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SOLUTIONS OF PERIOD THREE
FOR A NON-LINEAR DIFFERENCE EQUATION
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Abstract

The paper uses the factorisation method to discuss solutions of period three for the
difference equation

which has been proposed as a simple mathematical model for the effect of frequency
dependent selection in genetics. Numerical values are obtained for the critical values of a
at which solutions of period three first appear. In addition, the interval in which stable
solutions are possible has been determined. Exact solutions are given for the case a = 4
and these have been used to check the results.

1. Introduction

One of the problems in discussing the evolution of plants and animals is to
explain the persistence of large amounts of genetic variation in populations. Rarer
characteristics do not always remain rare, or die out, and in a number of instances
rarer characteristics appear to be favoured, so that their frequency increases from
one generation to the next. This can arise, for instance, in mating patterns where
males with rare characteristics are given preference by the females or in a
predator-prey situation where the predator tends to select prey which show the
more common characteristics. Clarke [3,4] has reviewed the evidence for
frequency-dependent selection effects and concludes that they are a powerful,
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perhaps a dominant, factor in maintaining genetic diversity. Briefer references to
frequency-dependent selection appear in Parkin [10], Falconer [5] and Lewontin
[7].

If we consider populations with discrete generations and look for a mathemati-
cal model of frequency-dependent selection, we can write pn for the frequency in
the nth generation, with 0 *^pn =s 1, and take pn+{ as a function of pn. For the
effect mentioned above we want to have pn+, > pn when pn is close to zero and
pn+ ] < pn when/>n is close to 1. To provide a simple model, May [8] suggested that
the equation

xn+i = F{xn) = axl + (\-a)xn (l . l)

merited investigation, where xn = 1pn — 1, with -1 *£ xn < 1. If the parameter a
is positive, then xn+x > xn (and/7n+, >pn) for -1 < xn < 0, with xn+] < xn and
pn+l < pn for 0 < xn < 1. This agrees qualitatively with the idea that the rarer
genotypes are favoured and it offers some mathematical simplification in that

F{-xn) = -F(xn). (1.2)

For a > 1, F(xn) gives two turning values in the mapping from xn to xn+x and in
this respect it goes beyond the "one hump" mappings that have mainly been
considered in population growth problems. To agree with the genetics problem we
must have a «s 4, since this ensures that |xn + , |< 1 when |xn|*s 1, so it will be
assumed throughout that 0 < a «s 4.

In the paper cited above [8] and in subsequent work [9], May showed that
solutions with period 2 are available for a > 2 and he discussed these solutions in
detail. The present paper deals with the corresponding problem for solutions with
period 3. It establishes the critical values for their appearance and the intervals in
which these solutions are stable. This is done by using the factorisation method
which was introduced in considering the logistic difference equation [1,2].

In Section 2, some general properties of equation (1.1) are considered and it is
shown that exact solutions are available when a = 4. In Section 3, the notation
and procedure of the factorisation method are introduced by applying it to
solutions of period 2. Section 4 builds on this and extends it to the more complex
case of solutions with period 3. In this section equations are established which
allow the solutions of period 3 to be found for any value of a (if such solutions
exist). Numerical results from this are considered in Section 5.

2. Some properties of the difference equation

If we take the corresponding differential equation as

dy/dt = b(y> - y), (2.1)
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with b > 0 and j»(0) — >fo, where \y0 |< 1, then the solution is of the form

y2 = l/{\+Dexp(2bt)}, (2.2)

where D is a positive constant. As t increases, y tends to zero and the approach is
from one side only. In this case, y = 0 is a stable equilibrium point and there are
unstable equilibrium points at y — +1 and y — - 1 . If we write xn — y{nh), with
h > 0, and replace dy/dt dX t = nh by (l//i)(xn+, — xn), then we need only put
a = bh to get equation (1.1). The equilibrium points of the difference equation are
still at 0,1, and -1 and when a is small enough the solution of the difference
equation behaves in the same way as the solution of the differential equation. For
0 < a < 2, the equilibrium point at xn — 0 is stable, with xn tending to zero from
one side only for 0 < a *£ 1 and oscillating about zero, ultimately, for 1 < a < 2.

