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In this study, the resolvent-based estimation (RBE) is further generalised to cases with
arbitrarily sampled measurements in time, where the generalised RBE is denoted as
GRBE in this study. Different from the RBE that constructs the transfer function at each
frequency, the GRBE minimises the estimation error energy in the physical temporal
domain by considering the forcing and noise statistics. The GRBE is validated by
estimating the complex Ginzburg–Landau equation and turbulent channel flows with the
friction Reynolds number Reτ = 186, 547 and 934, where the results from the RBE are
also included. When the measurements are temporally resolved, the estimation results of
the two approaches are equivalent to each other, and both match well with the reference
numerical results. For the temporally unresolved cases, the estimation errors from the
GRBE are obviously lower than those from the RBE. After validation, the GRBE is
applied to investigate the impacts of the abundance of the measured information, including
the temporal information and sensor types, on the estimation accuracy. Compared with
the mean square error (MSE) in the estimation with temporally resolved measurements,
that with measurements at only one snapshot, i.e. without any temporal information,
increases by approximately 15 %. On the other hand, it can effectively improve the
estimation accuracy by increasing the number of sensor types. With temporally resolved
measurements, the relative MSE decreases by 12.3 % when the sensor types increase from
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{τu} to {τu, τw, p}, where τu, τw and p are the streamwise shear stress, spanwise shear
stress and pressure at the wall. Finally, several existing forcing models are incorporated
into the GRBE to investigate their performance in the linear estimation of flow state.
The wall-distance-dependent model (W-model) results match well with the optimal linear
estimations when the measurements are temporally unresolved. Meanwhile, with the
increase of temporal information of the measurement, the estimation errors from the tested
W-model and the scale-dependent model (λ-model) both increase, which contradicts the
tendency observed in the optimal linear GRBE estimation results. Such a phenomenon
highlights the importance of proper modelling of the forcing in the temporal domain for
the accuracy of flow state estimation.

Key words: turbulence theory, turbulence modelling

1. Introduction

In experimental and numerical studies, the flow information is usually only partially
available due to technical limitations in measuring sensors or the inaccuracy of
the numerical models. For numerical studies, the popular wall-modelled large-eddy
simulation (WMLES), which resolves only the large-scale motions beyond the local grid
scale while modelling the near-wall small-scale motions with the wall models (Larsson
et al. 2016; Fu et al. 2021; Fu, Bose & Moin 2022; Griffin, Fu & Moin 2023), achieves
a good balance between the computational cost and accuracy. However, the near-wall
dynamics, as an important turbulence property, is usually inaccurately evaluated by the
WMLES (Bae et al. 2018). On the other hand, the spatial and temporal resolutions of the
experimental results are usually restricted by the limitations in the measuring equipment
(Nobach & Bodenschatz 2009; Cameron 2011). Current attempts to estimate the missing
dynamics of turbulence can be categorised into the data-driven approaches (Marusic,
Mathis & Hutchins 2010; Baars, Hutchins & Marusic 2016; Guastoni et al. 2021) and
the physics-based ones (Chevalier et al. 2006; Hwang & Cossu 2010; McKeon & Sharma
2010; Martini et al. 2020; Towne, Lozano-Durán & Yang 2020).

The data-driven approaches estimate the flow field with the knowledge obtained
from the existing flow data. The well-known attached-eddy model (AEM) (Townsend
1976) and the inner–outer interaction model (IOIM) (Marusic et al. 2010; Baars et al.
2016) that describe the flow motions in turbulence are proposed based on extensive
observation and investigation on the wall-bounded turbulence. According to the IOIM,
the large-scale motions (LSMs) and very-large-scale motions (VLSMs) influence the
near-wall turbulence through the superposition and modulation effects. Specifically, the
superposition effects of the LSMs and VLSMs on near-wall motions can be determined
through the transfer kernel estimated from the cross-spectral density (CSD) tensor, which
builds up the linear relationship between the flow motions at different wall-normal
locations (Gupta et al. 2021). It can be demonstrated that the superposition effect defined
by the IOIM corresponds to the optimal linear estimation with the knowledge of the
spatial cross-spectra of the streamwise velocity. The consistency between the AEM
and IOIM has been demonstrated in Cheng & Fu (2022), which is then used to study
the isolated attached eddies with a give scale (Cheng, Shyy & Fu 2022). Besides the
traditional data-driven approaches that use predefined transfer functions, the deep neural
networks and convolutional neural networks (CNNs) are used for the prediction of the
flow system in a nonlinear manner (e.g. Lozano-Durán, Bae & Encinar 2020; Guastoni
et al. 2021). Guastoni et al. (2021) predicts the wall-bounded turbulence from the wall
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Generalised resolvent-based turbulence estimation

measurements with the CNNs using a linear combination of orthonormal basis functions
obtained from proper orthogonal decomposition, which improves the prediction accuracy
at large wall-normal distances compared with that from the CNN that directly predicts the
turbulent motions.

