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Abstract

A Littlewood–Paley operator associated with the reflection part of the Dunkl operator is introduced and
proved to be of type (p, p) for 1 < p <∞, based on boundedness of a generalised vector-valued singular
integral. This fills a gap for 2 < p <∞ concerning the boundedness of a g-function in the Dunkl setting.
The paper also supplies new proofs for 1 < p < ∞ on the (p, p) boundedness of various g-functions
associated with the Dunkl operator.
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1. Introduction

The harmonic analysis of the one-dimensional Dunkl operator and Dunkl transform
was developed in [3, 4]. The Littlewood–Paley g-functions in the Dunkl setting on the
line were studied in an earlier paper [6], where their boundedness in norm was proved
in several cases. The Dunkl operator and Dunkl transform considered here are the
rank-one case of the general Dunkl theory, which is associated with a finite reflection
group acting on a Euclidean space. The Dunkl theory provides a useful framework for
the study of multivariable analytic structures and has gained considerable interest in
various fields of mathematics and in physical applications (see, for example, [2]). For
the classical theory of the Littlewood–Paley g-functions, see [7–9, 11].

Assume that λ is a fixed nonnegative number. As in [3], for 1 < p <∞, we denote
by Lp

λ(R) the space of measurable functions f on R satisfying

‖ f ‖p
Lp
λ

:= cλ

∫
R

| f (x)|p|x|2λ dx <∞ with c−1
λ = 2λ+1/2Γ(λ + 1/2).
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The Dunkl operator on the line R involves a reflection and is defined by

(D f )(x) = f ′(x) +
λ

x
( f (x) − f (−x)),

and the Dunkl transform of a function f ∈ L1
λ(R) is defined by

(Fλ f )(ξ) := cλ

∫
R

f (x)Eλ(−ixξ)|x|2λ dx for ξ ∈ R,

where Eλ is the Dunkl kernel

Eλ(z) = jλ−1/2(iz) +
z

2λ + 1
jλ+1/2(iz) for z ∈ C

and jα(z) is the normalised Bessel function

jα(z) = 2αΓ(α + 1)
Jα(z)

zα
=

∞∑
n=0

(−1)nΓ(α + 1)
n!Γ(n + α + 1)

( z
2

)2n
.

The Dunkl transform Fλ was studied in [5] from the viewpoint of the signed
hypergroup.

The operator ∆λ = D2
x + ∂2

y is called the λ-Laplacian. It can be written explicitly, for
a given C2 function u on the half-plane R2

+ = {(x, y) : x ∈ R, y ∈ (0,∞)}, as

(∆λu)(x, y) =
∂2u
∂x2 +

∂2u
∂y2 +

2λ
x
∂u
∂x
−
λ

x2 (u(x, y) − u(−x, y)).

If ∆λu ≡ 0, then u is said to be λ-harmonic on R2
+.

For f ∈ Lp
λ(R), 1 ≤ p < ∞, the associated Poisson integral, which is called the λ-

Poisson integral in [3], is defined by

u f (x, y) = (P f )(x, y) = cλ

∫
R

f (t)P(x,−t, y)|t|2λ dt for (x, y) ∈ R2
+, (1.1)

where P(x, t, y) is the λ-Poisson kernel given by (cf. [3])

P(x, t, y) =
λ

πcλ

∫ 1

−1

y(1 + s)(1 − s2)λ−1

(y2 + x2 + t2 + 2xts)λ+1 ds. (1.2)

The λ-Poisson integral u f (x, y) of f ∈ Lp
λ(R) for 1 ≤ p <∞ is λ-harmonic on R2

+.
For f ∈ Lp

λ(R), 1 ≤ p <∞, there are several possible g-functions of the Littlewood–
Paley type, such as

g1( f )(x) =

(∫ ∞

0

∣∣∣∣∣∂u f

∂y
(x, y)

∣∣∣∣∣2y dy
)1/2

, gx( f )(x) =

(∫ ∞

0

∣∣∣∣∣∂u f

∂x
(x, y)