If 0 < xn < 1, then from equation (1.1)

Xn+\ ~ Xn = aXn{Xn- 0 < 0 > (2-3)

xn + l + 1 = a(xn + l){x2
n -xn + (I/a)}. (2.4)

The quadratic factor in equation (2.4) is positive definite for 0 < a < 4 and this
means that -1 < xn+l < xn < 1. In the same way, it can be shown that -1 < xn

< xn+] < 1 if -1 < xn < 0. Since xn+l = 0 when xn — 0, it follows that, for
0 < a < 4, \xn+i |< 1 if \xn\< 1, so if we start with |x o |< 1 then all subsequent
values of xn satisfy -1 < xn< 1.

For a = 4 and | x0 \< 1, write x0 = cos <j>. Then

X, = 4x1 ~ 3*o = cos3</>

and, continuing in the same way, xn = cos(3"<J>). Thus equation (1.1) has an exact
solution for a — A. Note that in this case we can start with, say, 0 < x0 < 1 and
have xn = +1 after a finite number of steps (for example, take <f> = 2TT/729).

Thereafter xn would remain at the equilibrium level. In the same way, xn could
become 0 or -1 after a finite number of steps and then remain at the equilibrium
level.

Another property for a = 4 is that we can write down the periodic solutions for
any given period. For period M, we must have cos <f> = cos(3w(/>) and this is
satisfied when <f> = 2Nw/(3M ± 1), for any integer TV. For example, when M = 2
there are three periodic solutions and they can be obtained by taking <j> = n/4,
</> = mfb and <f> = 4ir/5. The second and third of these are "mirror images" of
each other in the sense that the solution elements are {cos(77-/5), COS(3TT/5)} in
one case and (-cos(ir/5),-cos(37r/5)} in the other. For M — 3, appropriate
values of <f> are IT/ 13, 2^/13, 77/14 and 2 IT/ 14. These give four solutions for
which the sum of the elements is positive. For each of these there is a correspond-
ing mirror image solution, obtained by changing the sign of each element. Thus in
all there are eight distinct solutions with period 3. These exact solutions were of
great value in checking some of the later results.
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3. Solutions with period 2

For a > 2, solutions with period 2 can occur. If we exclude the equilibrium
solutions, we want bx and b2, with bx =?*= b2 and 0 <| bt |< 1, such that

=ab] + (l-a)b], (3.1)

= abl + (l-a)b2. (3.2)

If we write a — bx + b2 and /J = bxb2, then bl and b2 are the roots of the equation
x2 — ax + p = 0 and can be determined if we can find a and /?. To do this, we
express /} as a function of a and then derive an equation for a.

From equations (3.1) and (3.2),

b2 ~ bx = ( b , - b 2 ) { a ( b 2 + b x b 2 + b 2 ) + (1 - a ) } .

Cancelling a non-zero factor bx — b2, we get

a-2 = a(bl + bxb2 + bj) = a(a2 - / ? ) , (3.3)

or

P = a2-l + (2/a). (3.4)

This gives ft as a function of a and adding equations (3.1) and (3.2) gives

a = a{a{a2 - 30) + (\ -a)}.

If we use equation (3.4) to replace /$, we get

0 = 2a(a-3-aa2), (3.5)

which is our equation for a. From this equation

(i) a = 0 or (ii) a2 = (a - 3)/a. (3.6)

(i) When a = 0, b2 — -bx and /3 = -b2, so equation (3.4) gives

b*=-fi=\- (2/a) = (a - 2)/a. ( 3 . 7 )

T h i s g ives a r e a l n o n - z e r o s o l u t i o n for a > 2 a n d w e c a n t a k e b x — k , b 2 — -k,
where A: = ]j(a — 2)/a .

