
JFP 27, e16, 11 pages, 2017. c© Cambridge University Press 2017

doi:10.1017/S0956796817000089

1

PhD Abstracts

GRAHAM HUTTON

University of Nottingham, UK

(e-mail: graham.hutton@nottingham.ac.uk)

Many students complete PhDs in functional programming each year. As a service

to the community, the Journal of Functional Programming publishes the abstracts

from PhD dissertations completed during the previous year.

The abstracts are made freely available on the JFP website, i.e. not behind any

paywall. They do not require any transfer of copyright, merely a license from the

author. A dissertation is eligible for inclusion if parts of it have or could have

appeared in JFP, that is, if it is in the general area of functional programming. The

abstracts are not reviewed.

We are delighted to publish 9 abstracts in this round and hope that JFP readers

will find many interesting dissertations in this collection that they may not otherwise

have seen. If a student or advisor would like to submit a dissertation abstract for

publication in this series, please contact the series editor for further details.

Graham Hutton

PhD Abstract Editor

https://doi.org/10.1017/S0956796817000089 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000089


2 G. Hutton

GUMSMP: A Scalable Parallel Haskell Implementation

MALAK ALJABRI

University of Glasgow, UK

Date: November 2015; Advisor: Hans-Wolfgang Loidl and Phil Trinder
URL: http://tinyurl.com/mc4huse

The most widely available high performance platforms today are hierarchical, with

shared memory leaves, e.g. clusters of multi-cores, or NUMA with multiple regions.

The Glasgow Haskell Compiler (GHC) provides a number of parallel Haskell

implementations targeting different parallel architectures. In particular, GHC-SMP

supports shared memory architectures, and GHC-GUM supports distributed mem-

ory machines. Both implementations use different, but related, runtime system (RTS)

mechanisms and achieve good performance. A specialised RTS for the ubiquitous

hierarchical architectures is lacking.

This thesis presents the design, implementation, and evaluation of a new parallel

Haskell RTS, GUMSMP, that combines shared and distributed memory mechanisms

to exploit hierarchical architectures more effectively. The design evaluates a variety

of design choices and aims to efficiently combine scalable distributed memory

parallelism, using a virtual shared heap over a hierarchical architecture, with low-

overhead shared memory parallelism on shared memory nodes. Key design objectives

in realising this system are to prefer local work, and to exploit mostly passive load

distribution with pre-fetching.

Systematic performance evaluation shows that the automatic hierarchical load

distribution policies must be carefully tuned to obtain good performance. We

investigate the impact of several policies including work pre-fetching, favouring

inter-node work distribution, and spark segregation with different export and select

policies. We present the performance results for GUMSMP, demonstrating good

scalability for a set of benchmarks on up to 300 cores. Moreover, our policies

provide performance improvements of up to a factor of 1.5 compared to GHC-

GUM.

The thesis provides a performance evaluation of distributed and shared heap

implementations of parallel Haskell on a state-of-the-art physical shared memory

NUMA machine. The evaluation exposes bottlenecks in memory management, which

limit scalability beyond 25 cores. We demonstrate that GUMSMP, that combines

both distributed and shared heap abstractions, consistently outper- forms the shared

memory GHC-SMP on seven benchmarks by a factor of 3.3 on average. Specifically,

we show that the best results are obtained when shar- ing memory only within a

single NUMA region, and using distributed memory system abstractions across the

regions.

https://doi.org/10.1017/S0956796817000089 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000089


PhD Abstracts 3

Quotient Inductive-Inductive Definitions

GABE DIJKSTRA

University of Nottingham, UK

Date: February 2017; Advisor: Thorsten Altenkirch
URL: http://tinyurl.com/lndmo4k

In this thesis we present a theory of quotient inductive-inductive definitions, which

are inductive-inductive definitions extended with constructors for equations. The

resulting theory is an improvement over previous treatments of inductive-inductive

and indexed inductive definitions in that it unifies and generalises these into a single

framework. The framework can also be seen as a first approximation towards a

theory of higher inductive types, but done in a set truncated setting.

We give the type of specifications of quotient inductive-inductive definitions mutu-

ally with its interpretation as categories of algebras. A categorical characterisation of

the induction principle is given and is shown to coincide with the property of being

an initial object in the categories of algebras. From the categorical characterisation

of induction, we derive a more type theoretic induction principle for our quotient

inductive-inductive definitions that looks like the usual induction principles.