∣∣∣∣∣2y dy
)1/2

and

g∇( f )(x) =

(∫ ∞

0
|∇u f (x, y)|2y dy

)1/2
,
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where ∇ = (∂x, ∂y) is the gradient vector. In the Dunkl setting, the more apt
substitutions for gx and g∇ are

gD( f )(x) =

(∫ ∞

0
|Dxu f (x, y)|2y dy

)1/2
and g∇λ( f )(x) =

(∫ ∞

0
|∇λu f (x, y)|2y dy

)1/2
,

where ∇λ = (Dx, ∂y) is the λ-gradient vector. Based upon a vector version of the
multiplier theorem for the Dunkl transform, the boundedness of the operators g1, gD
and g∇λ in Lp

λ(R) was proved in [6] for 1 < p <∞, but that of the operator g∇ in Lp
λ(R)

was only proved for 1 < p ≤ 2. One of the contributions of the present paper is to fill
in the gap for the operator g∇, that is, to show that ‖g∇( f )‖Lp

λ
. ‖ f ‖Lp

λ
for 1 < p <∞.

For this purpose, we need to consider an operator associated to the reflection part
of the Dunkl operator D, that is,

g0( f )(x) =

(∫ ∞

0

∣∣∣∣∣u(x, y) − u(−x, y)
x

∣∣∣∣∣2y dy
)1/2

.

We shall also consider the operator

g∆λ
( f )(x) =

(∫ ∞

0
y∆λu2(x, y) dy

)1/2
.

It is not difficult to see that there are close relationships between these g-functions
g1( f ), gx( f ), g∇( f ), gD( f ), g∇λ( f ), g0( f ) and g∆λ

( f ); moreover g1( f ), gD( f ) and g∇λ( f )
are also closely related to the generalised Hilbert transform in the Dunkl setting. These
relationships will be stated in Section 2. The boundedness of the operator g0 in
Lp
λ(R) for 1 < p < ∞ will be proved in Section 3, based on a lemma about vector-

valued singular integrals. The boundedness of g0 together with that of g∇λ implies the
boundedness of g∇ in Lp

λ(R) for all 1 < p < ∞. In Section 4, we give a new proof
for all 1 < p <∞ of the (p, p) boundedness of various g-functions associated with the
one-dimensional Dunkl operator, without using the vector version of the multiplier
theorem for the Dunkl transform. Our proof seems to be more fundamental.

Throughout the paper, A denotes a positive number independent of variables and
functions, which may be different on different occurrences. Also, U . V means that
U ≤ cV for some positive constant c independent of variables and functions.

2. Several lemmas
Lemma 2.1. Assume that 1 ≤ p <∞ and f ∈ Lp

λ(R). Then:

(i) gD( f ) ≤ gx( f ) + λg0( f ), gx( f ) ≤ gD( f ) + λg0( f );
(ii) g∇( f )2 = g1( f )2 + gx( f )2, g∇λ( f )2 = g1( f )2 + gD( f )2;
(iii) g∇λ( f ) ≤ g∇( f ) + λg0( f ), g∇( f ) ≤ g∇λ( f ) + λg0( f ); and
(iv) g∆λ

( f )2 = 2g∇( f )2 + λg0( f )2.

Proof. Parts (i) and (ii) follow from the definitions. Since

|∇λu(x, y)|2 = |∇u(x, y)|2 + 2λ
∂u(x, y)
∂x

u(x, y) − u(−x, y)
x

+ λ2
(u(x, y) − u(−x, y)

x

)2
,

(2.1)
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integrating over (0,∞) with respect to y dy yields the first inequality in part (iii) and
the second one follows similarly. Finally, part (iv) is a consequence of the identity

∆λu2(x, y) = 2|∇u(x, y)|2 + λ
(u(x, y) − u(−x, y)

x

)2
. (2.2)

�

Lemma 2.1 shows that g∆λ
( f ) is essentially the largest of these g-functions. To state

further relationships between them, we need the λ-Hilbert transform Hλ, an analogue
of the classical Hilbert transform. From [3], the λ-Hilbert transform Hλ f of a function
f is defined as the limit of v f (x, y) = (Q f )(x, y) as y→ 0+, the conjugate λ-Poisson
integral of f , which, together with the λ-Poisson integral u f (x, y) = (P f )(x, y), satisfies
the generalised Cauchy–Riemann equations

Dxu f − ∂yv f = 0, ∂yu f + Dxv f = 0. (2.3)

The conjugate λ-Poisson integral v f (x, y) is given explicitly by (cf. [3, (46) and (47)])

v f (x, y) = (Q f )(x, y) = cλ

∫
R

f (t)Q(x,−t, y)|t|2λ dt for (x, y) ∈ R2
+,

where Q(x,−t, y) is the conjugate λ-Poisson kernel

Q(x,−t, y) =
λΓ(λ + 1/2)

2−λ−1/2π

∫ 1

−1

(x − t)(1 + s)(1 − s2)λ−1

(y2 + x2 + t2 − 2xts)λ+1 ds for x, t ∈ R, y ∈ (0,∞).

