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THE p-RATIONALITY OF HEIGHT-ZERO CHARACTERS

NGUYEN HUNG and MANDI SCHAEFFER FRY

Abstract. We propose and present evidence for a conjectural global-local

phenomenon concerning the p-rationality of height-zero characters. Specifically,

if χ is a height-zero character of a finite group G and D is a defect group of the

p-block of G containing χ, then the p-rationality of χ can be captured inside

the normalizer NG(D).

§1. Introduction

In recent years, there has been a growing interest in the study of rationality properties

of characters of finite groups and their relationship to global-local properties, which relate

the character theory of a finite group to p-local subgroups for a prime p. In this article, we

are concerned with the p-rationality of height-zero characters of finite groups.

Let B be a p-block of a finite group G and let Irr(B) denote the set of ordinary irreducible

characters of B. The ( p-)height of a character χ ∈ Irr(B) is given by

ht(χ) := ν(χ(1))− min
ψ∈Irr(B)

{ν(ψ(1))},

where ν := νp is the usual p-adic valuation function. We say that χ is height-zero if ht(χ)= 0.

In other words, the height-zero characters of B are those characters in B whose degrees

have the minimal possible p-part.

To measure how p-rational (or p-irrational) a character χ is, one considers the p-part of

the conductor of its values {χ(g) : g ∈G}. Recall that every character value is a certain sum

of roots of unity. Such a sum is called a cyclotomic integer. The conductor c(S) of a collection
S of cyclotomic integers is the smallest positive integer n such that S ⊆Q(exp(2πi/n)). For

χ∈ Irr(G), we write c(χ) := c({χ(g) : g ∈G}) and call this the conductor of χ. The so-called

p-rationality level of χ is defined as

lev(χ) := ν(c(χ)).

We put forward the following, which proposes that the p-rationality level of a height-zero

character can be captured inside a local subgroup, namely, the defect normalizer.

Conjecture A. Let p be a prime, G a finite group, and χ be a height-zero character

in a block B of G with lev(χ)≥ 2. Suppose that D is a defect group of B. Then,

lev(χ) = lev(χNG(D)).

Remark 1.1. For g ∈ G, let lev(χ(g)) := νp(c(χ(g))) – the p-rationality level of χ(g).

It is easy to see that

lev(χ) = max
g∈G

{lev(χ(g))},
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2 N. HUNG AND M. SCHAEFFER FRY

so there exists g ∈G such that lev(χ(g)) = lev(χ). That is, there exists an element in the

group that captures the p-rationality of χ. Conjecture A simply claims that such an element

can be found in NG(D).

Height-zero characters are well known for their nice behavior with respect to the global-

local principle. Among the first observations of this was in Brauer’s height zero conjecture,

recently resolved in [23], which states that all irreducible characters in a block B have

height zero if and only if the defect groups of B are abelian. Another example is the

celebrated Alperin–McKay conjecture. (See, e.g., [25, Conjecture 9.5]. See also [30], where

the conjecture was recently proven for p= 2.) The Alperin–McKay conjecture asserts that

if b is the block of NG(D) corresponding to B in Brauer’s first main correspondence, then

there exists a bijection between the height-zero characters in B and those in b. Conjecture A

offers another global-local phenomenon for height-zero characters. In fact, we observe in §7
a relationship between Conjecture A and the well-known Alperin–McKay–Navarro (AMN)

conjecture, which refines the Alperin–McKay conjecture to further include the action of

Galois automorphisms.

Conjecture A is inspired by Navarro–Tiep’s conjecture [28, Conjecture C]. In what follows,

Irr(G) denotes the set of irreducible characters of G and Irrp′(G) the subset of Irr(G)

consisting of characters of degree not divisible by p. Furthermore, for any positive integer

n, we use Qn to denote the n-th cyclotomic field Qn :=Q(exp(2πi/n)).

Conjecture B ([28, Conjecture C], Conjecture C). Let p be a prime, G a finite group,

P ∈ Sylp(G), and χ ∈ Irrp′(G) with lev(χ)≥ 1. Then,

Qplev(χ) =Qp(χP ).

Conjecture B implies that if a p′-degree character χ has p-rationality level at least 2,

then its level remains unchanged when restricted to a Sylow p-subgroup: lev(χ) = lev(χP ).

(However, note that for lev(χ) = 1, this is false - see, Example 7.3.) Recall that a p′-degree

character is a height-zero character lying in a block of maximal defect, which means that

the defect groups are the Sylow p-subgroups of G. In such a case, Conjecture A only asserts

that lev(χ) = lev(χNG(P )). In particular, Conjecture B implies Conjecture A in the case

of p′-degree characters. However, it is important to note that for height-zero characters

in general, lev(χ) does not always equal lev(χD), see the examples in §7.3. We refer the

reader to [20], [28] for further discussion on Conjecture B.

What evidence do we have for Conjecture A? Our first main result confirms the cyclic-

defect case.

Theorem C. Let p be a prime and G a finite group. Let B ∈ Bl(G) be a p-block of G

with cyclic defect group D and χ ∈ Irr(B). Then, lev(χ) = lev(χNG(D)).

Remark 1.2. The assumption on lev(χ) in Conjecture A is essential. There are many

examples with lev(χ) = 1 but lev(χNG(D)) = 0, see again §7.3. Theorem C, however, shows

that this cannot occur when a defect group D is cyclic.

The proof of Theorem C is based on Dade’s cyclic-defect theory [6], [7]. When the defect

groups of B are cyclic, the set Irr(B) is naturally partitioned into two types: exceptional

characters and non-exceptional characters, see §3.2. While the characters of the latter type

are always p-rational, we show that the p-rationality level of an exceptional character aligns

with that of its associated (linear) character of the defect group D. Another key step is to

https://doi.org/10.1017/nmj.2025.10077 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2025.10077


THE P-RATIONALITY OF HEIGHT-ZERO CHARACTERS 3

show that if an element g ∈ G captures the p-rationality of a character χ in a block with

cyclic defect groups, then its p-part gp generates a defect group of the block. This is done

in §3.
Our next result solves Conjecture B for prime-degree characters, and therefore confirms

Conjecture A for characters whose degree is a prime different from p.

Theorem D. Let p be a prime and G a finite group. Let χ ∈ Irr(G) be of prime degree

not equal to p with lev(χ) ≥ 2. Let P ∈ Sylp(G). Then, Qplev(χ) = Qp(χP ). In particular,

lev(χ) = lev(χNG(P )) = lev(χP ).

The proof of Theorem D is divided into two fundamentally different cases, depending on

whether the character in question is primitive or imprimitive. The imprimitive case builds

on ideas from the recent solution of Conjecture B for p-solvable groups [20], as detailed

in §4. In contrast, the primitive case is reduced to analyzing the values of prime-degree

characters of quasisimple groups, which is addressed in §§5 and 6.

§5.2 provides an additional evidence supporting Conjecture A for certain almost

quasisimple groups. Finally, §7 discusses some consequences and examples related to

Conjecture A, along with its connection to the well-known AMN conjecture.

To conclude this introduction, we mention recent work of Navarro, Ruhstorfer, Tiep, and

Vallejo [27] concerning the determination of fields of values of p-height zero characters of

finite groups. They proposed that an abelian number field F with conductor pam, where

p does not divide m, arises as the field of values of a p-height zero irreducible character of

a finite group if and only if [Qpa : (Qpa ∩QmF )] is not divisible by p. They reduced this

conjecture to a question about blocks of quasisimple groups and ultimately verified it in

the case p= 2.

§2. Galois automorphisms and p-rationality level

Here, we discuss briefly the relationship between the p-rationality level of a character and

the action of Galois automorphisms. The notation here will often be referred to throughout.