(ii) When a2 — (a — 3)/a, we get a = 0 for a = 3 and this brings us back to
case (i). For a > 3, there are two solutions, with a = ± {{a — 3)/a and with
/} = - I / a in both cases. This is to be expected, for if bx = F(b2) and b2 = F(bx),
with&2 ¥= -bu then

Fi-by) = -Hbi) = -b2, F{-b2) = -F(b2) = -blt

which verifies that (-bx,-b2) also provides a solution. For this pair of mirror
image solutions, (5 should have the same value but a changes sign, which is what
we have above.
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It will be observed that in the factorisation method we avoid forming F{F(xn)}
explicitly and instead work with relatively simple equations for the symmetric
functions a and B.

For these solutions with period 2, the condition for stability is that -1 < S2 < 1,
where

S2 = F'{b2)F'{b,) = {3ab\ + (1 - a)} {3ab2 + (1 - a)}

= 9a2B + 3a(\-a)A+(\-a)2, (3.8)

with B = b\b\ = B2 and A = b] + b\ = a2 - IB. We can write

S2 = {3aB - (\ - a)}2 + 3a(\ - a)a2 (3.9)

and insert in turn

(i) a = 0,B=(2-a)/a, (ii) a2 = (a - 3)/a, B =-I/a.

This gives S2 = (2 a ~ 5)2 in case (i) and S2 — 7 + Aa — 2a2 in case (ii), in
agreement with the results given by May [8]. From these expressions, the solutions
with a = 0 are stable for 2 < a < 3 and the solutions with a ^ 0 are stable for
3 < a < 1 + J5 . Thus it is possible to have two stable cycles of period 2 and one
unstable cycle for the same value of a.

4. Solutions of period 3

If we iterate equation (1.1) three times we would get xn+3 as a polynomial of
degree 27 in xn and equating xn+J to xn would give a polynomial equation of
degree 27 for xn. However, xn+3 = xn is satisfied by the equilibrium solutions
xn = 0,1,-1, so we can expect to have xn(x

2 — 1) as a factor, leaving a poly-
nomial equation of degree 24, say G(x) = 0. A particular solution of period 3,
with elements bx, b2, 63 will contribute a factor h(x) to G(x), where

h(x) = (x- bt)(x ~ b2){x - b3) =x3- ax2 + Bx-y, (4.1)

with a — bx + b2 + b3, B = blb2 + b3b}, y — blb2b3. If we can find the symme-
trical functions a, B, y, individual values for bt, b2, b3 can be obtained from the
cubic equation x3 — ax2 + Bx — y — 0. The essence of the factorisation method
is to express B and y as functions of a and then set up an equation which will give
suitable values of a. In the present problem, there can at most be eight factors of
type h(x) in G(x), so we can expect a to satisfy an equation of degree 8. An
additional consideration, because of equation (1.2), is that if (£,, b2, b3) provides
a solution, then (-bx,-b2, -b3) is also a solution. In general, the two solutions will
be distinct and G(x) also has a factor h*(x), where

h*{x) = (x + bx){x + b2){x + b3) = x3 + ax2 + Bx + y. (4.2)
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We can write

k(x) = h(x)h*(x) = (x3 + Bx)2 - (ax2 + y)2

= x6 - AxA + Bx2 - C, (4.3)

where

A = b2 + b2 + b2 = a2-2B, C = b2bjb2 = y2, (4.4)

B = b\b\ + b\b\ + b\b\ = B2 - lay. (4.5)

At most there can be four factors of type k(x) in G(x) and the equation for a
should reduce effectively to an equation of degree 4. What happens in fact is that
we get an equation of degree 4 in a2 and hence at most eight solutions for a.

To relate B and y to a, we use the equations

bi+x = abf + (1 - a)b, (i = 1,2,3) (4.6)

with b4 = bl to ensure a cyclic solution. If we add the three equations

+ (l ~a)a, (4.7)

where the summation, here and subsequently, is from / = 1 to / = 3. Since a is
positive, this equation gives

a = 2 6? = «3 - 3a£ + 3y (4.8)

or

y = (o/3)(l - a2 + 3/8). (4.9)

With this equation established, we note that a = 0 now implies y = 0 and hence
bx or b2 or fe3 is zero. However if one of the b, is zero, equation (4.6) makes the
others zero also and we are back to the equilibrium solution xn = 0. We deduce
that a = 0 is inadmissible for a solution with minimum period 3. In the same
way, no two of the bl can be equal without leading to an equilibrium solution.
(Indeed, no two of the bx can be equal in magnitude for a solution with minimum
period 3.)