The following proposition contains part of [3, Theorem 5.6 and Corollary 6.2].

Proposition 2.2. For f ∈ Lp
λ(R), 1 ≤ p <∞, the λ-Hilbert transform Hλ f exists almost

everywhere, and the mapping f 7→Hλ f is (p, p) bounded for 1 < p <∞ and weakly-
(1, 1) bounded. Furthermore, if 1 < p <∞,

(Q f )(x, y) = [P(Hλ f )](x, y) for f ∈ Lp
λ(R). (2.4)

For f ∈ Lp
λ(R), 1 < p < ∞, from (2.4), we have v f (x, y) = uHλ f (x, y). By (2.3),

DxuHλ f − ∂yvHλ f = 0 and ∂yuHλ f + DxvHλ f = 0, which, in conjunction with (2.3),
implies that DxvHλ f = −Dxu f and ∂yvHλ f = −∂yu f . In view of the continuity
and integrability, the last two equations lead to vHλ f (x, y) = −u f (x, y) and, again
by (2.4), uH 2

λ f (x, y) = −u f (x, y). Therefore H 2
λ f = − f , and then, for 1 < p < ∞, by

Proposition 2.2, there exists a constant Ap > 0 so that

A−1
p ‖ f ‖Lp

λ
≤ ‖Hλ f ‖Lp

λ
≤ Ap‖ f ‖Lp

λ
for f ∈ Lp

λ(R).

Lemma 2.3. Assume that 1 < p <∞ and f ∈ Lp
λ(R). Then:

(i) gD( f ) = g1(Hλ f ), g1( f ) = gD(Hλ f ); and
(ii) g∇λ( f )2 = g1( f )2 + g1(Hλ f )2 = gD( f )2 + gD(Hλ f )2.

Proof. From (2.4), v f (x, y) = uHλ f (x, y). Consequently, from (2.3), Dxu f = ∂yuHλ f

and ∂yu f = −DxuHλ f . The lemma follows. �
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From Lemma 2.3, the operators g∇λ , gD and g1 have equivalent norm estimates.

Lemma 2.4. If F(x, y) ∈ C2(R2
+)

⋂
C(R2

+), F(x, 0) ∈ L1
λ(R) and

F(x, y) = o((|x| + y)−2λ−1), |∇F(x, y)| = o((|x| + y)−2λ−2) as |x| + y→∞,

then "
R2

+

y∆λF(x, y)|x|2λ dx dy =

∫
R

F(x, 0)|x|2λ dx. (2.5)

Proof. Let Ω be the half-disc {(x, y) : x2 + y2 < N, y > 0} for N > 0. If u, v ∈ C2(Ω),
then, from [3, (38)],"

Ω

(v∆λu − u∆λv)|x|2λ dx dy =

∫
∂Ω

|x|2λ
(
v
∂u
∂n
− u

∂v
∂n

)
ds,

where ∂/∂n denotes the directional derivative of the outward normal. We take
u = F(x, y) and v = y, so that"

Ω

y∆λF(x, y)|x|2λ dx dy =

∫ N

−N
F(x, 0)|x|2λ dx

+ N2λ+1
∫ π

0

[
N
∂F
∂r

(N cos θ,N sin θ) − F(N cos θ,N sin θ)
]
|cosθ|2λ sin θ dθ.

Letting N →∞ and using the assumptions, yields (2.5). �

Lemma 2.5. If f ∈ D(R), the space of C∞ functions on R with compact support, then

u f (x, y) = O((|x| + y)−2λ−1), |∇u f (x, y)| = O((|x| + y)−2λ−2) as |x| + y→∞.