Let G be a finite group and suppose that |G| = n = pbm with (p,m) = 1. Let

G := Gal(Qn/Q). Then,

G ∼= I ×K,

where

I =Gal(Qn/Qm) and K =Gal(Qn/Qpb)

are the subgroups of G of those automorphisms fixing p′-roots and p-power roots,

respectively, of unity. Let

H := I ×〈σ〉,

where σ ∈ K is such that its restriction to Qm is the Frobenius automorphism ζ 	→ ζp. The

group H is an important ingredient in the McKay–Navarro and AMN Conjectures [26],

which we will discuss further in §7.
It is well known that the Galois group G permutes the p-blocks of G. Let B be a p-block

of G and HB be the subgroup of H fixing B. Since I point-wisely fixes Qm, it fixes every

Brauer character and thus every block of G. In particular,

I ≤HB.
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4 N. HUNG AND M. SCHAEFFER FRY

We define I ′ := I if p = 2 and I ′ := Gal(Qn/Qpm) if p > 2. Note that I ′ is the Sylow

p-subgroup of I. Note also that if H1 and H2 are groups with orders dividing n, then

characters χ1 of H1 and χ2 of H2 have the same p-rationality level whenever they have the

same stabilizer under I. Further, the same can be said, replacing I with I ′, with the added

assumption that lev(χi)≥ 1 for i= 1,2 if p > 2.

In fact, as pointed out in [28, Section 4], there is one particular element of I ′ that captures

this behavior. Namely, for e ∈ Z≥1, let σe be the element of I ′ mapping any p-power root

of unity ω to ω1+pe

. The Galois automorphism σe has been seen to play a pivotal role in

consequences of the McKay–Navarro conjecture predicting global-local properties of finite

groups, and it turns out that the stability of a character under σe is closely tied to its

p-rationality level (see [28, Lemma 4.1]).

§3. Blocks of cyclic defect

The goal of this section is to prove Theorem C.

3.1. Small-defect blocks

We begin with an elementary upper bound for the p-rationality level in terms of a defect

group, which allows us to easily control the level of characters in blocks of small defect.

Recall that if B is a p-block of a finite group G then its defect d(B) is the nonnegative

integer

d(B) := ν(|G|)− min
ψ∈Irr(B)

{ν(ψ(1))}.

Moreover, the order of any defect group D of B is |D| = pd(B). We will also denote by

exp(D) the exponent of D.

Throughout, for an integer n, we will write np and np′ for its p- and p′-parts, respectively,

so that n= npnp′ , np is a power of p, and (p,np′) = 1. Similarly, for an element g of a finite

groupG, we will write gp and gp′ for the (unique) elements such that g= gpgp′ with |gp|= |g|p
and |gp′ |= |g|p′ .

Lemma 3.1. Let χ∈ Irr(G) and B the p-block of G containing χ. Let D be a defect group

of B. Then, lev(χ)≤ ν(exp(D)). In particular, lev(χ)≤ d(B).

Proof. Let g ∈G with χ(g) �= 0. Then, gp belongs to a conjugate of D by [24, Corollary

5.9]. Therefore, |g|p ≤ exp(D), and we have

χ(g) ∈Q|g| ⊆Q|g|p|g|p′ ⊆Qexp(D)|G|p′ .

We now have Q(χ) ⊆ Qexp(D)|G|p′ , which implies that c(χ) divides exp(D)|G|p′ , and the

lemma follows.

Corollary 3.2. Let χ ∈ Irr(G) belong to a p-block of defect 0, or defect 1 if p = 2.

Then, lev(χ) = 0.

Proof. This follows from Lemma 3.1. Note that Qn = Q2n for odd n, so there are no

characters of 2-rationality level 1.

Lemma 3.3. Let p be an odd prime. Suppose χ ∈ Irr(G) belongs to a p-block of defect

one with a defect group D. Then, lev(χ) ∈ {0,1} and lev(χ) = lev(χNG(D)).
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THE P-RATIONALITY OF HEIGHT-ZERO CHARACTERS 5

Proof. The first conclusion again follows from Lemma 3.1, so it remains to prove the

second part. We have χ(1)p = |G|p/p and ht(χ) = 0. p-Blocks of defect one have been fully

described in early work of Brauer [1], [2] (see also [24, Chapter 11]). Let K :=Op′(NG(D)).

Let b ∈Bl(CG(D)) be a root of B and ξ ∈ Irr(K) be the restriction (to K ) of the canonical

character in Irr(b) of B. In fact, ξ is the unique Brauer character in b. Let E be the subgroup

of NG(D) fixing b and E := E/CG(D) the inertial quotient of B and e := |E|. The block

B then contains precisely e+(p−1)/e ordinary irreducible characters, where e of these are

p-rational and, therefore, trivially satisfy the stated equality.

Suppose that χ is one of the remaining (p−1)/e other characters, a so-called exceptional

character. In this case, there exists λ ∈ Irr(D)−{1D} and ε ∈ {±1} such that

χ(hk) = ε(λ× ξ)NG(D)(hk)

for every h ∈D−{1} and k ∈K, by [24, Chapter 11]. Note that χ(g) = 0 whenever gp is

not conjugate to an element in D. Also, for each h ∈D−{1}, a p′-element in CG(h) must

be inside K. Therefore, these elements hk capture all the non-zero values of χ. It follows

that Q(χ) =Q(χD×K), and thus Q(χ) =Q(χNG(D)), as desired.

3.2. Generalities on blocks with cyclic defect groups

To prove Theorem C for blocks of larger cyclic defect, we need to recall some basics on

cyclic-defect theory, and refer the reader to [6] and [8, Chapter VII] for more details. The

theory, developed by E. Dade in the sixties, generalizes Brauer’s work on defect-one blocks

mentioned above.

Let B be a block of a finite group G with cyclic defect group D of order pa (a≥ 1). Let

B0 ∈ Bl(NG(D)) be the Brauer correspondent of B and b0 ∈ Bl(CG(D)) be a root of B ;

that is, b
NG(D)
0 =B0. Let C :=CG(D) and let E be the subgroup of NG(D) fixing b0. The

inertial quotient E/C is then a cyclic group of p′-order acting Frobeniusly on D (as well

as Irr(D)). Let Λ be a complete set of representatives of the action of E on Irr(D)−{1D}.
Then, |Λ|= (pa−1)/e, where e := |E/C|.

If |Λ| = 1, then D must have order p and B has precisely e+1 irreducible ordinary

characters. Suppose that |Λ| > 1. Then, Irr(B) is partitioned into two naturally defined

subsets Irrnex(B) and Irrex(B). The former consists of precisely e non-exceptional characters

{X1, ...,Xe}. The latter consists of precisely |Λ| exceptional characters, which are naturally

labeled by the members of Λ:

Irrex(B) = {Xλ | λ ∈ Λ}.

As noted in [26, p. 1135], the group HB permutes the exceptional/non-exceptional

characters among themselves.

For 0≤ i≤ a, let Di be the (unique) subgroup of D containing the elements of order at

most pa−i; that is,

Di is the subgroup of D with |D :Di|= pi.

Let

Ci :=CG(Di) and Ni :=NG(Di).
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Assume now that 0 ≤ i ≤ a− 1. By [6, Proposition 1.6], the block bi := (b0)
Ci ∈ Bl(Ci)

contains a unique Brauer character, say ϕi. By [6, Corollary 1.9], for x ∈Di−Di+1, and y

a p-regular element of Ci, we have for each λ ∈ Λ,

Xλ(xy) =
δ

|Ci|
∑
h∈Ni

λh(x)(ϕi)
h(y), (3.1)

for some δ ∈ {±1} depending only on i ; and for each 1≤ j ≤ e,

Xj(xy) =
±1

e|Ci|
∑
h∈Ni

(ϕi)
h(y).

We remark that, if χ ∈ Irr(G) and g ∈G, then χ(g) is a sum of |g|-th roots of unity. The

nonexceptional characters Xj are therefore always p-rational.

3.3. Proof of Theorem C

We are ready to prove Theorem C, which we now restate.

