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1. Introduction

A polygon is said to be rational if all its sides and diagonals are rational,
and I. J. Schoenberg has posed the difficult question, 'Can any given
polygon be approximated as closely as we like by a rational polygon?'
Many of the known results concerning this question are contained as special
cases in theorem 1 below which was proved by one of us (cf. the references).

THEOREM 1. (T. K. Sheng) Let CB be a diameter of the unit circle <&
with centre 0, and let D be a point on CB (produced if necessary). Then given
e > 0, there exists on CB, a point A within e of D and a finite set £fE of points
on ^ such that:

(i) Given any point E on %', there exists a point P{ of SfE within s of E.
(ii) The set of points S^E is symmetric about CB.

(iii) The polygon formed by the points of Sfe and the points 0, A, B, C
is a rational polygon with rational area.

The object of this paper is to extend Sheng's investigation of rational
polygons on a point and a circle. Throughout we adopt the following nota-
tion. We let AOP be a triangle with sides a = OP, b = AO, c = AP and
20 as angle A OP. We denote the circle with centre 0 and radius a by Q),
and we denote the set of all points Q of 3i such that AOPQ is a rational
polygon by J . We allow P to be in J . Next we let B, C be the intersections
of the circle 3) with AO produced, and we let A* be the inverse image of
A in 9>, that is to say A* is the point of AO with AO • A*O = a2. Finally
we write J for the set of all square free positive integers / of the form
/ = (2?2+S2)/FF2 for some integers R, S, W with W ^ 1. By reduction
modulo 8 one can show that if / e J then / = 1, 2, 5 (mod 8).

If £L is to have more than 2 points, then as we show in lemma 1, the
set J2 is symmetric about OA. There is an integer / e / such that the sines
and cosines of all the angles \ /_AOQ with Q e £ are rational multiples of
\/I. Moreover all the triangles formed by points of the set 2. u {A, A*, 0}
are Heron triangles, that is to say they have rational sides and area; and
in the special case / = 1 all the triangles of the larger set
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£u{A,A*,O,B,C}

are Heron triangles. In lemma 2 we prove that 21 can be empty. This fact
is interesting because it shows that it was essential for Sheng in theorem 1
above to approximate D by A. In lemma 3 we use the result about y 7 to
show that all the points of J can be obtained from the rational solutions
X, Y of the equation

X(X+l)(X+e2) = Y2 where e = (a+b)l(a-b).

As a particularly useful example we prove in section 6 that 2L is dense in
3s when b = c. This example enables us to prove our main result which is

THEOREM 2. Given I e <f, the set of all Heron triangles AOP for which
y 7 Sin \ /_ AOP and y/I Cos \ /_ AOP are rational, and for which 21 is
dense in the circle S>, is everywhere dense in the set of all triangles. Moreover:

(i) If I = 1, then any points in the set l u {A,0, P,A*. B, C) form
a rational polygon with rational area.

(ii) 7 / 7 ^ 1 , then any points in the set 2t u {A, 0, P, A*} form a
rational polygon with rational area, but both BQ and CQ are irrational for
Qel.

Thus we have greatly strengthened Sheng's theorem 1 above, even
though we were not able to prove our

CONJECTURE. If AOP is a Heron triangle then 21 is dense in Q).
We confess to having some reservations about the case when the

Heron triangle is right-angled at P.
It is essential to work with the angle AOP in the above theorem. The

right angle triangle with sides 3, 4, 5 shows that the 7 can change in a
triangle from angle to angle. Also the two triangles 7, 65, 68 and 29, 65, 68
have 442 and 85 respectively as 7 for the angle between the sides 65 and 68.

J. H. J. Almering called a point E of the plane a convenient point if
the distances AE, OE, PE are all rational. Thus we have showed that
convenient points are dense on the circle 9>. Now Almering showed in [1]
that convenient points are dense in the plane, but he did not require the
distance between two convenient points to be rational, as we have done.