Proof. The two estimates are essentially contained in [6, Proposition 4]. Indeed, if we
assume that supp f ⊂ [−A, A] for some A > 0, then, for |x| > 2A, |t| ≤ A, from (1.2),

P(x, t, y) = O((|x| + y)−2λ−1),∣∣∣∣∣ ∂∂x
P(x, t, y)

∣∣∣∣∣ +

∣∣∣∣∣ ∂∂y
P(x, t, y)

∣∣∣∣∣ = O((|x| + y)−2λ−2).

Thus the desired estimates follow. �

Lemma 2.6. If φ ∈ C1(R) and φ(x) = o(|x|−2λ) as x→∞, then
∫
R

(Dφ)(x)|x|2λ dx = 0.

Proof. If λ = 0, the result is trivial. If λ > 0, we write φ = φe + φo, where

φe(x) = (φ(x) + φ(−x))/2, φo(x) = (φ(x) − φ(−x))/2.

It is obvious that
∫
R

(Dφe)(x)|x|2λ dx =
∫
R
φ′e(x)|x|2λ dx = 0. Moreover,∫

R

(Dφo)(x)|x|2λ dx = 2
∫ ∞

0

(
φ′o(x) +

2λ
x
φo(x)

)
x2λ dx = 2

∫ ∞

0
(x2λφo(x))′ dx = 0.

The lemma is proved. �
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3. Boundedness of the operator g0

Theorem 3.1. Assume that λ > 0. The operator g0 is bounded on Lp
λ(R) for 1 < p <∞.

We need a lemma on boundedness of a variant of vector-valued singular integrals.
The difference from the usual case is that the singularity of the kernel K(x, t) occurs
on both diagonals x = ±t. We begin with the scalar-valued form, which follows from
[1, Theorem 3.1].

Lemma 3.2. Suppose that T is a bounded linear operator on L2
λ(R) and there is a

measurable function K on R2 so that, for f ∈ L2
λ(R) with compact support, (T f )(x) is

given by the expression

(T f )(x) = cλ

∫
R

K(x, t) f (t)|t|2λ dt (3.1)

if both x,−x < supp f and both integrals
∫
R

K(x, t) f (t)|t|2λ dt and
∫
R

K(t, x) f (t)|t|2λ dt
converge absolutely for almost all x in the range. If there are constants c > 1 and A > 0
so that the kernel K satisfies∫

| |x|−|t| |>c|t−t′ |
(|K(x, t) − K(x, t′)| + |K(t, x) − K(t′, x)|)|x|2λ dx ≤ A (3.2)

for all t, t′ ∈ R with t , t′, then T extends to a bounded operator from Lp
λ(R) into itself

for 1 < p <∞.

Although, from the perspective of domains of integration, the assumption in (3.2)
is weaker then that in the usual case, the proof of the lemma proceeds by the same
pattern as in [10, pages 20–22]. Indeed, by interpolation and duality, it suffices to
show that the mapping f 7→ T f is of weak-type (1, 1). Taking the Calderón–Zygmund
decomposition for f ∈ L1

λ(R) at a given height as f = g + b, where b =
∑

k bk with
supp bk ⊂ Ik, the only modification of [10, pages 20–22] is, in evaluating (Tb)(x), to
integrate each |(Tbk)(x)| over (cIk)c ∩ (−cIk)c instead of (cIk)c; and then, invoking the
cancellation of bk, the condition (3.2) is applicable.

We shall apply the vector-valued analogue of the operator T described in
Lemma 3.2, for which, under similar assumptions and with the symbols | · | denoting
the norms in related Banach spaces, the proof goes through without difficulty. The
details of such a transplantation for convolution-type operators are given in [9, pages
45–48].

Lemma 3.3. Let H1 and H2 be two separable Hilbert spaces. Suppose that T is a
bounded linear operator from L2

λ(R,H1) into L2
λ(R,H2) and there is a measurable

function K from R2 to B(H1,H2) (the space of bounded linear operators from
H1 to H2) so that, for f ∈ L2

λ(R,H1) with compact support, (T f )(x) has the
expression (3.1) if both x,−x < supp f and both the integrals

∫
R

K(x, t) f (t)|t|2λ dt and∫
R

K(t, x) f (t)|t|2λ dt converge in the norm of H2 for almost all x in the range. If there
are constants c > 1 and A > 0 so that the kernel K satisfies the condition (3.2) for
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all t, t′ ∈ R with t , t′, then T extends to a bounded operator from Lp
λ(R,H1) into

Lp
λ(R,H2) for 1 < p <∞.