Theorem 3.4. Let p be a prime and G a finite group. Let B ∈ Bl(G) be a p-block of G

with cyclic defect group D. Then, lev(χ) = lev(χNG(D)) for every χ ∈ Irr(B).

Proof. The case of defect zero follows from Corollary 3.2. We may assume that |D|> 1.

We shall follow the notation described above. If |Λ|= 1 then, as mentioned already, the

block B must have defect one, and we are done by Corollary 3.2 and Lemma 3.3. So we

assume from now on that |Λ|> 1. If χ ∈ Irrnex(B) is a non-exceptional character of B, then

χ is p-rational, and thus there is nothing to prove. We, therefore, assume furthermore that

χ is one of the exceptional characters Xλ for some λ ∈ Λ.

We claim that

if lev(Xλ)≥ 1, then lev(Xλ) = lev(λ).

Let D̃ be the unique subgroup of D of order p and set Ñ :=NG(D̃). Let B̃ = (b0)
Ñ =

(B0)
Ñ , which is a block of Ñ that has the same defect group D and Brauer correspondent

B0 as B. Dade proved in [7, Lemma 4.9] that the exceptional characters of B̃ can be labeled

by Irrex(B̃) = {X̃λ | λ∈Λ} so that the bijection Xλ 	→ X̃λ from Irrex(B) to Irrex(B̃) satisfies

(X̃λ1 − X̃λ2)
G = δ(Xλ1 −Xλ2) for some fixed δ ∈ {±1} and every λ1,λ2 ∈ Λ. As mentioned

in the proof of [26, Theorem 3.4], Dade’s bijection commutes with the action of HB, and

hence preserves the p-rationality level. This allows us, for the purpose of proving the claim,

to assume that D̃ � G.

Let C̃ :=CG(D̃) and b̃ := (b0)
C̃ . By [6, §4], the exceptional characters of B are induced

from (nontrivial) ordinary irreducible characters of b̃. In fact, Irr(̃b) consists of |D| characters
{χλ | λ ∈ Irr(D)} and (χλ1)

G = (χλ2)
G if and only if λ1 = λz

2 for some z ∈ E, so that

Irrex(B) = {(χλ)
G | λ ∈ Λ} and Xλ = (χλ)

G.

It was shown in [26, p. 1136], using the character-valued formula of χλ in [6, Lemma 3.2],

that a Galois automorphism τ ∈ HB moves the character χλ in Irr(̃b) to the character in

Irr((̃b)τ ) labeled by χλτ . Recall the groups I := Gal(Q|G|/Q|G|p′ )≤HB and the p-subgroup
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I ′ ≤ I from §2. Note that every relevant block is point-wisely fixed by I. It follows that,

for every τ ∈ I, (χλ)
τ = χλτ , which implies that

lev(χλ) = lev(λ).

Further, recall that to show lev(Xλ) = lev(λ), it suffices to show they are stable under

the same elements of I ′, assuming that lev(Xλ)≥ 1 if p �= 2.

For each τ ∈ I ′, we have

Xτ
λ =

(
(χλ)

G
)τ

= ((χλ)
τ )

G
= (χλτ )G.

Therefore, (χλ)
G is τ -invariant if and only if (χλ)

G = (χλτ )G, which is equivalent to λτ = λz

for some z ∈E. We may assume that z has p′-order, because E/C has p′-order and C fixes

every irreducible character of D. Further, note that the actions of z and of τ commute. Let

t := |τ | be the order of τ , which is a p-power. Then, λ = λτt

= λzt

. Thus, zt ∈ C as E/C

acts Frobeniusly on Irr(D). But |z| and t are coprime, so z ∈C and λτ = λ. We indeed have

shown that, for every λ ∈ Λ,

if p= 2, then lev(Xλ) = lev(λ)

and

if p > 2 and lev(Xλ)≥ 1, then lev(Xλ) = lev(λ).

The proof of the claim is completed.

Note that the desired equality lev(χNG(D)) = lev(χ) is obvious when χ is p-rational. By

the above claim, it suffices to prove the equality for those characters Xλ with lev(Xλ) =

lev(λ) ≥ 1. For convenience, let � := lev(λ). Since lev(Xλ) = max{lev(Xλ(g)) : g ∈ G},
there exists some g ∈G such that

lev(Xλ(g)) = lev(Xλ) = lev(λ) = �.

Our job now is to show that such an element g can be chosen to be inside NG(D). In fact,

we will see that, up to conjugation, this must be the case.

Note that Xλ takes value 0 on every element whose p-part is not conjugate to an element

of D. For our purpose of analyzing the value Xλ(g), we may, therefore, assume that gp ∈D.

We next claim that gp ∈D0−D1, so that gp generates D.

Assume, to the contrary, that gp ∈D1; that is, |gp| ≤ pa−1. Then, there exists 1≤ i≤ a−1

such that |gp|= pa−i and gp ∈Di−Di+1. Now (gp)
h ∈Di−Di+1 for every h ∈Ni. We have

lev(λh(gp)) = lev(λ((gp)
h−1

)) =

{
�− i if i≤ �,

0 if i > �

for every h ∈Ni. In any case,

lev(λh(gp))≤ �−1.

By the character-valued formula (3.1),

Xλ(g) =
δ

|Ci|
∑
h∈Ni

λh(gp)(ϕi)
h(gp′)
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8 N. HUNG AND M. SCHAEFFER FRY

for some δ ∈ {±1}. Note that each value (ϕi)
h(gp′) is p-rational. It follows that Xλ(g), being

a sum of complex numbers of level at most �−1, must have level at most �−1, which is a

contradiction.

We have shown that gp ∈D0−D1. In other words, gp is a generator for D. Thus,

gp′ ∈CG(gp) =CG(D)⊆NG(D),

and it follows that

g = gpgp′ ∈NG(D).

Let χ :=Xλ. We then have

�= lev(χ(g))≤ lev(χNG(D))≤ lev(χ) = �,

implying that lev(χNG(D)) = lev(χ). The proof is complete.

Remark 3.5. Our proof of Theorem C indeed shows that, in view of Remark 1.1, if a

group element captures the p-rationality of the character, then that element must lie inside

the defect normalizer, up to conjugation. At the moment, we do not know if this is true for

arbitrary defect.

We conclude this section with the confirmation of Conjecture A for all characters in

blocks of defect at most 2.

Proposition 3.6. Let p be a prime, G a finite group, and χ be a height-zero character

in a block B of G with lev(χ) ≥ 2 and d(B) ≤ 2. Suppose that D is a defect group of B.

Then, lev(χ) = lev(χNG(D)).

Proof. If |D| ≤ p2 then either D is cyclic or exp(D) ≤ p. The former case is solved by

Theorem 3.4. In the latter case, lev(χ)≤ 1 by Lemma 3.1 and the result is trivial.

§4. Imprimitive characters of prime degree

This section proves Theorem D in the case, where the character in question is imprimitive.

Recall that a character χ ∈ Irr(G) is termed imprimitive if there exists a subgroup H <G

and ψ ∈ Irr(H) such that χ= ψG.

We shall need a p-local invariant of characters that was introduced recently in Isaacs–

Navarro’s solution [20] of Conjecture B for p-solvable groups.

Definition 4.1. For a character Ψ (not necessarily irreducible) of a finite group G and

a nonnegative integer i, let

Δi(Ψ) :=
∑

χ∈Irr(G)
lev(χ)=i

[χ,Ψ]χ

and, if one of Δi(Ψ)(1) is not divisible by p,

�(Ψ) := max{i ∈ Z≥0 : Δi(Ψ)(1) �≡ 0 mod p}.

Lemma 4.2. Let Ψ be a character of a finite group G with lev(Ψ) = a. We have:

(i) Δi(Ψ)(1)≡ 0 mod p for every i≥max{2,a+1}.
(ii) If a≥ 1, then lev(Ψ)≥ �(Ψ).
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Proof. Note that Part (ii) follows from (i), so it is sufficient to prove (i).

