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Abstract

Analysts often seek to compare representations in high-dimensional space, e.g., embedding vectors of
the same word across groups. We show that the distance measures calculated in such cases can exhibit
considerable statistical bias, that stems from uncertainty in the estimation of the elements of those vectors.
This problem applies to Euclidean distance, cosine similarity, and other similar measures. After illustrating
the severity of this problem for text-as-data applications, we provide and validate a bias correction for
the squared Euclidean distance. This same correction also substantially reduces bias in ordinary Euclidean
distance and cosine similarity estimates, but corrections for these measures are not quite unbiased and are
(non-intuitively) bimodal when distances are close to zero. The estimators require obtaining the variance
of the latent positions. We (will) implement the estimator in free software, and we offer recommendations
for related work.
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1. Motivation

Social scientists routinely represent entities as vectors in high-dimensional spaces where the elements
of those vectors have been estimated (e.g., Kraft and Klemmensen 2024; Mozer et al. 2020; Nyarko
and Sanga 2022; Rodriguez et al. 2023; Rossiter 2022; van Loon et al. 2022). For instance, they
might represent documents in terms of the modeled topic proportions they contain, or Members of
Congress in terms of their estimated positions in several dimensions of ideological space. From these
representations, researchers draw conclusions about the (dis)similarity, between the documents or
actors in question. They do this via measured distances between the vectors. This calculation is typically
trivial: for example, it takes very little computational effort to compare two word embedding vectors in
terms of their Euclidean distance from one another. But this simple “plugin” estimator can be misleading
in practice. This is because the elements of the vector are estimated with error, yet this uncertainty is not

© The Author(s), 2025. Published by Cambridge University Press on behalf of The Society for Political Methodology.

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0),

which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited.


www.doi.org/10.1017/pan.2024.22
https://orcid.org/0000-0002-6229-2753
https://orcid.org/0000-0001-9959-1805
https://orcid.org/0000-0002-7657-3089
mailto:hobbs@cornell.edu
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1017/pan.2024.22

https://doi.org/10.1017/pan.2024.22 Published online by Cambridge University Press

Political Analysis 267

properly incorporated into the distance calculation. The result is an upward bias in the measurement of
that distance; and this bias is worse when the vectors are more poorly estimated. This problem has been
observed in several fields, but the remedies are not well known or implemented (e.g., Gentzkow et al.
2019; Logan et al. 2018; Walther et al. 2016; Weir et al. 2012)." Thus our treatment below.

We explain the problem and show that statistical bias can be large and consequential, especially in
comparisons where one group-wise distance has been estimated with greater uncertainty than another
distance. This might be due to different sample sizes. Less intuitively, it might be due to sample sizes
that are imbalanced across comparisons: e.g., a (very imbalanced) majority v minority group vector
distance versus a (balanced) 50:50 group distance. This is in contrast with bias in (balanced) pairwise
distances of non-averaged vectors Kraft and Klemmensen (2024); Mozer et al. (2020); Rossiter (2022),
where a) researchers intend for distances to capture levels of measurement error (and not a document’s
expected value) or b) such bias may have more limited effects on later inferences - since researchers
might plausibly assume more or less equal measurement error across studied pairs.

We derive an estimator that does not suffer from this bias, and we show that it performs well in a
variety of settings. Finally, we provide solutions to practical issues that arise in the embedding regression
setting (e.g., statistical testing and inference) and incorporate the solution into the conText package
inR.

2. Why Uncertainty in Position Leads to Bias

To fix ideas, suppose one had a relatively short vector—of length 2—representing a word embedding.
For the word “immigration” (say) that embedding is estimated (e.g., because it is based on a sample of
speech) to be vp = (—0.1,1.2) for Democrats in Congress. The inferential task is to compare it with some
other embedding vector which, for now, we will assume is known (not estimated) and is vg = (0,1) (the
noiseless, expected value of the “immigration” embedding for Republicans in Congress). The Euclidean
distance between 7p and vy is 0.224. The cosine similarity between them is 0.997. We might ask: is the
(true) Euclidean distance plausibly zero, and is the cosine similarity plausibly 12

To see the problem, suppose our estimate of vp is noisy. This might be because we do not have many
Democrats in our sample, and thus there is more uncertainty over each (averaged) element in the vp
vector. If we increase the noise in the estimated vp when there is no (true) difference between vp and vg,
we always move it further from (0,1). But this bias also applies in expectation when there is some (true)
difference between vp and vg. For instance suppose that across samples or noisy measurements, the
values that we estimate for vp (the unobserved sampling distribution of ¥p) are sometimes greater than
corresponding elements in the v vector and sometimes less. Then our element distances are nonetheless
always positive; thus in expectation, the estimated distance is greater than the true distance. We illustrate
this effect in SI Figure C.1, and also there expand our bias explanation.