Proof of Theorem 3.1. We first show that g0 is of type (2, 2). Indeed, for f ∈ D(R),
by Lemma 2.5,

u2
f (x, y) = O((|x| + y)−4λ−2),

|∇u2
f (x, y)| = 2|u f (x, y)| |∇u f (x, y)| = O((|x| + y)−4λ−3),

as |x| + y→∞; and then, by Lemma 2.4, ‖g∆λ
( f )‖L2

λ
= ‖ f ‖L2

λ
. But from Lemma 2.1(iv),

g0( f )(x) ≤ λ−1/2g∆λ
( f )(x), so that ‖g0( f )‖L2

λ
≤ λ−1/2‖ f ‖L2

λ
.

We now defineH1 to be the space of complex numbers andH2 to be the L2-space

H2 =

{
φ : |φ|H2 :=

(∫ ∞

0
|φ(y)|2y dy

)1/2
<∞

}
.

Thus B(H1,H2) is isomorphic toH2. The associated operator T is given by

(T f )(x) =
u(x, y) − u(−x, y)

x
.

We shall rewrite T f in terms of a kernel function K. In fact, from (1.1),

(T f )(x) = cλ

∫
R

f (t)Ky(x, t)|t|2λ dt,

where

Ky(x, t) =
1
x

[P(x,−t, y) − P(−x,−t, y)].

It follows from (1.2) that

Ky(x, t) =
1
x

2λ
πcλ

∫ 1

−1

ys(1 − s2)λ−1

(y2 + x2 + t2 − 2xts)λ+1 ds,

and then integrating by parts gives

Ky(x, t) =
2(λ + 1)
πcλ

∫ 1

−1

yt(1 − s2)λ

(y2 + x2 + t2 − 2xts)λ+2 ds. (3.3)

In order to apply Lemma 3.3, we need to verify that Ky(x, t) satisfies the required
estimates. These are contained in the following lemma.

Lemma 3.4. There is a constant A > 0 such that, for all t, t′ ∈ R with t , t′,∫
| |x|−|t| |>5|t−t′ |

|Ky(x, t) − Ky(x, t′)|H2 |x|
2λ dx ≤ A, (3.4)

∫
| |x|−|t| |>5|t−t′ |

|Ky(t, x) − Ky(t′, x)|H2 |x|
2λ dx ≤ A. (3.5)
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Proof. We put Λy(x, t, s) = y2 + x2 + t2 − 2xts. We claim that, for | |x| − |t| | > 5|t − t′|,
s ∈ (−1, 1),

1
2 Λy(x, t, s) ≤ Λy(x, t′, s) ≤ 2Λy(x, t, s). (3.6)

Indeed, since

|Λy(x, t, s) − Λy(x, t′, s)| ≤ |t − t′|(|t − t′| + 2|t − xs|),

|t − t′| < 5−1Λy(x, t, s)1/2 and |t − xs| ≤ Λy(x, t, s)1/2, it follows that

|Λy(x, t, s) − Λy(x, t′, s)| ≤ 1
2 Λy(x, t, s),

so that (3.6) is concluded. Direct calculation shows that∣∣∣∣∣ ∂∂t
[tΛy(x, t, s)−λ−2]

∣∣∣∣∣ . y + |x| + |t|
Λy(x, t, s)λ+5/2 , (3.7)

and then, from (3.3), applying the mean value theorem in t and using (3.6) and (3.7),

|Ky(x, t) − Ky(x, t′)| .
∫ 1

0

y|t − t′|(y + |x| + |t|)
[y2 + (|x| − |t|)2 + 2|xt|(1 − s)]λ+5/2 (1 − s)λ ds.

Now making the substitution ρ = 2|xt|(1 − s)/[y2 + (|x| − |t|)2],

|Ky(x, t) − Ky(x, t′)| .
y|t − t′|(y + |x| + |t|)

|xt|λ+1[y2 + (|x| − |t|)2]3/2

∫ M

0

ρλ

(1 + ρ)λ+5/2 dρ,

where M = 2|xt|/[y2 + (|x| − |t|)2]. Since
∫ M

0 ρλ(1 + ρ)−λ−5/2 dρ � [M/(M + 1)]λ+1, it
follows that

|Ky(x, t) − Ky(x, t′)| .
(|x| + |t|)−2λ

[y2 + (|x| − |t|)2]3/2 |t − t′|.