2. A basic property of point and circle polygons

Let A OP be a given triangle and suppose that Qx, Q2, Q3 are distinct
points of 3>. For i = 1, 2, 3 we write 201 for angle AOQt and Q\ for the
reflection of Qt in the line OA. We give a basic property of the polygon

as
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LEMMA 1. / / the 5-gon AOQ1Q2Q3 is rational then there is a unique square
free positive integer I e J such that each of the six numbers Sin 04 and Cos 0,-
is a rational multiple of y/I. Every triangle in the polygon

A*AOQ1Q2Q3Q'1Q'2Q'3

is Heron. Also BQ{, CQt are rational iff 1=1.

PROOF. For i = 1, 2, 3 we find, by the cosine rule, that Cos 20t- is
rational. Since Cos 20,. = 1—2 Sin2 0,. = 2 Cos2 0 , -1 it follows that there
are positive square free integers Jt, K{ and rational numbers st, ct such that

Sin 0, = s{ y'J\ and Cos dt = ci \?Ki for i = 1, 2, 3.

Now for 1 fS i < / ^ 3 the number

±QtQ,l2a = Sin (0,-0,) = Sic, V(/ ,X,)

is a non-zero rational. It follows from the identity

{siCj

that s^j y/iJiKJ+SjCj ^/{JtK>\ is rational, and hence the numbers
and y/iJjKf) are rational. Since the J's and the K's are square free integers
we therefore have Jt = K} and Jt = Kt. Varying i and / shows that all the
J 's and K's have the same value, / say. Since sf /+c 2 / = 1 we have 7 e / .
That the lengths QtA* are rational follows from the fact that triangles
AOQt

 a n d OA*Qt are similar. The area of each of the triangles in the polygon
is rational because Sin 20f and Cos (04±0y) are clearly rational for
l ^ t ^ j ' ^ 3 . Since BQi = 2« Sin d( and CQt = 2a Cos Bt these lengths
are rational iff / = 1.

If the point P of the given triangle was one of the points Qt of lemma 1,
then since

(1) Cos2 6 = ^—-^ and Sin2 0 =
v ' 4ab 4ab

we could find / by taking square roots.

3. To make 3. void

We have just seen that the triangles given by 2 must be Heron. So
to show that 2 can be void we take a triangle AOP with a = 1, 6 — 2
and prove

LEMMA 2. No Heron triangle has 1 and 2 as two of its sides.
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PROOF. By the area and cosine formulae, a triangle is Heron iff Sin y>
and Cos y> are rational for all its angles y. Assume that AOP is a Heron
triangle with a = 1, b = 2 and let y and <f> be the angles opposite sides 1
and 2 respectively. Since Tan %y> = Sin y>/(l+Cos y>) = r say, we have
Sin ip = 2r/(l-fr2) and Sin <j> = 2s/(l+s2) for rationals r, s. By the sine rule

s ( l+ r 2 ) -2 r ( l+s 2 ) = 0.

Solving this quadratic equation for r, we find that no non-zero rational
solutions r, s exist because it is known that

s 4 +s 2 + l = t2,

has no non-zero solutions (cf. [6] 636—8).

4. The general solution

Now lemma 2 has shown that we cannot start with any circle and point
and get rational polygons. So in view of lemma 1, from now on we will
start with AOP as a Heron triangle. Also we may change the scale of AOP
so that a, b, c are integers with greatest common divisor 1. If a — b so that
A lies on <2), then 2. is obtained simply taking Tan \% rational, so we assume
that a ^= b. Then we have

LEMMA 3. / / A OP is a Heron triangle and a =£ b then the points of 2.
can be obtained, from the rational solutions X, Y of

(2) X(X+l)(X+e 2 ) = Y2, where e* = (a+i)2 / (a-6)2 > 1,

and vice versa.

PROOF. We wish to obtain the set 3, from the triangle AOP. With 2.
there will be associated the number y/I of lemma 1. So points Q of 2. give
triangles OAQ such that OA = b, OQ = a, AQ is rational, and if 2co is
angle AOQ then

Sin w = s/yf and Cos eo =

for some rationals r, s. Applying the cosine rule to AOQ we find that

(3) (a-b)2r2+(a+b)*s2 = M, where t = AQ.