To characterize the bias more fully and prec1sely, consider measuring the Euclidean distance between
two (estimated) length-K vectors 6 and ¢—of which our word embeddings vectors above were just
specific examples. This is, by definition, the L, norm of the difference between those vectors, | 0-¢ 2=

V. (ék - qASk)Z. Now, for presentation reasons (though, as noted below, this will also be our preferred

!In practice, distances are typically not corrected for statistical bias (see, for example, uncorrected estimates in Rodriguez
et al. 2023). When bias is addressed, approaches include using cross-validation Walther et al. (2016) (an approach not yet
used in political science—that is functionally equivalent to our simple correction, but difficult to extend to complex designs)
or using the mean of pairwise estimates and then comparing those means of a kind of permutation distribution Kraft and
Klemmensen (2024) (without correcting bias). Our work is distinct from research that identifies and attempts to correct for
term-frequency bias in word embedding association tests (e.g., Kindel 2023; van Loon et al. 2022) (due to biases in position);
however, the form of bias we correct here might also contribute to observed frequency-related biases.
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norm), suppose we square that norm. That is, we are working with |6 — @3 = ¥X | (8¢ — ¢ )% Taking
expectations on both sides we have

~ ~ K A~ ~
e[10- 6] - | 3> .
k=1
K ~ ~
= S E[(Bk— b)) + V[0 — ] (2.2)
k=1
K ~ ~
=[0-0)5+> V[0 x] (2.3)
k=1
Bias

where line 2 follows because E[X*] = E[X]* + V[X] for a random variable X. Importantly, variance here
is the variance of the (unobserved) distribution of the estimator (i.e., the squared standard error). The
point is that the bias (for the squared norm) is the (sum of the) variances of the differences between
the vectors’ elements. And those variances result from uncertainty in estimation of ¢ and 6. Only if the
elements of those vectors are estimated without error is there no bias. To be clear, there is no obligation
to use the squared Euclidean norm—one can use the unsquared version (as in Rodriguez et al. 2023,
where this version is used but uncorrected), cosine similarity, or some other metric. But some version
of the bias will remain—and the form of the bias is not straightforward to write down or fully correct
(see SI Sections C.2 and C.2.1).

Linking this back to our initial motivating example, we need to subtract the variances (i.e., the
squared standard errors) of 7pivg; and Vp;vg, from 0.224> ((Vpivei)® + (1752vR2)2) for an unbiased
estimate of the squared Euclidean distance between vp and vx.

3. Why this Matters, Even in Large Samples

Inspecting Equation (2.3), when could we realistically expect the absolute bias to be small or zero? It is
when we have a very large amount of data such that our estimates of the (elements of the) vectors are
close to their true population values. And, for descriptive relative comparisons such as “the difference
between Democrat women and men on this issue is larger than for Republican women and men” we
must describe the distances correctly if measurement or sampling error may be unequal across these
comparisons. But to clarify, the issue is not that small samples make claims about whether one vector is
statistically significantly different to another harder to assess; they do, but that is a separate matter. The
issue is that the claimed (point) difference between the vectors is reported as being larger than it really
is irrespective of hypothesis test concerns.

Of course, it is hard to know in advance whether one has “enough” data or not. However, the problem
will remain in absolute terms when the dimension of the vector is high relative to the uncertainty. And,
below, we show that it can remain in relative terms when two compared group-wise differences are
relatively imbalanced.