Thus

|Ky(x, t) − Ky(x, t′)|H2 .
|t − t′|

(|x| + |t|)2λ

(∫ ∞

0

y dy
[y2 + (|x| − |t|)2]3

)1/2

.
|t − t′|

(|x| + |t|)2λ (|x| − |t|)−2,

and so (3.4) is concluded.
We prove (3.5) similarly, since (∂/∂x)[tΛy(x, t, s)−λ−2] satisfies the same estimate as

in (3.7). �

We return to the proof of Theorem 3.1. By Lemma 3.4, the operator T satisfies the
conditions in Lemma 3.3 so that T extends to a bounded operator from Lp

λ(R,H1) into
Lp
λ(R,H2) for 1 < p <∞, which is equivalent to the boundedness of g0 in Lp

λ(R). The
proof of Theorem 3.1 is complete. �

4. Boundedness of the g-functions

Theorem 4.1. For 1 < p < ∞, the g-functions g1, gx, gD, g∇, g∇λ and g∆λ
are all

bounded operators on Lp
λ(R).
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By Lemma 2.1 and Theorem 3.1, the proof of the theorem is reduced to proving the
following two claims.

(i) g∇ is bounded on Lp
λ(R) for 1 < p ≤ 2.

(ii) g∇λ is bounded on Lp
λ(R) for 2 ≤ p <∞.

4.1. Boundedness of g∇ on Lp
λ
(R) for 1 < p ≤ 2. Suppose, first, that f ∈ D(R) and

is nonnegative. The positivity of the λ-Poisson integral u f (x, y) follows immediately
from (1.1) and (1.2) . A direct calculation shows that

∆λu
p
f (x, y) = p(p − 1)up−2

f (x, y)|∇u f (x, y)|2 + U(x, y),

where

U(x, y) =
λp
x2 up−1

f (x, y)(u f (x, y) − u f (−x, y)) −
λ

x2 (up
f (x, y) − up

f (−x, y)), (4.1)

or, equivalently,

|∇u f (x, y)|2 =
1

p(p − 1)
u2−p

f (x, y)[∆λu
p
f (x, y) − U(x, y)].

Observe that

g∇( f )(x)2 =
1

p(p − 1)

∫ ∞

0
u2−p

f (x, y)[∆λu
p
f (x, y) − U(x, y)]y dy

≤
1

p(p − 1)
(P∗ f )2−p(x)I(x), (4.2)

where (P∗ f )(x) = supy>0 |u f (x, y)| is the λ-Poisson maximal function and

I(x) =

∫ ∞

0
[∆λu

p
f (x, y) − U(x, y)]y dy.

The integrand in I(x) is nonnegative, and the integrability of U(x, y) over R2
+ with

respect to y|x|2λ dx dy follows from Lemma 2.5. Hence∫
R

I(x)|x|2λ dx =

"
R2

+

y∆λu
p
f (x, y)|x|2λ dx dy −

∫ ∞

0
y
∫
R

U(x, y)|x|2λ dx dy.

Since the second term in (4.1) is odd in x ∈ (−∞,∞),∫
R

U(x, y)|x|2λ dx =

∫
R

λp
x2 up−1

f (x, y)(u f (x, y) − u f (−x, y))|x|2λ dx

=
1
2

∫
R

λp
x2 (up−1

f (x, y) − up−1
f (−x, y))(u f (x, y) − u f (−x, y))|x|2λ dx

≥ 0.

Thus
∫
R

I(x)|x|2λ dx ≤
!
R2

+

y∆λu
p
f (x, y)|x|2λ dx dy and, by Lemma 2.5, F(x, y) := up

f (x, y)
satisfies the conditions in Lemma 2.4, so that∫

R

I(x)|x|2λ dx ≤
∫
R

| f (x)|p|x|2λ dx. (4.3)
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If p = 2, then, from (4.2) and (4.3), ‖g∇( f )‖L2
λ
≤ 2−1/2‖ f ‖L2

λ
. If 1 < p < 2, applying

Hölder’s inequality to (4.2) gives

‖g∇( f )‖Lp
λ
≤

1
p(p − 1)

‖P∗ f ‖(2−p)/2
Lp
λ

‖I‖1/2
L1
λ

,

and then, by (4.3) and [3, Theorem 3.8], ‖g∇( f )‖Lp
λ
. ‖ f ‖(2−p)/2

Lp
λ

‖ f ‖p/2
Lp
λ

= ‖ f ‖Lp
λ
.