Putting 6 = co in (1) shows that r = r0, s = s0, t = t0 gives a solution to
(3) when

rl = /{(«+6)2_c2}/4a&, s2 = 7{c2-(a-6)2}/4a6 and t0 = c.

Hence (cf. [7] p. 44) the general solution to (3) is
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p-^r = — {a—b)2r0u
2—2{a+b)2s0uv+ {a+b)*r0v

2

p-i s = (a—b)2s0u
2—2(a—b)2rouv— {a+b)2s0v

2

and so
r —rom

2—2e2sorn-\-e2ro
(4) s som

2—2rom—e2so

where e = (a-\-b)/(a—b) and m = u/v. Thus all ratios r/s for solutions to
(3) are obtained by giving m all rational values in (4).

Now we must have Sin2 <w+Cos2 a> = 1, or in other words

(5) s2+r2 = / .

Using the same method as we used for (3) we find that

r -r0n
2-2s0n+r0

(fa) — = .
s s0n

2—2ron—s0

gives all ratios rjs for solutions to (5) when n takes all rational values. Note
also that because r0, s0 satisfy (5) and (3) we have

(7) r2
0+s2

0 = I a n d r%+e2s% = f2l

where / = c/(a—b). We evaluate the expression

(rso—sro)l(rso+sro)

using (4) and then using (6) and equate the two results. The resulting
expression simplifies, by virtue of (7), to

(8) n(r0m+e2s0){s0m—r0) = mf2(ron+so)(son—ro).

We now put m = —Xn in (8) and, again using (7), obtain

n2soX(f*+X)+2nXro(l-n-so(Xf2+e2) = 0,

which is a quadratic equation in n. To obtain rational solutions of this
equation the discriminant must be a square, so

(9) s2
0f

2X3+gX2+sle2f2X = z2,

for some rational z, where

g = r*o-2t*p+ttf+sle>+$r = slf2(l+e2),

the last equation being obtained again by using (7). The lemma now follows
by dividing (9) by s2/2, and putting Y2 = ^/s2./2.

We will next discuss the solutions of (2). Trivially X = 0, — 1, — e2

are solutions. Also from (8) we observe that
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(10) X = -mjn = r%\s\ = {(«+&)2-c2}/{c2-(a-&)2} = Cot2 6

is a solution.

LEMMA 4. If (i) X = X is any solution of (2) then (ii) X = e2/A, (iii)
) , and (iv) X = — e2(Z+l)l(X+e2) are also solutions.

PROOF. The result can be verified by direct substitution. In fact we
found (iii) and (iv) by determining the points of intersection of the curve
(2) with straight lines through the known points (A, f), (0, 0), (—1, 0) and
(-e\ 0) of (2).

5. Reduction to canonical form

To reduce (2) to canonical form we put X = x'—3~1(l+e2) in (2)
to obtain

Then we make the change of variables

x = 9x'(a—b)2/h2 and y = 27(a—b)3Y/h3 where h = h.c.f. (a+b, a—b),

and find that the canonical form of (2) is

(11) x3—Kx—L = y2,

where K, L are the integers

K = 27{(a+b)i-(a+b)*(a-b)2+(a-b)i}lhi,
and

L = -27{(a+b)2+(a-b)2}{(a+b)2-2{a-b)2}{2(a+b)2-{a-b)2}lh<i.

We are now able to use a result proved earlier by one of us ([4], Lemma 1).

LEMMA 5. Let K and L be integers. Let the equation

(12) 3?-Kx~L = 0

have real roots a, /?, y with a < /S < y. Suppose that on the cubic curve

x*-Kx-L = y*

there are rational points (fj, J?X) and (£2, r]2) with a ^ | x ^ /? and f2 not an
integer. Then the set of rational points of the curve is everywhere dense on it.