Clearly, |G|p ≥ pa. Note that if p= 2 then a= 0 or is at least 2. Let J denote the (cyclic)

p-group Gal(Q|G|/Qpa|G|p′ ) if a > 0 or simply the p-group Gal(Q|G|/Qp|G|p′ ) if a= 0. Then,

Ψ is J -invariant. Since Q(ψτ ) = Q(ψ) for every character ψ of G and every τ ∈ J , each

Δi(Ψ) is J -invariant, and hence J permutes the irreducible constituents of Δi(Ψ). Let i > a

if a > 0 or i≥ 2 if a= 0. Then, each constituent of Δi(Ψ), of level i, is not J -invariant, and

thus belongs to a J -orbit of nontrivial length, which is necessarily a nontrivial p-power.

As the irreducible constituents of Δi(Ψ) is a disjoint union of these orbits, the statement

follows.

The next result makes use of some ideas in the proof of [20, Theorem 3.5].

Lemma 4.3. Let P ≤K ≤G, where P ∈ Sylp(G), χ∈ Irrp′(G), and ψ ∈ Irr(K) such that

χ= ψG. Let i ∈ Z≥2. Then,

Δi(χP )(1) �≡ 0 mod p if and only if Δi(ψP )(1) �≡ 0 mod p.

In particular, if max{�(χP ), �(ψP )} ≥ 2 then �(χP ) = �(ψP ).

Proof. Let X be a set of representatives for the double K−P cosets in G, so that

G=
⋃
x∈X

KxP

is a disjoint union. We decompose

X =X1∪X2,

where X1 consists of those x ∈X such that P ⊆Kx and X2 is, of course, the complement

of X1 in X. Using Mackey’s theorem (see [18, Problem 5.6]), we have

χP =
∑
x∈X

((ψx)Kx∩P )
P
=

∑
x∈X1

((ψx)Kx∩P )
P
+

∑
x∈X2

((ψx)Kx∩P )
P

=
∑
x∈X1

(ψx)P +
∑
x∈X2

((ψx)Kx∩P )
P
.

Therefore, for every i ∈ Z≥0,

Δi(χP ) =
∑
x∈X1

Δi((ψ
x)P )+

∑
x∈X2

Δi(((ψ
x)Kx∩P )

P
).

For each x ∈ X2, note that Kx ∩ P is a proper subgroup of P, and it follows from

[20, Lemma 3.1] that

Δi

(
((ψx)Kx∩P )

P
)
(1)≡ 0 mod p,

for every i≥ 2. We now obtain

Δi(χP )(1)≡
∑
x∈X1

Δi((ψ
x)P )(1) mod p.

Let x ∈ X1. Note that α is an irreducible constituent of ψP if and only in αx is an

irreducible constituent of (ψx)Px , and lev(α) = lev(αx). Thus, there is a natural bijection
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between irreducible constituents of ψP and (ψx)P preserving the p-rationality level. In

particular,

Δi(ψP )(1) = Δi((ψ
x)P )

for every x ∈X1. The last congruence in the previous paragraph then yields

Δi(χP )(1)≡ |X1| ·Δi(ψP )(1) mod p.

Now, by [20, Lemma 3.4], which states that |X1| is not divisible by p, the lemma

follows.

We can now prove Theorem D in the imprimitivity case.

Theorem 4.4. Let p be a prime and G be a finite group. Let χ= λG ∈ Irr(G) for some

linear character λ of a subgroup K of G of prime index not equal to p. Suppose lev(χ)≥ 1.

Then, Qplev(χ) =Qp(χP ).

Proof. Since the conclusion is obvious when lev(χ) = 1, we assume that a := lev(χ)≥ 2.

By the character-induction formula, we have

lev(λ)≥ lev(χ) = a.

On the other hand, since λ is linear, we have lev(λP ) = �(λP ) and

lev(λ) = �(λP ) = ν(ord(λ)).

Furthermore, using Lemmas 4.2 and 4.3, we obtain

lev(χP )≥ �(χP )

and

�(χP ) = �(λP ).

The displayed (in)equalities imply that a= lev(χ) = lev(χP ) = �(χP ).

Note that Qp(χP ) ⊆ Qpa (see [28, Lemma 7.1]). Let τ ∈ Gal(Qpa/Qp(χP )). Since

[Qpa :Qp] = pa−1, we have that τ has p-power order. Also, τ fixes χP , and hence τ permutes

the linear constituents of χP of level a. As �(χP ) = a, it follows that Δa(χP )(1) �≡ 0 mod p,

which implies that the number of the linear constituents of χP of level a is not divisible

by p. Therefore, one of them must be τ -invariant, and, therefore, τ fixes Qpa or, in other

words, τ is trivial. We have shown that Qpa =Qp(χP ), as desired.

§5. Quasisimple groups

5.1. Theorem D for quasisimple groups

The main result of this section is the following, which proves Theorem D for quasisimple

groups, when combined with Lemma 6.1 below and [28, Theorem A3]. This result will be

used in §6 to prove Theorem D for primitive characters.

Theorem 5.1. Let M be a quasisimple group and χ ∈ Irr(M) be of prime degree with

lev(χ)≥ 2. Let p be a prime not equal to χ(1). Then,

lev(χ) = lev(χP ),

where P ∈ Sylp(M).
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Our next result reduces us to the case that G is a group of Lie type defined in

characteristic distinct from p.

Theorem 5.2. Let p be a prime and let G be a quasisimple group such that S =G/Z(G)

is an alternating group, a sporadic simple group, a simple group of Lie type with exceptional

Schur multiplier, or a simple group of Lie type defined in characteristic p. Let χ ∈ Irr(G)

have height zero, lie in a block with nontrivial defect group D, and be such that lev(χ)≥ 2.

Then, lev(χ) = lev(χD). In particular, Conjecture A and Theorem 5.1 hold in these cases.

Proof. When S is either a sporadic simple group or An with 5≤n≤ 7, we have lev(χ)≤ 1

for all primes p and all χ ∈ Irr(G) of height zero, which can be readily checked in [11]. If

S is a group of Lie type with exceptional Schur multiplier or the Tits group 2F4(2)
′, we

see using [11] that lev(χ) ≤ 1 for all height-zero characters of G except when p = 2 and

S = PSL3(4) with 4 | |Z(G)|; S = B3(3) with 2 | |Z(G)|; S = PSU4(3) with 4 | |Z(G)|; or
S = 2F4(2)

′. In the latter cases, lev(χ) ≤ 2, and we in fact see using [11] that for every

χ ∈ Irr(G) and for every prime p | |G|, we have lev(χ) = lev(χD).

If p= 2 and S is An, then every irreducible character of S is p-rational (see [16, §3] for
instance), and we are done. Now consider the case p = 2 and S is a simple group of Lie

type defined in characteristic 2 with nonexceptional Schur multiplier. Note that by [13], the

blocks with positive defect are in fact of maximal defect. That is, the nontrivial defect groups

are Sylow 2-subgroups in this case. Then, we have lev(χ) = lev(χD) by [28, Theorem A3].

Finally, suppose that p is odd and G is a cover of an alternating group An with n≥ 8 or

a quasisimple group of Lie type that is a quotient of GF for some simple, simply connected

algebraic group G over a field of characteristic p and a Steinberg endomorphism F :G→G.

It was shown in [28, Theorem 6.1] that, in this situation,

Q(χ)⊆Q|G|p′ (
√
p)

for every χ ∈ Irr(G). As Q|G|p′ contains a primitive 4th root of unity and the conductor of√
(−1)(p−1)/2p is p, it follows that c(χ) divides p|G|p′ . Then, lev(χ)≤ 1 and the conjecture

trivially holds in this case.

We are now ready to complete the proof of Theorem 5.1.

