x + y ∈ X, (1.3)

is additive on X, that is, fulfils the condition

g(x + y) = g(x) + g(y), x, y ∈ X, x + y ∈ X.
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Clearly the statement of Theorem 1.3 is much stronger than that of Theorem 1.1.
Using the terminology proposed in [26], we name the property of equation (1.1)
described in Theorem 1.3 φ-hyperstability on X, with φ(x, y) = c‖x‖p‖y‖q for x, y ∈ X.

Note that, as a consequence of Theorem 1.3, we obtain at once the slightly
surprising corollary that every function f mapping a normed space E1 into a normed
space E2 is either additive (that is, f (x + y) = f (x) + f (y) for x, y ∈ E1) or satisfies the
condition

sup
x,y∈E1

‖ f (x + y) − f (x) − f (y)‖ ‖x‖r ‖y‖s =∞

for all real numbers r, s with r + s > 0.

2. Auxiliary results

The method of proof of Theorem 1.3 is based on a fixed point theorem in [5,
Theorem 1] (see also [6, Theorem 2]). Our method can be considered to be an
extension of the investigations in [2, 7, 22–24, 27, 28]. (For a survey on this subject,
see [8].)

We need the following hypotheses. (Here, R+ stands for the set of nonnegative reals
and AB denotes the family of all functions mapping a set B , ∅ into a set A , ∅.)
(H1) X , ∅ is a set, E2 is a Banach space, f1, . . . , fk : X→ X and L1, . . . , Lk : X→ R+.

(H2) T : E2
X → E2

X satisfies

‖T ξ(x) − Tµ(x)‖ ≤
k∑

i=1

Li(x)‖ξ( fi(x)) − µ( fi(x))‖, ξ, µ ∈ E2
X , x ∈ X.

(H3) Λ : R+
X → R+

X is given by

Λδ(x) :=
k∑

i=1

Li(x)δ( fi(x)), δ ∈ R+
X , x ∈ X.

We are now in a position to present the fixed point theorem mentioned above.

T 2.1. Let (H1)–(H3) hold and let ε : X→ R+, ϕ : X→ E2 satisfy the
conditions

‖Tϕ(x) − ϕ(x)‖ ≤ ε(x), x ∈ X,

ε∗(x) :=
∞∑

n=0

Λnε(x) <∞, x ∈ X.

Then there exists a unique fixed point ψ of T with

‖ϕ(x) − ψ(x)‖ ≤ ε∗(x), x ∈ X.

Moreover, ψ is given by

ψ(x) := lim
n→∞
T nϕ(x), x ∈ X.
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3. Proof of Theorem 1.3

Without loss of generality, we can assume that E2 is complete, because otherwise
we can simply replace E2 by its completion. Note that, in view of the assumption that
p + q < 0, we must have p < 0 or q < 0. Therefore, it is sufficient to consider only the
case where q < 0.

Let f denote the restriction of g to the set X. Fix m ∈ N with m ≥ m0 and

mp+q + (1 + m)p+q < 1.

Taking y = mx in (1.3),

‖ f ((m + 1)x) − f (x) − f (mx)‖ ≤ cmq‖x‖p+q, x ∈ X. (3.1)

Define operators T : E2
X → E2

X and Λ : R+
X → R+

X by

T ξ(x) := ξ((m + 1)x) − ξ(mx), x ∈ X, ξ ∈ E2
X ,

Λδ(x) := δ((m + 1)x) + δ(mx), x ∈ X, δ ∈ R+
X .

Then Λ has the form described in (H3) with k = 2, f1(x) = (m + 1)x, f2(x) = mx,
L1(x) = L2(x) = 1 for x ∈ X and (3.1) can be written as

‖T f (x) − f (x)‖ ≤ cmq‖x‖p+q =: ε(x), x ∈ X.

Furthermore, (H2) is also valid.
Since

ε∗(x) :=
∞∑

n=0

Λnε(x) ≤ cmq‖x‖p+q
∞∑

n=0

(
mp+q + (m + 1)p+q)n

, x ∈ X,

we have

ε∗(x) ≤
cmq‖x‖p+q

1 − mp+q − (m + 1)p+q
, x ∈ X.

Hence, according to Theorem 2.1, there is a solution Tm : X→ E2 of the equation

T (x) = T ((1 + m)x) − T (mx) (3.2)

such that

‖ f (x) − Tm(x)‖ ≤
cmq‖x‖p+q

1 − mp+q − (m + 1)p+q
, x ∈ X. (3.3)

Moreover,
Tm(x) := lim

n→∞
T n f (x) x ∈ X.

Next, it can be easily shown by induction that, for every x, y ∈ X with x + y ∈ X and
n ∈ N0 = N ∪ {0},

‖T n f (x + y) − T n f (x) − T n f (y)‖ ≤ c(mp+q + (m + 1)p+q)n(‖x‖p‖y‖q). (3.4)
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To this end, it is enough to observe that the case n = 0 is just (1.3) and, for every k ∈ N0

and x, y ∈ X with x + y ∈ X,

‖T k+1 f (x + y) − T k+1 f (x) − T k+1 f (y)‖

≤ ‖T k f ((m + 1)x + (m + 1)y) − T k f ((m + 1)x) − T k f ((m + 1)y)‖

+ ‖T k f (mx + my) − T k f (mx) − T k f (my)‖.