From equation (4.6)

b,b,+x = abf + ( 1 - a)bf ( i = 1 , 2 , 3 )

and summing over i gives

= a(aA - 4a2B + IB2 + 4ay) + (1 - a)(a2 - IB). (4.10)

(From the theory of equations, any symmetrical function of 6,, b2,b3 can be
expressed in terms of a, B and y and appropriate subsitutions have been made for
2/>,2 and 2fc,4 in equation (4.10). In the same way, 2 6,3 has been replaced by
a3 — 3aB + 3y in equation (4.8). Similarly, we can write 2fc,4 = A2 — IB and
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2 bf — A3 — 3AB + 3C.) If we substitute for y in equation (4.10), using equation
(4.9), we obtain

0 = 2aB2 + (2a - 3)B + (l/3){(3 + a)a2 - aa4}. (4.11)

In a sense, this gives B as a function of a2 but in practice it proved better to
re-write the equation as

6aB2 = (9 - 6a)B + aa4 - (3 + a)a2 (4.12)

and to use it to replace B2 by a linear function of /? in other equations. For
example,

and using equation (4.12) leads to

18aC = (2aa2 - (9 + la)a4 + 5aa6} + 0{(27 - 6fl)a2 - 12aa4}.

(4.13)

Similarly, the equation B = /J2 — 2ay leads to

6a£ = (9 - 6a - \2aa2)P + 5aa4 - (3 + 5a)a2. (4.14)

Since /I = a2 — 2B, these equations can easily be re-phrased in terms of A and a2

rather than B and a2.
We need two more equations, one to express B in terms of a2 and another to

eliminate B and give an equation for a. It turns out that there are several
relationships available. From equation (4.6)

= A -2 (1 ~a)B + (1 -a)2A (4.15)

and hence

A(a2 -2a+ 2)- 2(1 - a)B = a2(3C + A3 - 3AB). (4.16)

After some reduction, using equations (4.13), (4.14), (4.4) and (4.12), we get

PPl(a) = Rl(a), (4.17)

where

P,(a) = 9 + (6a - 10a2)a2 + \0a2a4, (4.18)

rt,(a) = a2{(3 - 9a + 6a2) + (3a - 10a2)a2 + 4a2a4}. (4.19)

For a given value of a, this gives B as a rational function of a2.
Another relationship can be obtained by multiplying together the three equa-

tions (4.6) to give
3

W i = (*iM3) II
1 = 1
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Since none of the b, can be zero, we can cancel bxb2b3 from both sides and obtain

1 = a3C + a2(\ - a)B + a(\ - af A + (1 - a)3. (4.20)

Substituting for A, B and C in terms of a2 and ft leads to

fiP2(a) = R2(a), (4.21)

where

P2(a) = 9-21a+ 18a2 + (9a - 30a2)a2 + 12a2a4, (4.22)

R2(a) = -18(a2 - 3a + 3) + (9 - 42a + 35a2)a2

+ (6a - 22a2)a4 + 5a2a6. (4.23)

Yet another relationship arises from equation (4.6) if we note that

b3-b2= {b2-bi}{a(b2 + bxb2 + b2) + (1 - a ) } . (4.24)

There will be two similar equations for fe, — b3 and b2 — bx and we can multiply
the three equations together, cancel a non-zero factor (b3 — b2)(bx — b3)(b2 — bx)
on either side and get a symmetric equation

1 = I ] {a{bf + b,bi+x+bf+l) + ( l - a ) }
; = 1

= a3(AB + Bfi+ Aay) + a2(\ - a)(a2 + 3ay + 3B)

+ a(l-a)2{2A + p)+(\-af. (4.25)

This equation is similar to equation (4.20) but messier to reduce. However it leads
to

j87»3(a) = R3(a), (4.26)

where

P3(a) = (9 - 18a + 12a2) + (12a - 26a2)a2 + 14a2a4, (4.27)

R3(a) = -12(a2 - 3a + 3) + (15 - 39a + 28a2)a2

+ (9a - 22a2)a4 + 6a2a6. (4.28)

(In much the same way, we can use

b3 + b2 = (b2 + bx){a{b2-bxb2 + bl) + (1 - a ) }

and the two similar equations to generate an equation for /} but we already have
enough equations for our purpose.)