For general f ∈ Lp
λ(R), 1 < p ≤ 2, one may decompose f as a sum of its positive

and negative parts, and use a density argument.

4.2. Boundedness of g∇λ on Lp
λ
(R) for 2 ≤ p < ∞. Again we first consider the

case for nonnegative f ∈ D(R). Assume that p ≥ 4 and let q be the number so that
1/q + 2/p = 1; thus 1 < q ≤ 2. Then

‖g∇λ( f )‖2Lp
λ

= sup
φ

cλ

∫
R

g∇λ( f )(x)2φ(x)|x|2λ dx (4.4)

taken over all nonnegative φ ∈ D(R) satisfying ‖φ‖Lp
λ
≤ 1. If we define

J( f , φ) = cλ

∫
R

g∇λ( f )(x)2φ(x)|x|2λ dx,

then

J( f , φ) = 4cλ

∫ ∞

0
y
∫
R

|∇λu f (x, 2y)|2|x|2λ dx dy. (4.5)

Since Dxu f and ∂yu f are λ-harmonic, it follows from (2.2) that ∆λ(|∇λu f (x, y)|2) ≥ 0,
and so, by [3, Theorem 4.7], |∇λu f (x, y)|2 is λ-subharmonic on R2

+. Furthermore, from
Lemma 2.4, supy>0 cλ

∫
R
|∇λu f (x, y)|2|x|2λ dx <∞, and then, by [3, (45)],

|∇λu f (x, 2y)|2 ≤ cλ

∫
R

|∇λu f (t, y)|2P(x,−t, y)|t|2λ dt for (x, y) ∈ R2
+.

Thus, from (4.5),

J( f , φ)≤ 4c2
λ

∫ ∞

0
y
∫
R

∫
R

|∇λu f (t, y)|2φ(x)P(x,−t, y)|t|2λ|x|2λ dx dt dy

= 4cλ

∫ ∞

0
y
∫
R

|∇λu f (t, y)|2uφ(t, y)|t|2λ dt dy,

and, applying (2.1),

J( f , φ)1/2 ≤ J1( f , φ)1/2 + λJ2( f , φ)1/2, (4.6)

where

J1( f , φ) = 4cλ

∫ ∞

0
y
∫
R

|∇u f (x, y)|2uφ(x, y)|x|2λ dx dy,

J2( f , φ) = 4cλ

∫ ∞

0
y
∫
R

∣∣∣∣∣u(x, y) − u(−x, y)
x

∣∣∣∣∣2uφ(x, y)|x|2λ dx dy.
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For J2( f , φ), we apply Hölder’s inequality and then Theorem 3.1 and
[3, Theorem 3.8] to obtain

J2( f , φ) ≤ 4cλ

∫
R

g0( f )(x)2(P∗φ)(x)|x|2λ dx ≤ 4‖g0( f )‖2Lp
λ

‖P∗φ‖Lq
λ
. ‖ f ‖2Lp

λ

. (4.7)

The evaluation of J1( f , φ) is more difficult. First, for h1, h2 ∈ C2(R2
+), direct

calculations show that

∆λ(h1h2) = h1∆λh2 + h2∆λh1 + 2〈∇h1,∇h2〉

+
λ

x2 (h1(x, y) − h1(−x, y))(h2(x, y) − h2(−x, y)).

Now we take h1 = u f (x, y)2, h2 = uφ(x, y) so that ∆λh2 = 0, and then, by (2.2),

uφ(x, y)|∇u f (x, y)|2 = 1
2 ∆λ(u f (x, y)2uφ(x, y)) − V(x, y), (4.8)

where

V(x, y) = 〈∇u f (x, y)2,∇uφ(x, y)〉 +
λ

2x2 (u f (x, y) − u f (−x, y))2uφ(x, y)

+
λ

2x2 (u f (x, y)2 − u f (−x, y)2)(uφ(x, y) − uφ(−x, y)).