To illustrate absolute versus relative bias, we use a 10% sample of the Twitter voter panel described
in Hughes et al. (2021) and compare random groups (where the true difference must be zero by
construction) of varying relative sizes and for the same overall sample size—for example, in more
practical terms, a 50-50 party affiliation comparison based on 1000 total observations versus a 90-10
majority-minority racial group comparison based on 1,000 total observations. Specifically, we compare
these groups by estimating embeddings of the word children (derived by the methods in Rodriguez
et al. 2023) for them, restricting our analysis to a single tweet each from a random sample of users and
only tweets containing a single use of the word children—we address more complex designs later
in this paper. We then calculate the squared Euclidean norm of the difference between (the average)
embedding vector of children for the 50-50 comparison (e.g., gender or U.S. political party) versus
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Figure 1. Smaller sample sizes and larger group imbalance both lead to increased estimate uncertainty, and so artificially inflate
distance estimates. This can exaggerate majority-minority group differences relative to equally sized group differences.

90-10 (e.g., majority-minority race or religion). In this, increasing group imbalance leads to increased
estimate uncertainty.

Figure 1 shows the squared Euclidean norm (with jackknifed confidence interval) for both the
balanced and imbalanced random groups. While the size of the estimated difference—note the y-axis
scale is much smaller as we move across the page—is decreasing as the sample size grows (from 200
to 400 and upwards to 10,000 instantiations of the term), the difference between the balanced and
unbalanced case remains essentially the same in relative terms. This issue matters because the absolute
size of the norm often has no clear interpretation and scholars use the relative scale of the differences to
benchmark their results. Simply put, for practical reasons of interpretation, large sample sizes will not
fix this issue.

4. A Correction Based on Variance Estimation

Below, we derive a correction for both simple (a two-group comparison) and complex designs (e.g.,
non-independent observations and controls). Our applied setting is embedding regression though it
will work in other settings too.

Consider the generic case where the model on our latent vectors is parameterized by a vector 3. In
the context of two groups’ embeddings this would just be the difference between their average vectors
(8 = 0 — ¢) but we can think of it as a more general regression parameter. If our summary of this vector
is the squared Euclidean norm, this would lead to the estimator,

1BI2=>(8 - V[G]) (4.1)

which is unbiased given an unbiased estimator of the variance V[-] (and an unbiased estimator for 3).”

>This can result in a negative estimate if the value of the variance is large enough. That case should be substantively
interpreted as implying “no difference” between the vectors.
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For the (non-squared) Euclidean norm, because the corrected value can be negative, we can take the
square root of the absolute value || 3% and then apply the sign of the estimate. Let that sign of | 3|5 —i.e.,

literally whether the quantity ¥'x_, Bkz -5, V[Bk] is positive or negative—be denoted as sgn. Then

—_— ~ 2 ~ A~
we have the estimator, || 3] = sgn\/ abs (Zszl B —3K, V[,Bk]). However, this estimator is no longer

unbiased, as we will show. And, unlike the squared version, it is strongly bimodal. We illustrate this
bimodality and potential interpretation problems in SI Figures C.3 and C.4. Nonetheless, it does provide
an estimate closer to a null of no difference, and with bias far smaller than for the uncorrected norm.
Further, in this form, the quantity can be used to (mostly) correct bias that arises in cosine similarity
measures (which itself arises due to bias in the Euclidean distance denominator of those measures; see
SI Section C.7). While we think it is reasonable for some researchers to prefer the ordinary Euclidean
distance (and cosine similarity), authors who use these corrected distance measures should be careful
to fully explain to readers their bimodal distributions and correspondingly skewed confidence intervals
around 0.

These estimators rely on a way of estimating the variance of the estimator for 3. For the simplest
case, for comparing embeddings of dimensions K, one can run K separate (linear) regressions, each
with n observations corresponding to the number of instantiations of the term in question. One then
has immediate access to the relevant Bs and the standard errors (and thus variances) of the same. We
illustrate this debiasing using R's Im function (R’s main linear regression function) in SI section A, where
the de-biasing step is simply estimate® - std.error’.

To demonstrate the efficacy of the correction, using variances estimated from the K linear regressions
method above, we simulate differences in means by sampling vectors from a multivariate normal and
comparing the corrected and uncorrected norms for different group imbalances (50%-50% or 10%-
90%). In this, we sample k = 50 “embedding” dimensions, for varying sample sizes. Across these 50
dimensions, the locations of the two groups are offset by a value of +¢, where c is a small or large number,
on half (25) of the dimensions. The variance of each dimension is selected by a random draw from a
non-central (specifically A = 1) x* distribution with one degree of freedom, meaning that variance is not
equal across dimensions. Figure 2 displays the uncorrected plugin estimator for the squared Euclidean
norm. It shows that whatever the group imbalance, the corrected estimator is unbiased: on average, it
recovers the true distance.