Proof of Theorem 5.1. By Theorem 5.2, we may assume that S =M/Z(M) is a simple

group of Lie type defined in characteristic q0 �= p, and that S has non-exceptional Schur

multiplier. Further, we assume that p is odd, since the statement follows from [28, Theorem

A3] if p= 2.

Now, [17, Theorem 4.2] gives a list of the possible (S,r) in this case, where r = χ(1) is

the prime for which M has an irreducible character of degree r. By our assumptions, we

are not in the cases listed in (i) or (vi) of [17, Theorem 4.2]. Then, S is one of:

PSL2(q),PSUn(q)(n≥ 3),PSLn(q)(n≥ 3), or PSp2n(q),

with specifications on n,q,r, and χ in each case. Here, we have S =G/Z(G) and M =G/Z

for some Z ≤ Z(G) and G :=GF , where G is a simple, simply connected algebraic group

and F : G→G is a Frobenius endomorphism defining G over Fq, where q is some power

of q0. We discuss each case separately.

https://doi.org/10.1017/nmj.2025.10077 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2025.10077


12 N. HUNG AND M. SCHAEFFER FRY

(I) First, suppose we are in case (ii) of [17, Theorem 4.2], so S = PSL2(q). Then, either

r= q= q0 and χ is the Steinberg character, which is rational; or q is odd and χ(1) = r= q−ε
2

for some ε ∈ {±1}; or q is a power of 2 and r = q+ ε for some ε ∈ {±1} is a Mersenne prime

or Fermat prime. In the case q is odd, we have c(χ)∈ {q0,1} as in [17, §5.2.2], so lev(χ) = 0.

So, assume q is a power of 2. Here, we have Q(χ)⊆Qq−ε, so we may assume p | (q− ε).

In this case, χ is the restriction of a semisimple character χ̃ of G̃ = GL2(q) indexed by a

semisimple element with eigenvalues {ζi, ζ−i}, where ζ is a primitive (q− ε) root of unity

and 1 ≤ i < q− ε. Letting α be a generator for Irr(Cq−ε), we have Q(χ) ⊆ Q(αi), so that

lev(χ) ≤ lev(αi). Note that by [28, Lemma 4.1], lev(χ) is the smallest positive integer e

such that χσe = χ, since p is odd. (Recall from §2 that σe ∈ I ′ is the element mapping any

p-power root of unity ω to ω1+pe

.)

Now, the value of χ on a semisimple element gj of S = G = SL2(q) with eigenvalues

{ζj , ζ−j} is ζij + ζ−ij . In particular, taking m := (q− ε)p′ and h := gm, we have

χ(h) = ζim+ ζ−im,

which is stable under σe if and only if ζim is, since p is odd. (This is worked out, for example,

as in [29, Lemma 2.1].) But this happens if and only if αim, and hence αi, is stable under

σe. It follows that

lev(αi) = lev(χ(h))≤ lev(χ).

This establishes that

lev(αi) = lev(χ) = lev(χ|P ),

where P is a Sylow p-subgroup of S containing h.

(II) Next, suppose we are in case (iii) of [17, Theorem 4.2], so that S = PSLn(q) with

n an odd prime, q = qf0 ≥ 3 with q0 a prime and f odd, and r = (qn − 1)/(q− 1) with

(n,q−1) = 1. Note that this means S =M =G. Here, as in [17, §5.2.1], we have χ is one of

the q−2 irreducible Weil characters of degree r = (qn−1)/(q−1). Note that χ extends to

an irreducible Weil character χ̃ of G̃ := GLn(q). Further, χ is determined by the irreducible

constituent of χ̃|Z(G̃).

Let α be a generator for Irr(Z(G̃)) ∼= Cq−1. Then, for i = 1, . . . , q − 2, let χ̃i be an

irreducible Weil character of G̃ such that χ̃i|Z(G̃) = χ̃i(1)α
i. Then, any such choice of χ̃i

has the same restriction to G, and we let χi := χ̃i|G be that restriction. Let χ̃ := χ̃i and

χ := χi. As discussed in [17, §5.2.1], we have Q(χ̃i)⊆Q(αi), so that

Q(χ)⊆Q(χ̃)⊆Q(αi) =Q(ζi)⊆Q(ζ),

where ζ is a primitive (q−1)-root of unity in Q
×
. From this, we may assume p | (q−1), as

otherwise lev(χ) = 0.

Now, following [12, p. 125], we see χ̃ = RG̃
L (λ), where L is a Levi subgroup of the form

GL1(q)×GLn−1(q) of G̃, λ ∈ Irr(L) is the character of a module of the form

S(s,(1))⊗S(t,(n−1))

in the notation of [12, p. 125] with s �= t∈ F×
q and s/t=αi, and RG̃

L denotes Harish–Chandra

induction. Here, by an abuse of notation, we also denote by α a generator of F×
q
∼= Cq−1.
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Since multiplying by a linear character of G̃ does not affect χi, we may further assume that

t= 1, so

λ= S(αi,(1))⊗S(1,(n−1)).

(Note that for αj ∈ F×
q , the module S(αj ,(k)) affords the inflation of the linear character

GLk(q)/SLk(q)∼= F×
q →Q

×
defined by α 	→ ζj .)

Now, let Q be a parabolic subgroup of G̃ such that L≤Q is the Levi complement in Q,

and let λ̂ be the inflation of λ to Q. Then,

χ=ResG̃GInd
G̃
Q(λ̂) = IndGQ∩GRes

Q
Q∩G(λ̂)

since G̃ = GQ. Note that r = χ(1) = [G : Q∩G]. Then, by the first half of the proof of

Theorem 4.4, we have lev(χ) = lev(χP ), as desired.

(III) Now consider case (iv) of [17, Theorem 4.2]. Here, S = PSUn(q) with n an odd

prime, r = (qn+1)/(q+1), and (n,q+1) = 1. Again, this means S =M =G and χ is one

of the q irreducible Weil characters of degree r = (qn+1)/(q+1) (see [17, §5.3]). Again,

χ extends to an irreducible Weil character χ̃ of G̃ := GUn(q) and χ is determined by its

values on Z(G̃). Letting α be a generator for Irr(Z(G̃)) ∼= Cq+1, we have Weil characters

χi = χ̃i|G, where χ̃i|Z(G̃) = χ̃i(1)α
i as in (II), now for i = 1, . . . , q. Here, we similarly have

Q(χi) ⊆ Q(αi) ⊆ Q(ξ), where ξ is a primitive (q+1)-root of unity in Q
×
. So, we assume

p | (q+1). Further, this establishes that

lev(χi)≤ lev(αi).

In this case, we use the explicit formula from [33, Theorem 4.1] for the values of χi.

Namely, for g ∈ G̃, we have

χi(g) =
(−1)n

q+1

q∑
k=0

ξ−ik(−q)dimKer(g−ξ̂−k),

where ξ̂ denotes a generator of the subgroup Cq+1 ≤ F×
q2 .

Now, let m := (q+ 1)p′ and let β := ξ̂m be a generator of the Sylow p-subgroup of

Cq+1 ≤ F×
q2 . Let h be a semisimple p-element of G with eigenvalues {β,β−1,1, . . . ,1}. Then,

since n and p are odd, we have:

χi(h) =
−1

q+1

(
(ξim+ ξ−im)(−q)+(−q)n−2− ξim− ξ−im+

q∑
k=1

ξ−ik

)

= (ξim+ ξ−im)+
1

q+1

(
qn−2−

q∑
k=1

ξ−ik

)
= (ξim+ ξ−im)+

qn−2+1

q+1
.

Recall again that by [28, Lemma 4.1], lev(χ) is the smallest positive integer e such that

χσe = χ, since p is odd. From above, we see χi(h) is fixed by σe if and only if (ξim+ ξ−im)

is fixed by σe. From here, we conclude similar to (I). Namely, χi(h) is then stable under σe

if and only if ξim is stable under σe, if and only if the character αim is stable under σe, so

also αi is. So we have lev(χi(h)) = lev(αi). Then,

lev(χi)≥ lev(αi),
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forcing that

lev(αi) = lev(χi) = lev(χi|P ),

where P is a Sylow p-subgroup of S containing h.