The existence of initial objects in the categories of algebras associated to quotient

inductive-inductive definitions is established for a class of definitions. This is done

by a colimit construction that can be carried out in type theory itself in the presence

of natural numbers, sum types and quotients or equivalently, coequalisers.

https://doi.org/10.1017/S0956796817000089 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000089


4 G. Hutton

Certification of Programs with Computational Effects

BURAK EKICI

Université Grenoble Alpes, France

Date: December 2015; Advisor: Jean-Guillaume Dumas and Dominique Duval
URL: http://tinyurl.com/mre4z9y

In this thesis, we aim to formalize the effects of a computation. Indeed, most used

programming languages involve different sorts of effects: state change, exceptions,

input/output, non-determinism, etc. They may bring ease and flexibility to the

coding process. However, the problem is to take into account the effects when

proving the properties of programs. The major difficulty in such kind of reasoning is

the mismatch between the syntax of operations with effects and their interpretation.

Typically, a piece of program with arguments in X that returns a value in Y

is not interpreted as a function from X to Y , due to the effects. The best-known

algebraic approach to the problem interprets programs including effects with the use

of monads: the interpretation is a function from X to T (Y ) where T is a monad. This

approach has been extended to Lawvere theories and algebraic handlers. Another

approach called, the decorated logic, provides a sort of equational semantics for

reasoning about programs with effects.

We specialize the approach of decorated logic to the state and the exceptions effects

by defining the decorated logic for states (Lst) and the decorated logic for exceptions

(Lexc), respectively. This enables us to prove properties of programs involving such

effects. Then, we formalize these logics in Coq and certify the related proofs. These

logics are built so as to be sound. In addition, we introduce a relative notion of

syntactic completeness of a theory in a given logic with respect to a sublogic. We

prove that the decorated theory for the global states as well as two decorated theories

for exceptions are syntactically complete relatively to their pure sublogics. These

proofs are certified in Coq as applications of our generic frameworks.

https://doi.org/10.1017/S0956796817000089 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000089


PhD Abstracts 5

On Programming Languages for Probabilistic Modeling

DANIEL E. HUANG

Harvard University, USA

Date: August 2016; Advisor: Greg Morrisett
URL: http://tinyurl.com/m2qbh3e

The probabilistic programming paradigm for Bayesian machine learning proposes

that we (1) use a programming language to express probabilistic models and (2)

leverage the language implementation to perform statistical inference. Notably,

these languages typically provide continuous distributions as primitives. Hence,

the connection with traditional, discrete notions of computation is not obvious.

Nevertheless, there is an intuitive understanding of probabilistic programs in terms

of sampling.

In this dissertation, I study probabilistic programming languages, i.e., program-

ming languages designed for probabilistic modeling. In particular, I begin by explor-

ing how (Type-2) computable distributions can be used to give both distributional

and (algorithmic) sampling semantics to a high-level, PCF-like language extended

with continuous distributions. One motivation for using computable distributions,

as opposed to more generally measures, is so that we can think of a Turing-complete

probabilistic programming language as expressing computable distributions. Next, I

explore how to improve the efficiency of automated inference for the class of fixed-

structure, parametric models. Towards this end, I design, implement, and evaluate

a language called AugurV2, which proposes probabilistic modeling with parallel

comprehensions for composable Markov Chain Monte Carlo (MCMC) inference.

Unlike many other probabilistic programming systems, the AugurV2 compiler

leverages multiple intermediate languages to successively transform a declarative

description of a model into an exectuable inference algorithm. Indeed, I will show

how such a compilation strategy enables AugurV2 to scale inference for practical

models of interest. I will also show how to use the semantics based on computable

distributions to justify certain aspects of AugurV2’s design.

https://doi.org/10.1017/S0956796817000089 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000089


6 G. Hutton

Type Theory in a Type Theory with Quotient
Inductive Types

AMBRUS KAPOSI

University of Nottingham, UK

Date: November 2016; Advisor: Graham Hutton
URL: http://tinyurl.com/kjkw76n

Type theory (with dependent types) was introduced by Per Martin-Löf with

the intention of providing a foundation for constructive mathematics. A part of

constructive mathematics is type theory itself, hence we should be able to say what

type theory is using the formal language of type theory. In addition, metatheo-

retic properties of type theory such as normalisation should be provable in type

theory.

The usual way of defining type theory formally is by starting with an inductive

definition of precontexts, pretypes and preterms and as a second step defining a

ternary typing relation over these three components. Well-typed terms are those

preterms for which there exists a precontext and pretype such that the relation

holds. However, if we use the rich metalanguage of type theory to talk about type

theory, we can define well-typed terms directly as an inductive family indexed over

contexts and types. We believe that this latter approach is closer to the spirit of type

theory where objects come intrinsically with their types.