Figure 2 in the SI is the same analysis for the non-squared (i.e., the usual) Euclidean norm. This
corrected estimator has a small negative bias, but it still substantially outperforms the plug-in estimator.

4.1. Clustering and Complex Sampling Designs

In some cases, such as embedding regression, observations are not independent. This can cause a naive
estimator to underestimate the variance of the difference and permutation tests to be inaccurate.’
In the SI, we provide and validate through simulation straightforward solutions to these problems,
demonstrating that a) we can use sandwich-style standard errors to estimate the variance under
clustering and other complex designs when computing our debiased estimator, b) clustered permutation
appropriately controls Type I error under clustering (see SI Section C.6, and C.6.2), and c¢) residual
permutation controls Type I error with control variables (see SI Sections C.6, and C.6.2).

We illustrate performance under a realistic setting with clustering and covariates in Figure 3. For
this, we use a Twitter data set linked to voter records and voter demographics, described in Hughes et al.
(2021). In a 10% sample (approximately 150,000 users out of 1.5 million), we analyzed tweets between
January 2019 and February 2023 that contained the word “people” (specifically 72,389 users, who posted
5.5 million tweets containing “people”). To simulate sampling distributions with this ‘population, we
then created sub-samples of users for varying sample sizes (1), taking 500 samples for each #. For these

3Permutation tests are unaffected by estimate corrections in simple designs.
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Figure 2. This figure shows simulation results for the squared Euclidean norm divided by the number of dimensions (i.e., the square of
the true 8’s). The horizontal black lines represent the true Euclidean norm squared, divided by the number of dimensions (50). Points
represent the averages of the simulations and intervals are the 2.5% to 97.5% quantiles of the sampling distributions. Small sample
size and greater group imbalance increase estimation uncertainty (i.e., the standard error/variance of /3’). The effect of greater k can
be determined by multiplying the y-axis scale by k.

Correction in real data with N=72,839 users, for 5,496,225 tweets
containing the word 'people’
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Figure 3. Estimator performance on sub-samples of Twitter data set.

sub-samples (and on the full sample/“population”), we ran embedding regression with covariates—party
(Republican or Democrat), age group, gender, and race—and with each user weighted equally in the
models (rather than by tweet frequency). In the figure, the points indicate the mean of the squared
Euclidean norm for party, with intervals for the 2.5% to 97.5% quantiles of the sampling distribution.
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Here, in real data and with many repeat documents for authors, the correction accurately measures
distance for small sample sizes. However, we also see a wide sampling distribution, suggesting that
relatively large sample sizes and/or large effect sizes are likely to be needed to reliably measure differences
between groups.

4.2. Constructing Confidence Intervals is Difficult

Despite the feasibility of the debiased estimator and the accuracy of related permutation tests (i.e.,
accurate calculations of the distribution of a null), the construction of confidence intervals with proper
coverage at all values of the latent distance—and for complex designs in particular—is challenging.
While the natural impulse is to use resampling methods with the debiased estimator, this is unfor-
tunately an understood failure case for the bootstrap (Dodd and Korn 2007), which we illustrate
in SI Section C.4. Bootstrapped confidence intervals tend to contain more than nominal coverage,
meaning that a 95% CI will have greater than 95% coverage, especially for small effect sizes. We instead
recommend the jackknife which outperforms the bootstrap (see, again, SI Section C.4), but does still
over-cover when the true distance is small.

5. Discussion

When social scientists compute distance between vectors the risk of bias is considerable. We studied
this bias and suggested ways to mitigate it. These methods work in real and simulated settings, and will
be implemented in free statistical software.

Data Availability Statement. Replication code for this article has been published in Code Ocean, a computational
reproducibility platform that enables users to run the code, and can be viewed interactively at https://doi.org/10.24433/
C0.1397436.v1 Green et al. (2024a). A preservation copy of the same code and data can also be accessed via Dataverse at
https://doi.org/10.7910/DVN/YDNVSN Green et al. (2024b).

The social media data are publicly viewable but, due to new API access restrictions, the text of shareable tweet ID’s can no
longer be downloaded in bulk through Twitter’s academic API. We are unable to share raw text data to reproduce analyses,
except as aggregated model output.
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