(IV) Finally, assume we are in case (v) of [17, Theorem 4.2]. Then, S = PSp2n(q) and

either

(a) r = (qn+1)/2 with n= 2a ≥ 2 and q = q2
k

0 with q0 odd and k ≥ 0; or

(b) r = (3n−1)/2, where n is an odd prime and q = 3.

In case (a), we have as in [17, §5.4.1] that either q is a square and hence χ is rational-valued,

or k = 0 so q = q0 and Q(χ)⊆Q(ζq), where ζq is a primitive qth root of unity in Q
×
. Then,

χ is almost p-rational (hence has lev(χ) ≤ 1) if p = q0 and is p-rational (so lev(χ) = 0) if

p �= q0. In case (b), we similarly have Q(χ) ⊆ Q(ζ3) with ζ3 a primitive 3rd root of unity.

Again, lev(χ)≤ 1 if p= 3 and lev(χ) = 0 if p �= 3.

5.2. Further examples satisfying Conjecture A

We provide further evidence for Conjecture A among certain (almost)-quasisimple groups.

When G=GF , where G is a connected reductive algebraic group over Fq0 for a prime q0
and F : G→G is a Steinberg morphism, the set Irr(G) is partitioned into so-called rational

Lusztig series E(G,s). Here, s ranges over semisimple elements, up to G∗-conjugacy, of

G∗ = (G∗)F
∗
, where (G∗,F ∗) is dual to (G,F ). Let p �= q0 be a nondefining prime and

suppose that s ∈G∗ is a semisimple element of order relatively prime to p. Then, we define

Ep(G,s) to be the union of all E(G,st) where t ∈CG∗(s) is a p-element. A result of Digne

and Michel yields that the set Ep(G,s) is a union of p-blocks. (See [4, Theorem 9.12].)

Our next examples concerning Conjecture A are the Suzuki and Ree groups. That is,

these are the cases that F is not a Frobenius morphism.

Theorem 5.3. Conjecture A holds for 2B2(q
2) for q2 = 22n+1 > 2 and 2G2(q

2) for

q2 = 32n+1 > 3. Further, if Conjecture B holds for 2F4(q
2), where q2 = 22n+1 > 2, then

Conjecture A holds for 2F4(q
2) for p �= 3.

Proof. By Theorems 5.2 and 3.4, we may assume that p is not the defining characteristic

for G and that the Sylow p-subgroups of G are non-cyclic. Then, we are left to consider

the case that G= 2F4(q
2) with q2 = 22n+1 and p is an odd prime dividing (q2−1), (q2+1),

or (q4+1).

If p � (q2 − 1) [22, Bemerkung 1] yields that each Ep(G,s) for s ∈ G∗ a semisimple p′-

element contains a unique block of positive defect, which, therefore, has as defect groups a

Sylow p-subgroup of CG∗(s), using [21, Lemma 2.6]. If instead p | (q2−1), we have by [22,

Bemerkung 1] that each Ep(G,s) has one or three blocks of positive defect, but only one

of these is noncyclic. In either case, a block B with non-cyclic defect groups has maximal

defect for p �= 3, completing the proof by our assumption that Conjecture B holds.

Our next several examples will come from linear groups, especially in the case p= 2. Let

G̃ := GLn(q), G= SLn(q), and S = PSLn(q), and assume that q is odd and p= 2.

In this situation, consider a block B̃ of G̃ covering a block B of G. These can be chosen

so that B̃ = E2(G̃, s̃) for some odd-order semisimple element s̃ of G̃∗ ∼= G̃, by [4, Theorems

9.12 and 21.14]. Further, a Sylow 2-subgroup of CG̃∗(s) gives a defect group for B̃ by [9,

Corollary (5E)]. (See also [3], which shows the results of [9] also hold for p=2.) Now,CG̃∗(s̃)
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is a product CG̃∗(s̃) =
∏

GLmi(q
di), where mi and di correspond to the multiplicities and

degrees of the eigenvalues of s̃ and n=
∑

midi.

Theorem 5.4. Let M be a quasisimple group with M/Z(M) = PSL2(q), where q ≥ 5 is

a prime power. Then, Conjecture A holds for M.

Proof. Let q be a power of a prime q0. In this case, the Sylow p-subgroups of M are

cyclic unless p ∈ {2, q0}. So, we may assume by Theorems 3.4 and 5.2 that p = 2 and by

[28, Theorem A3] we need only consider blocks of M with non-maximal defect. We have

M ∈ {G,S}, where G= SL2(q) and S = PSL2(q). Let G̃=GL2(q) and let B̄ be a block of

M with positive, non-maximal defect dominated by a block B of G. Let B̃ be a block of G̃

covering B. Then, as discussed above, there is some odd-order, semisimple element s̃ of

G̃∗ ∼= G̃ such that B̃ = E2(G̃, s̃) and a Sylow 2-subgroup of CG̃∗(s̃) gives a defect group

for B̃. Then, with our assumption that B̄ is not of maximal defect, we see that any such

defect group has cyclic intersection with G, so that B (hence B̄) has cyclic defect groups.

Then, we again apply Theorem 3.4.

Proposition 5.5. Let G̃ = GLn(q) with q odd and let B̃ = E2(G̃, s̃) be a 2-block of G̃

as discussed above. Further, suppose that q ≡ −1(mod 4) and that each di is odd, in the

notation above. Then, B̃ satisfies Conjecture A.

Proof. Let D be a defect group for B̃, such that D =
∏

Di with Di ∈ Syl2(GLmi(q
di)).

Note that in this case, qdi ≡−1(mod 4) for each factor GLmi(q
di) of C :=CG̃∗(s̃).

We claim that in this situation, each Di/D
′
i has exponent at most 2, and hence so

does D/D′. We can see this from the description of Sylow 2-subgroups of GLm(qd) in [5].

Indeed, by the description in [5], such a group is a direct product of Sylow 2 subgroups of

GL2j (q) for various powers 2
j of 2. Hence, it suffices to prove the claim for m a power of 2.

A Sylow 2-subgroup P2j of GL2j (q
d) is an iterated wreath product P2 �C2 �C2 · · · �C2, where

P2 ∈ Syl2(GL2(q
d)). Since the latter is semidihedral, we know exp(P2/P

′
2) ≤ 2. For j ≥ 2,

we have P2j = P2j−1 �C2. Then, P2j/P
′
2j

∼= P 2
2j−1/〈(P ′

2j−1)2, [P 2
2j−1 ,C2]〉×C2, and we can see

inductively that exp(P2j/P
′
2j )≤ 2. This proves our claim. (See also [19, Proposition 4.3]).

Hence, by [19, Theorem D], each odd-degree character in the principal block B0(C) of

C is 2-rational. But then the same is true for the height-zero characters of B̃ by the main

Theorem of [32], since these correspond to the height-zero characters in B0(C) by Jordan

decomposition using [9, Theorem (7A)]. (See also [3], which shows the results of [9] continue

to hold for p= 2.)

Remark 5.6. We remark that the same proof shows that when G̃=GUn(q) with q ≡ 1

(mod 4) and B̃ = E2(G̃, s̃) is a 2-block of G̃ with CG̃∗(s̃) =
∏

GLη
mi

(qdi) with qdi ≡ −η

(mod 4) for each i, then Conjecture A holds for B̃.