We can obtain the desired equation for a2 by eliminating B between any two of
the equations (4.17), (4.21) and (4.26) or, if we wish to save a little bit of algebra,
we can use a linear combination of all three to give a simpler equation. If we take
3P3(a) — 2P2(a) — P^a) we get 4a2 as a factor and the same factor occurs in
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3R3(a) - 2R2(a) - Rx(a). If we write

P4(«) - 3i>3(a) - 2P2(a) - Pt(a) = 4a2P5(a),

R4(a) = 3R3(a) - 2R2(a) - Rt(a) = 4a2R5(a),

then

pP5(a) = R5(a), (4.29)

with

P5(a) = (3a - 2a2) + 2a2a2, (4.30)

R5(a) = (6-6a + 2a2) + (3a - 3a2)a2 + a2a\ (4.31)

(It was noted earlier that a cannot be zero for a solution with minimum period 3.)
Eliminating fl between equations (4.17) and (4.29) gives /'1(a)i?5(a) =

P5(a)Rt(a) as the equation for a. This condition leads to an equation

N(X,a) = 0, (4.32)

where X = a2 and

N(X, a) = (27 - 27a + 9a2) + (27a - 45a2 + 18a3 - 4a4)X

+ (36a2 - 27a3 + 9a 4 )* 2 + (9a3 - 6a 4 )* 3 + a4*4. (4.33)

5. Critical values and stability intervals

We now have enough equations to go over to computational work. For a given
value of the parameter a, equation (4.32) becomes a fourth degree equation in X
and we can use numerical methods to find the positive roots, if any, of this
equation. If Xo is a positive root, we can take a = {X^ and calculate /? from
equation (4.29), say, and y from equation (4.9). The roots of the equation

0 = h(x) =x3-ax2 + px- y (5.1)

now give (bv b2, b3) for the corresponding solution of period 3. As noted before,
(-6l,-62,-&3) also gives a solution and this is the solution obtained by taking
a — — ][X^ instead of a = + {XQ. In the subsequent discussion, we shall con-
sider only solutions with a > 0 and at most there will be four of these solutions.
The mirror image solutions still exist, of course, but we can ignore them in
enumerating the solutions for a given value of a. With this convention, we can
summarise the results by saying that there are two solutions for 3.70 < a < 3.925
and four solutions for 3.925 < a «s 4. Thus there are two critical values for a and
for each critical value there is a value of X at which N — 0 and 3 ^ / 3 * = 0. The
graph of N against X has a minimum which touches the Z-axis at this critical
value of X and an increase in a gives two separate zeros for N( X, a).
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The condition for stability is that -1 < S3 < 1, where

S3 = F(&3)F'(ft2)F(61) = [I {3fl&,2 + (1 - a)}
i=i

= 27a3C + 9fl2(l - a)B + 3a(l - a)2A + (1 - a)3. (5.2)

For the critical values of a and X, Si = +1 and the solution is at the limiting
value for stability. As a increases beyond the critical value, two distinct solutions
occur, with S3 > 1 for one solution and 53 < 1 for the other. We can think of
these as separate families of solutions, with instability for all the solutions in one
case and with a small interval of stability in the other case before S3 becomes less
than - 1 . (Because 53 is a function of bf, the value of S3 is the same for a pair of
mirror image solutions and they are both stable if one of them is stable.)