We note that

|V(x, y)| ≤ 2(P∗ f )(x)|∇u f (x, y)| |∇uφ(x, y)| +
λ

2

(u(x, y) − u(−x, y)
x

)2
(P∗φ)(x)

+
λ

2
[(P∗ f )(x) + (P∗ f )(−x)]

∣∣∣∣∣u f (x, y) − u f (−x, y)
x

∣∣∣∣∣∣∣∣∣∣uφ(x, y) − uφ(−x, y)
x

∣∣∣∣∣,
and hence

4cλ

∫ ∞

0
y
∫
R

|V(x, y)| |x|2λ dx dy

≤ 8cλ

∫
R

(P∗ f )(x)g∇( f )(x)g∇(φ)(x)|x|2λ dx + 2λcλ

∫
R

g0( f )(x)2(P∗φ)(x)|x|2λ dx

+ 2λcλ

∫
R

[(P∗ f )(x) + (P∗ f )(−x)]g0( f )(x)g0(φ)(x)|x|2λ dx.

Applying Hölder’s inequality to each term above and then Theorem 3.1 and [3,
Theorem 3.8],

4cλ

∫ ∞

0
y
∫
R

|V(x, y)| |x|2λ dx dy ≤ 8‖P∗ f ‖Lp
λ
‖g∇( f )‖Lp

λ
‖g∇(φ)‖Lq

λ

+ 2λ‖g0( f )‖2Lp
λ

‖P∗φ‖Lq
λ

+ 4λ‖P∗ f ‖Lp
λ
‖g0( f )‖Lp

λ
‖g0(φ)‖Lq

λ

. ‖g∇( f )‖Lp
λ
‖ f ‖Lp

λ
+ ‖ f ‖2Lp

λ

. (4.9)

Incorporating (4.8) and (4.9) into the expression of J1( f , φ),

J1( f , φ) . |J3( f , φ)| + [‖g∇( f )‖Lp
λ
‖ f ‖Lp

λ
+ ‖ f ‖2Lp

λ

], (4.10)

https://doi.org/10.1017/S0004972717000223 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972717000223


[12] Littlewood–Paley functions 137

where

J3( f , φ) = 2cλ

∫ ∞

0
y
∫
R

∆λ(u f (x, y)2uφ(x, y))|x|2λ dx dy.

To estimate J3( f , φ), note that, for y > 0, Dx(u f (x, y)2uφ(x, y)) = o(|x|−2λ) as x→∞
by Lemma 2.5, and then, by Lemma 2.6,

∫
R

D2
x(u f (x, y)2uφ(x, y))|x|2λ dx = 0. Thus

J3( f , φ) = lim
ε,M

2cλ

∫ M

ε

y
∫
R

∂2
y(u f (x, y)2uφ(x, y))|x|2λ dx dy,

where the limit is taken as ε → 0+, M → +∞. Changing the order of the integration
and integrating by parts with respect to y,

J3( f , φ) = lim
ε,M

2cλ

∫
R

[
y
∂

∂y
(u f (x, y)2uφ(x, y)) − u f (x, y)2uφ(x, y)

] ∣∣∣∣∣M
ε
|x|2λ dx. (4.11)

From (1.2), y|∂yP(x,−t, y)| is dominated by a multiple of P(x,−t, y), so y|∂yu f (x, y)|
does not exceed (P∗ f )(x) up to a multiple, and this is also true for φ. Hence the
integrand in (4.11) is dominated by a multiple of (P∗ f )(x)2(P∗φ)(x). Proceeding as
in (4.7) or (4.9), |J3( f , φ)| . ‖ f ‖2

Lp
λ

. Substituting this into (4.10) and then substituting
the result and (4.7) into (4.6) yields

J( f , φ) . ‖g∇( f )‖Lp
λ
‖ f ‖Lp

λ
+ ‖ f ‖2Lp

λ

. (4.12)

By Lemma 2.1 and Theorem 3.1,

‖g∇( f )‖Lp
λ
≤ ‖g∇λ( f )‖Lp

λ
+ λ‖g0( f )‖Lp

λ
. ‖g∇λ( f )‖Lp

λ
+ ‖ f ‖Lp

λ
.

Incorporating this into (4.12) and invoking (4.4),

‖g∇λ( f )‖2Lp
λ

. [‖g∇λ( f )‖Lp
λ
‖ f ‖Lp

λ
+ ‖ f ‖2Lp

λ

],

and thus ‖g∇λ( f )‖Lp
λ
. ‖ f ‖Lp

λ
.
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