Further, using the description of Sylow 2-subgroups of Sp2n(q), SO2n+1(q), O2n+1(q),

SO±
2n(q), and O±

2n(q) in [5] and arguing similarly to before, we see that each of these groups

also satisfy exp(P/P ′) ≤ 2 for a Sylow 2 subgroup P. So, taking G to be a classical-type

group CSp2n(q), SO2n+1(q), or CSO±
2n(q) and a block B such that B = E2(G,s) (again

applying [4, Theorems 9.12 and 21.14]), we may obtain analogous examples using [10] in

place of [9]. This could be further extended to classical types whose center is disconnected

in the cases that each χ ∈ Irr(B) lies in a series E(G,st), where CG∗(st) is connected, using

[31] in place of [32].
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§6. Primitive characters of prime degree

This section handles the primitivity case of Theorem D. We begin with an easy

observation.

Lemma 6.1. Let p be a prime, G a finite group, P ∈ Sylp(G), and χ ∈ Irrp′(G)

with lev(χ) ≥ 2. To prove Conjecture B, it suffices to show that lev(χ) = lev(χP ) and,

additionally, Q4 ⊆Q(χP ) if p= 2.

Proof. Let a := lev(χ) = lev(χP ) ≥ 2. We aim to show that Qp(χP ) = Qpa . First, we

have Q(χP )⊆Qpa (see [28, Lemma 7.1]). If p is odd then all the subfields of Qpa containing

Qp are of the form Qpb for 1 ≤ b ≤ a (see the proof of [28, Theorem 2.3]), and, therefore,

the fact that lev(χP ) = a forces Qp(χP ) to be the entire Qpa .

Let p= 2 and assume that Q4 ⊆Q(χP ). Now all the subfields of Q2a containing Q4 are

again of the form Q2b for 1≤ b≤ a, and we still have Q2a =Q(χP ).

Lemma 6.2. Let K � G and χ ∈ Irr(G/K). Let χ be the inflation of χ up to G. Let

P ∈ Sylp(G) and P := PK/K ∈ Sylp(G/K). Then,

lev(χ) = lev(χ) and lev(χP ) = lev(χP ).

Proof. This follows from the fact that the sets of values of χ and χ, as well as those of

χP and χP , are the same.

Lemma 6.3. Let K1, ...,Kn be finite abelian extensions of Q. Let K :=K1 · · ·Kn denote

the smallest subfield of C containing all Ki. Then, K is also a finite abelian extension of Q

and

lev(K) = max{lev(Ki) : 1≤ i≤ n}.

Proof. It is easy to see that K ⊆ Qlcm(c(K1),...,c(Kn)), so K is a finite abelian extension

of Q.

Suppose a := max{lev(Ki) : 1 ≤ i ≤ n}. Then, Ki ⊆ QpaQc(Ki)p′
and thus K ⊆

QpaQ∏
i c(Ki)p′ , implying that lev(K)≤ a. The lemma follows as it is clear that lev(Ki)≤

lev(K) for every i.

For the remainder of this section, a finite group G is called almost quasisimple if there

exists a nonabelian simple group S such that S � G/Z(G)≤Aut(S).

We shall need the following rather technical result, extracted from [17].

Lemma 6.4. Let G be an almost quasisimple irreducible primitive subgroup of GL(r,C),

where r is a prime, and χ∈ Irr(G) the corresponding character. Let S be the socle of G/Z(G)

and M the last term in the derived series of G. Let π be the set of prime divisors of r|Z(M)|
and Zπ denotes the Hall π-subgroup of (the abelian group) Z :=Z(G). Let N :=ZπM . Then,

the following hold.

(i) M is quasisimple with M/Z(M) = S and χM is irreducible.

(ii) ϕ := χN ∈ Irr(N) and ϕ has the canonical extension ϕ̂ to G, in the sense of [25,

Corollary 6.2]. Furthermore, χ= ϕ̂λ for some linear character λ of G/N .

(iii) Q(χ) = Q(χM )Q(μ)Q(λ), where λ is as in (ii) and μ is the irreducible (linear)

character of Zπ lying under χ.

Proof. This follows from [17, Proposition 3.5 and Corollary 4.4] and their proofs.

https://doi.org/10.1017/nmj.2025.10077 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2025.10077


THE P-RATIONALITY OF HEIGHT-ZERO CHARACTERS 17

Theorem 6.5. Let p be a prime and G a finite group. Let χ be an irreducible primitive

character of G of prime degree not equal to p. Suppose lev(χ)≥ 2. Then, lev(χ) = lev(χP )

for P ∈ Sylp(G). Furthermore, if p= 2 then Q4 ⊆Q(χP ).

Proof. We may assume that χ is faithful, by modding out by its kernel and using

Lemma 6.2 if necessary. Let

r := χ(1).

Then, G is an irreducible primitive subgroup of GL(r,C). By [17, Lemma 4.1], we are in

one of the following situations.

(A) G is almost quasisimple.

(B) G contains a normal r -subgroup R = Z(R)E, where E is an irreducible extraspecial

r -group of order r3, and either R= E or Z(R)∼= C4.

A. Consider the case, when G is almost quasisimple. As in Lemma 6.4, we use Z for the

center of G, S for the socle of G/Z, and M the last term in the derived series of G. Also,

π is the set of prime divisors of r|Z(M)| and Zπ denotes the Hall π-subgroup of Z. Set

N := ZπM .

By Lemmas 6.3 and 6.4, we have

lev(χ) = max{lev(χM ), lev(μ), lev(λ)}

for some linear characters μ of Zπ and λ of G/N .

(i) Suppose first that lev(χ) = lev(χM ). Recall that M is quasisimple and χM ∈ Irr(M),

by Lemma 6.4(i). Using Theorem 5.1, we obtain

lev(χM ) = lev(χQ),

for every Q ∈ Sylp(M). Choosing such a Q that is contained in P, we have

lev(χ)≥ lev(χP )≥ lev(χQ) = lev(χM ) = lev(χ),

and the first statement of the theorem follows. When p=2, we know from [28, Theorem A3]

that Q(χQ) =Q2lev(χM ) ⊇Q4, and thus Q(χP )⊇Q4, as wanted.

(ii) Next, suppose that lev(χ) = lev(μ). Let Q ∈ Sylp(Zπ). Recall that μ ∈ Irr(Zπ) lies

under χ and Zπ is central in G. Hence, χZπ is a rational multiple of μ, and we deduce that

χQ is a rational multiple of μQ as well. Since lev(χ)≥ 2, we have Q(χQ) =Q(μQ)⊇Q4, so

it remains to show that lev(χ) = lev(χP ).

Observe that

lev(χQ) = lev(μQ).

Clearly, lev(μ) = lev(μQ), as μ is linear. Altogether, we have

lev(χ)≥ lev(χQ) = lev(μQ) = lev(μ) = lev(χ),

implying that lev(χ) = lev(χQ), and we are done again.

(iii) Finally, suppose that a = lev(χ) = lev(λ) >max{lev(χM ), lev(μ)}. Notice that N

is a central product of Zπ and M and ϕ ∈ Irr(N) lies over ϕM ∈ Irr(M) and μ ∈ Irr(Zπ).

Therefore,

Q(ϕ) =Q(χM )Q(μ).
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It follows from Lemma 6.3 that

lev(ϕ) = max{lev(χM ), lev(μ)}< a.

As Q(ϕ̂) =Q(ϕ) (see [25, Corollary 6.4]), we then have lev(ϕ̂)< a.

Again, by Lemma 6.4, χ= ϕ̂λ. So χP = ϕ̂PλP . Assume to the contrary that lev(χP )≤
a−1. Then, for every g ∈ P , we have ϕ̂(g) �= 0 and

lev(λ(g)) = lev(χ(g)ϕ̂(g)−1)≤max{lev(χ(g)), lev(ϕ̂)} ≤ a−1,

which implies that lev(λ) = lev(λP ) ≤ a − 1, a contradiction. We have proved that

lev(χP )≥ a, which forces lev(χ) = lev(χP ), as desired.

Now suppose that p= 2. If either lev(χM )≥ 2 or lev(μ)≥ 2 then it was already known

from parts (i) and (ii) that Q4 ⊆Q(χP ). So let us assume that both χM and μ are 2-rational.