Some guidance about the stability can be obtained from the solutions for
a = 4. For a = 4, equation (5.2) gives

S3 = 27(64C - 165 + 4 , 4 - 1 ) (5.3)

and exact expressions for A, B,C are available in this case. To indicate how they
arise, note that

N(X,4) = 256A-4 - 960A-3 + 1152X2 - 484*+ 63

= (\6X2-32X + l)(\6X2-28X+9) (5.4)

and the roots of N( X, 4) = 0 can be written down, in order of increasing
magnitude, as

Jf, = 1/4, A-2 = ( 7 - / T J ) / 8 , X3 = (l + / l 3 J / 8 , A-4 = 7/4.

These values are shown in Table 1, with the corresponding values of
a, /?, y, A, B, C, S3 and </>. The numerical calculations indicate that A", and X2

correspond to the two solutions which first appear around a = 3.70 and Table 1
shows that the solution with the smaller X value is the one to use in looking for a
stability interval. In the same way, X2 and XA correspond to the two solutions
which first appear around a = 3.925 and the solution with the larger X value
provides a stability interval in this case.

TABLE 1. Values of X, a , 0 , y,A, B, C, S3, <J> for a = 4. (in this table, q denotes / I J . )

A"

a

y
A
B
C

s,

Solution 1

1/4

1/2

- 1 / 2

-1/8
5/4
3/8
1/64
-27

2w/'4

Solution 2

(7 - <7)/8
(-l+<7)/4

-1/4
(3 - q)/\6
(11 -<? ) /8
(9 - 2q)/\6

(\\-3q)/m
+ 27

2w/13

Solution 3

(7 + q}/%
(1 + <7)/4

-1/4
-(3 + <7)/16
(H+<7)/8

(9 + 2<7)/16
(11 +39)/128

+ 27
w/13

Solution 4

7/4

fl/2
0

-ff/%
7/4
7/8

7/64
-27

w/14
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The end results of the calculations are shown in Table 2. In the table,
Xu X2, X3 and XA denote the roots of N(X,a) = 0 in ascending order of
magnitude, while a* is the critical value of a and X* the critical value of X at
which these roots first appear. The next column shows which roots gives an
interval of stable solutions. The upper limit of a for stable solutions is denoted by
a** and appears below a* in column 2. The cyclic solution for a = a* (with
a > 0) is also included as an indication of the type of solution obtained. It is easy
to see from the corresponding directed graph [6] that once a solution of period 3
appears, a solution with any period is possible. However, the narrow intervals of
stability and the extent of the frequency changes involved suggest that solutions
of period 3 are unlikely to occur in practice in genetic problems.

TABLE 2. Critical values for solutions of period 3.

A"-values

Xt, X2

a*
a"

3.69964
3.70232

3.92487
3.92534

X*

0.34855

1.51397

Stable
sequence

* i

Typical solution
(bub2,b3)

0.8874,0.1896,-0.4866

0.9718,0.7597,-0.5011

To complete the discussion, two minor points should be mentioned. One is that
an equation such as (4.17) can easily be changed to an equation for A, since
2)8 = a2 ~ A. Thus we can write

APx(a) = a2P}(a) - 2RX(a) = Qx(a), (5.5)

with similar equations for AP2(a), AP3(a) and AP5(a). In the actual calculations,
these equations were used instead of the equations for /? as the starting point in
obtaining A, B,C, /$, y. The values for A must be positive and in the examples
considered they were of order unity, whereas /? could have either sign and in some
instances | /? | was small. (Table 1 includes a solution where /? = 0.)

The second point is that N(X, a) has an isolated zero for X = 0.4 and a = 2.5,
a zero which does not give a starting-point for admissible families of solutions.
What happens is that N has a minimum at (0.4,2.5) when regarded as a function
of two variables, so N is positive for all neighbouring values of X and a and we do
not get solutions of N(X, a) — 0 when a is increased slightly. At the point
(0.4,2.5), equations (4.17), (4.21), (4.26) and (4.29) give indeterminate values for 0
but equation (4.11) becomes

0 = 502 + 20 + 3/5 (5.6)

and this gives complex values for p. Thus the zero of N(X, a) at (0.4,2.5) does
not correspond to a real solution.
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