The roots of (12) obtained from the roots X = 0, — 1, — e2 of (2) are
the rationals

a = ~3(a2+b2+3ab)h-2 < (i = -3{a2+b2-6ab)h~2 <y = 6(a2+b2)h~2,

so in lemma 5 we take £x = a. Hence the rational solutions to (11) and hence
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to (2) will be everywhere dense if we can find one solution (£2, rj2) with f2
not an integer. If X is a solution of (2) then by the transformations which
reduced (2) to (11) we find that

is a solution of (11). We recall that (10) is a solution of (2). Using this
solution, lemma 4, and the transformation (13) yields

LEMMA 6. The set of rational points of (2) is everywhere dense on (2) if
any one of the numbers

(i) 9{a-b)2{(a+b)2-c2}lh2{c2- (a-6)2},

(ii) 9(a+b)2{c2-(a-b)2}lh2{(a+b)2-c2},

(iii) 3cIh, and

(iv) 3(a2—b2)lhc,

is not an integer.

6. Particular cases

Our first two cases show that if the given Heron triangle A OP is right
angled at 0, or isosceles with b = c, then 2 is dense in !3. In both these
cases we show that the number 3 (a2—b2)jhc of lemma 6 is not an integer.

CASE 1. a2+b2 = c2. If n divides c2 = a2+b2 and a2—b2 then n divides
2a2 and 2b2. Clearly h.c.f. (a, b) — 1 so n is 1 or 2. Reducing the equation
a2-\-b2 = c2 modulo 4 shows that of a and b one is odd and one is even,
so n — 1. Hence if Z{a2—b2)jhc is an integer then c is 1 or 3, neither of which
is possible.

CASE 2. b = c. In this case h.c.f. (a, b) = 1 so if 3(a2—b2)\hc is an
integer then c is 1 or 3, but none of the 5 triangles which need be considered
is Heron.

It is worth remarking that if R is the point of intersection of AP
produced and 2, then R e 2 if AOP e 3. Thus the Heron triangles occur
in pairs. However when A OP is right-angled at P, then R = P and we
have no non-trivial solution of (2). Not surprisingly all the numbers in
lemma 6 are integers under these circumstances. Thus lemma 6 is not strong
enough to prove our conjecture. However of all the 26 integer Heron
triangles with all sides ^ 30 the only ones which are not covered by the
cases mentioned in this section, and for which lemma 6 does not prove 3
dense are the two pairs (13, 20, 11), (13, 20, 21), (17, 25, 12), (17, 25, 28).
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7. Proof of the main result

We need an elementary lemma.

LEMMA 7. Given I e J, the set of Heron isosceles triangles AOP with
AO = AP, and such that y/I Sin \ /_ AOP and ^/I Cos \ l_ AOP are both
rational, is everywhere dense in the set of all isosceles triangles.

PROOF. If we let 20 = /_ AOP = /_ APO, then the triangle AOP is
uniquely defined when the angle 0 and the side a = OP are given. Now
if we choose a rational and Tan 0 = sjr where r, s satisfy equation
(5), then ^1 Sin 0 = s and y/I Cos 0 = r whilst Sin20 = 2rs/J and
Cos 20 = (r2—s2)//, so that triangle AOP is one of the Heron isosceles
triangles described in the lemma.

Varying r and s varies 0. Thus the lemma will be proved if we can show
that the solutions s/r = Tan 0 to (5) are everywhere dense in the reals.
By definition of J, that / e / implies that there exist rationals r0 = RJW
and s0 = SjW such that (r0, s0) is a solution to (5). As mentioned earlier,
the general solution to (5) is then (6). The right-hand side of (6) is continu-
ous in n, with the real axis as its range, when n is considered as a real
variable. Hence the solutions r/s to (5) are everywhere dense in the reals
and the lemma is proved.

We can now prove theorem 2. Let A'OP' be any triangle, not necessarily
rational, with associated circle 3)'. If A' is inside 3>' let A" be the inverse
image of A' in 9i', otherwise let A" be A'. Let P" be the point of 9>' such
that the triangle A"OP" is an isosceles triangle with A"0 = AP". By
lemma 7, we can approximate A "OP" as closely as we like by a Heron
rational isosceles triangle AOP with AO = AP and y/I Sin \ /_ A OP,
\/I Cos \ /_ AOP are both rational. By case 2 of section 6 the set 2. for
A OP is dense in its associated circle Si and theorem 2 follows.
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