Both ϕ and ϕ̂ are then 2-rational as well, as Q(ϕ̂) = Q(ϕ) = Q(χM )Q(μ). It follows that

ϕ̂P is rational-valued. Now we see that Q(χP ) ⊇ Q4, using χP = ϕ̂PλP together with the

facts that λ is linear and lev(λ)≥ 2.

B. Next we consider the situation in which G contains a normal r -subgroup R=Z(R)E,

where E is an irreducible extraspecial r -group of order r3, and either R=E or Z(R)∼=C4.

By the main result of [20], we may assume that G is non-solvable. Using [17, Theorem 6.1],

we obtain

Q(χ) =Q(χZ) =Q(exp(2iπ/a)),

where Z := Z(G) and a ∈ Z+ is a certain divisor of exp(Z) divisible by r.

Let θ be the (unique) irreducible constituent of χZ , so that χZ = αθ for some α ∈ Z+.

Let Q ∈ Sylp(Z). As θ is linear, we then have

lev(χ)≥ lev(χQ) = lev(θQ) = lev(θ) = lev(χZ) = lev(χ),

which implies that lev(χ) = lev(χP ). Also, Q(χP ) ⊇ Q(χQ) = Q(μQ) ⊇ Q4. The proof is

complete.

Theorem D now readily follows from Theorems 4.4 and 6.5, and Lemma 6.1.

§7. Further discussion

We have seen the connection between Conjecture A and Navarro–Tiep’s Conjecture B.

We now discuss another connection, this time with the well-known AMN conjecture. In

particular, we shall explain how Conjecture A implies that the conjectural AMN bijection

should respect the p-rationality level of the defect-normalizer restrictions.

7.1. Connection with the AMN conjecture

Keep the notation from §2, so that |G|= n= pbm with (p,m) = 1 and G := Gal(Qn/Q)∼=
I×K. Recall thatH= I×〈σ〉, where σ ∈K is such that its restriction toQm is the Frobenius

automorphism ζ 	→ ζp. The McKay–Navarro conjecture predicts that, for P ∈ Sylp(G), there

should exist an H-equivariant bijection from Irrp′(G) to Irrp′(NG(P )). Such a bijection

necessarily preserves the p-rationality level of characters (see [14, §2], for instance).
As noted in §3, the Galois group G permutes the p-blocks of G. Let B be a p-block of G

and HB be the subgroup of H fixing B. Recall that I ≤HB.
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Now let D be a defect group of B and b ∈Bl(NG(D)) be the Brauer correspondent of B.

The group HB then permutes (and preserves the height) the ordinary characters in B and

b. The AMN conjecture [26, Conjecture B] asserts that there exists a bijection

∗ : Irr0(B)→ Irr0(b)

that commutes with the action of HB. That is,

(χτ )∗ = (χ∗)τ

for every χ ∈ Irr0(B) and every τ ∈HB.

Let F be the fixed field in Qn of HB. The AMN conjecture then implies that

F(χ) = F(χ∗)

for all χ ∈ Irr0(B). As I ≤ HB, we have F ⊆ Qm, and thus lev(F) = 0. It follows that the

conjectural bijection ∗ preserves the p-rationality level:

lev(χ) = lev(χ∗).

The following is the AMN conjecture with the defect-normalizer restriction incorporated.

Conjecture 7.1. Let p be a prime and G a finite group. Let B ∈ Bl(G) be a p-block

of G with defect group D and b ∈ Bl(NG(D)) be its Brauer correspondent. Let HB be the

subgroup of H fixing B. Then, there exists an HB-equivariant bijection
∗ : Irr0(B)→ Irr0(b)

such that lev(χNG(D)) = lev(χ∗) for every χ ∈ Irr0(B) of p-rationality level at least 2.

Theorem 7.2. Conjecture 7.1 follows from the AMN conjecture and Conjecture A.

Conversely, Conjecture A follows from Conjecture 7.1.

Proof. We keep the above notation. First, the AMN conjecture implies that there exists

an HB-equivariant bijection
∗ : Irr0(B)→ Irr0(b) such that lev(χ) = lev(χ∗). Conjecture A

then implies that lev(χNG(D)) = lev(χ∗) for all χ ∈ Irr0(B) of level at least 2.

For the converse statement, let χ be a height-zero character in a block B and assume that

there exists a bijection ∗ : Irr0(B) → Irr0(b) that commutes with the action of HB

such that lev(χNG(D)) = lev(χ∗). As mentioned, we then have lev(χ) = lev(χ∗), and it

follows that lev(χ) = lev(χNG(D)), as wanted.

Conjecture 7.1 might be compared with the following conjecture of Navarro and Tiep,

which combines Conjecture B and the McKay–Navarro conjecture.

Conjecture 7.3 ([28], Condition D). Let p be a prime, G a finite group, and P ∈
Sylp(G). Then, there exists an H-equivariant bijection ∗ : Irrp′(G) → Irrp′(NG(P )) such

that Qp(χP ) =Qp(χ
∗
P ) for all χ ∈ Irrp′(G).

7.2. Consequences of Conjecture A

A character χ is termed almost p-rational if its conductor is not divisible by p2, or,

equivalently, lev(χ)≤ 1 (see [15]).

Consequence 7.4. Let χ be a height-zero character of a finite group G and D a defect

group of the p-block of G containing χ. Assume Conjecture A holds. Then, χ is almost

p-rational if and only if χNG(D) is almost p-rational. In particular, when p = 2, χ is

2-rational if and only if χNG(D) is 2-rational.
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Proof. It is clear that if χ is almost p-rational then so is χNG(D). Conversely, if

χ is not almost p-rational then lev(χ) ≥ 2, and it follows from Conjecture A that

lev(χNG(D))≥ 2.

Consequence 7.5. Let G be a finite group with abelian Sylow p-subgroups. Assume

that Conjecture A holds. Then, lev(χ) = lev(χNG(D)) for every χ ∈ Irr(G) of p-rationality

level at least 2 and D a defect group of the p-block of G containing χ.

Proof. This follows from the solution of the “if” implication of Brauer’s height zero

conjecture [21].

Consequence 7.6. Let χ be an irreducible 2-height zero character of a finite group G.

Suppose that Q(χ) =Q(
√
d) is a quadratic number field, where d �≡ 1(mod 4) is a square-free

integer. Assume that Conjecture A holds. Then, Q(χ) =Q(χNG(D)), where D a defect group

of the p-block of G containing χ.

Proof. Note that c(
√
d) = 4|d| when d �≡ 1(mod 4) is a square-free integer. Therefore, by

the hypothesis, lev(χ)≥ 2. By Conjecture A, we then have lev(χNG(D))≥ 2. In particular,

χNG(D) is not rational, implying that Q(χ) =Q(χNG(D)).

7.3. Examples

We end with examples to justify some of our claims from §1.
First, for height-zero characters χ in general, lev(χ) does not always equal lev(χD),

where D is a defect group of the p-block containing χ. For example, when p = 2, the

group SmallGroup(24,4) has characters of degree 2 with lev(χ) = 2 and lev(χD) = 0; the

group SmallGroup(48,5) has characters of degree 2 with lev(χ) = 3 and lev(χD) = 2; and

several similar examples can be found among the SmallGroup library in [11]. There are

also examples for odd primes: when p= 3, the group SmallGroup(108,19) has characters of

degree 3 with lev(χ) = 2 and lev(χD) = 1.

Next, the assumption lev(χ) ≥ 2 in Conjecture A is necessary. For example, the group

2.A10.2 with p = 5 has characters with degree 432 with lev(χ) = 1 but lev(χP ) = 0 =

lev(χNG(P )). Further, 2.A11 with p = 3 has characters of degree 1584 in blocks having

non-maximal defect with lev(χ) = 1 and lev(χD) = 0 = lev(χNG(D)).
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