Internalising a type theory with dependent types is challenging because of the

mutual definitions of types, terms, substitution of terms and the conversion relation.

We use induction induction to express this mutual dependency. Furthermore,

to reduce the type-theoretic boilerplate needed for reasoning in the syntax, we

encode the conversion relation as the equality type of the syntax. We use equality

constructors thus we define the syntax as a quotient inductive type (a special case

of higher inductive types from homotopy type theory). We define the syntax of a

basic type theory with dependent function space, a base type and a family over the

base type as a quotient inductive inductive type.

The definition of the syntax comes with a notion of model and an eliminator:

whenever one is able to define a model, the eliminator provides a function from the

syntax to the model.

We show that this method of representing type theory is practically feasible by

defining a number of models: the standard model, the logical predicate interpretation

for parametricity (as a syntactic translation) and the proof-relevant presheaf logical

predicate interpretation. By extending the latter with a quote function back into

the syntax, we prove normalisation for type theory. This can be seen as a proof of

normalisation by evaluation.

https://doi.org/10.1017/S0956796817000089 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000089


PhD Abstracts 7

Internalising the syntax of type theory is not only of theoretical interest. It opens

the possibility of type-theoretic metaprogramming in a type-safe way. This could be

used for generic programming in type theory and to implement extensions of type

theory which are justified by models such as guarded type theory or homotopy type

theory.

https://doi.org/10.1017/S0956796817000089 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000089


8 G. Hutton

Formal Foundations for Hybrid Effect Analysis

YUHENG LONG

Iowa State University, USA

Date: May 2016; Advisor: Hridesh Rajan
URL: http://tinyurl.com/kmlgjbz

Type-and-effect systems are a powerful tool for program construction and verifi-

cation. Type-and-effect systems are useful because it helps reduce bugs in computer

programs, enables compiler optimizations and provides program documentation.

As software systems increasingly embrace dynamic features and complex modes of

compilation, static effect systems have to reconcile over competing goals such as

precision, soundness, modularity, and programmer productivity. In this thesis, we

propose the idea of combining static and dynamic analysis for effect systems to

improve precision and flexibility.

We describe intensional effect polymorphism, a new foundation for effect systems

that integrates static and dynamic effect checking. Our system allows the effect

of polymorphic code to be intensionally inspected. It supports a highly precise

notion of effect polymorphism through a lightweight notion of dynamic typing.

When coupled with parametric polymorphism, the powerful system utilizes runtime

information to enable precise effect reasoning, while at the same time retains strong

type safety guarantees. The technical innovations of our design include a relational

notion of effect checking, the use of bounded existential types to capture the subtle

interactions between static typing and dynamic typing, and a differential alignment

strategy to achieve efficiency in dynamic typing.

We introduce the idea of first-class effects, where the computational effect of

an expression can be programmatically reflected, passed around as values, and

analyzed at runtime. A broad range of designs “hard-coded” in existing effect-

guided analyses can be supported through intuitive programming abstractions.

The core technical development is a type system with a couple of features. Our

type system provides static guarantees to application-specific effect management

properties through refinement types, promoting “correct-by-design” effect-guided

programming. Also, our type system computes not only the over-approximation of

effects, but also their under-approximation. The duality unifies the common theme

of permission vs. obligation in effect reasoning.

Finally, we show the potential benefit of intensional effects by applying it to

an event-driven system to obtain safe concurrency. The technical innovations of

our system include a novel effect system to soundly approximate the dynamism

introduced by runtime handler registration, a static analysis to precompute the

effects and a dynamic analysis that uses the precomputed effects to improve

concurrency. Our design simplifies modular concurrency reasoning and avoids

concurrency hazards.

https://doi.org/10.1017/S0956796817000089 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000089


PhD Abstracts 9

Context-Aware Programming Languages

TOMAS PETRICEK

University of Cambridge, UK

Date: March 2017; Advisor: Alan Mycroft
URL: http://tinyurl.com/k2hhjso

The development of programming languages needs to reflect important changes

in the way programs execute. In recent years, this has included the development

of parallel programming models (in reaction to the multi-core revolution) or

improvements in data access technologies. This thesis is a response to another

such revolution – the diversification of devices and systems where programs run.

The key point made by this thesis is the realization that an execution environment

or a context is fundamental for writing modern applications and that programming

languages should provide abstractions for programming with context and verifying

how it is accessed.

We identify a number of program properties that were not connected before, but

model some notion of context. Our examples include tracking different execution

platforms (and their versions) in cross-platform development, resources available

in different execution environments (e.g. GPS sensor on a phone and database on

the server), but also more traditional notions such as variable usage (e.g. in liveness

analysis and linear logics) or past values in stream-based dataflow programming. Our

first contribution is the discovery of the connection between the above examples and

their novel presentation in the form of calculi (coeffect systems). The presented type

systems and formal semantics highlight the relationship between different notions

of context.