Letting n→∞ in (3.4), we obtain that

Tm(x + y) = Tm(x) + Tm(y), x, y ∈ X, x + y ∈ X. (3.5)

Next, we prove that Tm is the unique function mapping X into E2 that is additive on
X and such that

sup
x∈X
‖ f (x) − Tm(x)‖ ‖x‖−p−q <∞.

So, suppose that T0 : X→ Y is additive on X and satisfies

sup
x∈X
‖ f (x) − T0(x)‖ ‖x‖−p−q <∞.

Then there is a positive real constant M with

‖Tm(x) − T0(x)‖ ≤ M‖x‖p+q, x ∈ X. (3.6)

We can easily show by induction that, for each j ∈ N0,

‖Tm(x) − T0(x)‖ ≤ M‖x‖p+q
∞∑

n= j

(
mp+q + (m + 1)p+q)n

, x ∈ X. (3.7)

It is enough to note that the case j = 0 follows from (3.6) and, for each l ∈ N0,

‖Tm(x) − T0(x)‖ ≤ ‖Tm((m + 1)x) − T0((m + 1)x)‖ + ‖Tm(mx) − T0(mx)‖, x ∈ X,

because Tm and T0 are solutions to (3.2). Hence, letting j→∞ in (3.7), we get
Tm = T0.

Thus we have proved that, for each m ∈ N, m ≥ m0, there exists a unique solution
Tm : X→ Y to (3.5) satisfying (3.3). The uniqueness of Tm means that

‖ f (x) − Tk(x)‖ ≤
cnq‖x‖p+q

1 − np+q − (n + 1)p+q
(3.8)

for every x ∈ X and k, n ∈ N, n ≥ m0 and k ≥ m0. In fact, if k, n ∈ N, n ≥ k ≥ m0, then

‖ f (x) − Tn(x)‖ ≤
cnq‖x‖p+q

1 − np+q − (n + 1)p+q
≤

ckq‖x‖p+q

1 − kp+q − (k + 1)p+q
, x ∈ X,

whence Tn = Tk, which yields (3.8).
Fixing k and letting n→∞ in (3.8), we get f = Tk. This implies that f is additive

on the set X.
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4. Final remarks

We end the paper with some comments and corollaries.

R 4.1. There arises a natural question: when, for T0 : E1→ E2 additive on
X ⊂ E1, is there an additive T : E1→ E2 with T (x) = T0(x) for x ∈ X? This is the case
when X is a subsemigroup of the group (E1, +) (see [25, Theorem 1.1, Ch. XVIII]).
Some further information on this issue can be found in [34, Ch. 4]; an example of the
extension procedure yielding such a result is provided in [35, pages 143–144].

Theorem 1.3 yields the following two simple corollaries, which correspond to the
results in [3, 9–13, 15, 19] on the inhomogeneous Cauchy equation (4.2) and the
cocycle equation (4.3).

C 4.2. Let E1 and E2 be normed spaces, X ⊂ E1 \ {0} be nonempty, G : X2→

E2, and G(x0, y0) , 0 for some x0, y0 ∈ X with x0 + y0 ∈ X. Assume that (1.2) holds
with some m0 ∈ N and there are real p, q and c > 0 such that p + q < 0 and

‖G(x, y)‖ ≤ c‖x‖p‖y‖q, x, y ∈ X, x + y ∈ X. (4.1)

Then the functional equation

g0(x + y) = g0(x) + g0(y) + G(x, y), x, y ∈ X, x + y ∈ X, (4.2)

has no solutions in the class of functions g0 : X→ E2.

P. Let g0 : X→ E2 be a solution to (4.2). Define f : E1→ E2 by f (x) = g0(x) for
x ∈ X and f (x) = 0 for x ∈ E1 \ X. Then (1.3) holds and consequently, by Theorem 1.3,
f is additive on X, which means that G(x0, y0) , 0. This is a contradiction. �

C 4.3. Let E1 and E2 be normed spaces, X ⊂ E1 \ {0} be nonempty, G : E1
2→

E2 satisfy the cocycle functional equation

G(x, y) + G(x + y, z) = G(x, y + z) + G(y, z), x, y, z ∈ E1, (4.3)

and G(x, y) = G(y, x) for x, y ∈ E2. Assume that (1.2) holds with some m0 ∈ N and
there are real p, q and c > 0 such that p + q < 0 and (4.1) holds. Then G(x, y) = 0 for
every x, y ∈ X with x + y ∈ X.

P. It is well known (see [14] or [20]) that G is coboundary, which means that
there exists g : E1→ E2 such that G(x, y) = g(x + y) − g(x) − g(y) for x, y ∈ E1. This
means that g0 : X→ E2, given by g0(x) := g(x) for x ∈ X, is a solution to (4.2). So
Corollary 4.2 yields the result. �
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