Our second contribution is the definition of two unified coeffect calculi that

capture the common structure of the examples. In particular, our flat coeffect

calculus models languages with contextual properties of the execution environment

and our structural coeffect calculus models languages where the contextual properties

are attached to the variable usage. We define the semantics of the calculi in terms

of category theoretical structure of an indexed comonad (based on dualisation of

the well-known monad structure), use it to define operational semantics and prove

type safety of the calculi.

Our third contribution is a novel presentation of our work in the form of web-

based interactive essay. This provides a simple implementation of three context-aware

programming languages and lets the reader write and run simple context-aware

programs, but also explore the theory behind the implementation including the

typing derivation and semantics.

https://doi.org/10.1017/S0956796817000089 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000089


10 G. Hutton

Stream Processing using Grammars and Regular Expressions

ULRIK TERP RASMUSSEN

University of Copenhagen, Denmark

Date: January 2017; Advisor: Fritz Henglein
URL: http://tinyurl.com/n2vcy6k

In this dissertation we study regular expression based parsing and the use of

grammatical specifications for the synthesis of fast, streaming string-processing

programs.

In the first part we develop two linear-time algorithms for regular expression

based parsing with Perl-style greedy disambiguation. The first algorithm operates in

two passes in a semi-streaming fashion, using a constant amount of working memory

and an auxiliary tape storage which is written in the first pass and consumed by the

second. The second algorithm is a single-pass and optimally streaming algorithm

which outputs as much of the parse tree as is semantically possible based on the

input prefix read so far, and resorts to buffering as many symbols as is required to

resolve the next choice. Optimality is obtained by performing a PSPACE-complete

pre-analysis on the regular expression.

In the second part we present Kleenex, a language for expressing high-performance

streaming string processing programs as regular grammars with embedded semantic

actions, and its compilation to streaming string transducers with worst-case linear-

time performance. Its underlying theory is based on transducer decomposition into

oracle and action machines, and a finite-state specialization of the streaming parsing

algorithm presented in the first part. In the second part we also develop a new

linear-time streaming parsing algorithm for parsing expression grammars (PEG)

which generalizes the regular grammars of Kleenex. The algorithm is based on a

bottom-up tabulation algorithm reformulated using least fixed points and evaluated

using an instance of the chaotic iteration scheme by Cousot and Cousot.

https://doi.org/10.1017/S0956796817000089 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000089


PhD Abstracts 11

Combining Type Checking with Model Checking for System
Verification

ZHIQIANG REN

Boston University, USA

Date: January 2017; Advisor: Hongwei Xi
URL: http://tinyurl.com/lw9dhgj

Type checking is widely used in mainstream programming languages to detect

programming errors at compile time. Model checking is gaining popularity as an

automated technique for systematically analyzing behaviors of systems. My research

focuses on combining these two software verification techniques synergically into

one platform for the creation of correct models for software designs.

This thesis describes two modeling languages ATS/PML and ATS/Veri that

inherit the advanced type system from an existing programming language ATS, in

which both dependent types of Dependent ML style and linear types are supported.

A detailed discussion is given for the usage of advanced types to detect modeling

errors at the stage of model construction. Going further, various modeling primitives

with well-designed types are introduced into my modeling languages to facilitate a

synergic combination of type checking with model checking.

The semantics of ATS/PML is designed to be directly rooted in a well-known mod-

eling language PROMELA. Rules for translation from ATS/PML to PROMELA

are designed and a compiler is developed accordingly so that the SPIN model checker

can be readily employed to perform checking on models constructed in ATS/PML.

ATS/Veri is designed to be a modeling language, which allows a programmer to

construct models for real-world multi-threaded software applications in the same way

as writing a functional program with support for synchronization, communication,

and scheduling among threads. Semantics of ATS/Veri is formally defined for the

development of corresponding model checkers and a compiler is built to translate

ATS/Veri into CSP# and exploit the state-of-the-art verification platform PAT

for model checking ATS/Veri models. The correctness of such a transformational

approach is illustrated based on the semantics of ATS/Veri and CSP#.

In summary, the primary contribution of this thesis lies in the creation of a

family of modeling languages with highly expressive types for modeling concurrent

software systems as well as the related platform supporting verification via model

checking. As such, we can combine type checking and model checking synergically

to ensure software correctness with high confidence.

https://doi.org/10.1017/S0956796817000089 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000089