The physics-driven approaches estimate the flow field based on the Navier–Stokes (NS)
equations that govern the flow dynamics. The NS equations can be rearranged into the
form of the linearised relationship between the nonlinear forcing (input) and the response
of the velocity, pressure and temperature (output) (Hwang & Cossu 2010; McKeon &
Sharma 2010). When the linear relationship is built between the forcing and response in
the frequency domain, the corresponding linear operator is named the resolvent (McKeon
& Sharma 2010). The resolvent analysis usually focuses on uncovering the coherence
properties of turbulence through mathematical investigations on the resolvent operator.
Through the singular value decomposition of the resolvent operator, the normalised
forcing and response modes ordered by their gains are obtained. Specifically, when the
gain of the leading mode is much larger than the sequential modes, the corresponding
response mode could be considered to dominate the resultant response. The domination
of the leading resolvent response mode over the sequential ones is denoted as low-rank
behaviour (Pickering et al. 2021). Assuming low-rank behaviour, the leading response
mode at a given spatio-temporal scale can be regarded as the representative flow pattern
at such a scale. Such simplification achieves large success in qualitatively describing the
coherent structures of turbulence with only the mean velocity profile obtained from the
direct numerical simulation (DNS) (McKeon & Sharma 2010; Moarref et al. 2013) or
the ordinary differential equation solvers (Hwang & Cossu 2010; Chen et al. 2023a,b).
However, the actual response of the flow dynamic system is determined by, not only
the response modes and gains, but also the variations of forcing projections on different
resolvent forcing modes, which cannot be ignored for the energy-containing flow scales
(Morra et al. 2019, 2021). Thus, for the flow state estimation in this study, where higher
accuracy is needed, the low-rank behaviour is not suitable to directly utilise.

Besides the approaches utilising the low-rank behaviour of the resolvent operator, the
modelling of the input forcing is also broadly investigated for the prediction of the flow
statistics (Madhusudanan, Illingworth & Marusic 2019; Morra et al. 2019; Gupta et al.
2021; Ying et al. 2023). By modelling a part of the forcing with the eddy-viscosity model
(Cess 1958; Reynolds & Hussain 1972) while considering the remaining part of the forcing
to be white in space, the predicted accuracy of the energy profile of the response is
much improved (Hwang & Cossu 2010; Morra et al. 2019). Later, with the cross-spectra
predicted by such eddy-viscosity-modelled forcing, Madhusudanan et al. (2019) estimate
the large-scale structures of the turbulent channel flow via the linear stochastic estimation.
Compared with the ones without the eddy-viscosity model, the predicted energy spectra
and large-scale structures from the modelled forcing match much better with the DNS
results (Madhusudanan et al. 2019), which demonstrates the importance of the forcing
model in turbulent estimation in cases where the real forcing statistics are unavailable.
Gupta et al. (2021) further improve the estimation accuracy by introducing additional
forcing models that consider the variation of the stochastic forcing profile with heights
and flow scales, namely the W-model and λ-model. The W-model and λ-model are
demonstrated to further improve the prediction accuracy of the linear coherence spectrum
and the large-scale flow structures. Ying et al. (2023) propose the resolvent-informed
white-noise-based estimation (RWE) approach to model the remaining part of the forcing
by modifying the initially white forcing according to the estimated near-wall energy profile
based on resolvent-based estimation (RBE) that will be introduced in the following.
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With input data of the mean velocity profile and temporally resolved measurement
data, the RWE provides an accurate prediction of the turbulence statistics, including
the energy spectra, space–time correlation and large-scale structures in the near-wall
region.

The above-introduced forcing models focus on the prediction of the flow statistics. On
the other hand, it is also very important to estimate the instantaneous flow state with the
measured flow state. The predicted flow statistics from the forcing models can be used to
inform the estimators of the fluctuation flow state, as will be illustrated in the following.
The physics-based approaches for state estimation of the dynamic system include the
Kalman-filter-based approaches (Kalman 1960; Hœpffner et al. 2005; Chevalier et al.
2006; Colburn, Cessna & Bewley 2011), the H2-optimal control approach (Illingworth,
Monty & Marusic 2018) and the resolvent-based approaches (Martini et al. 2020; Towne
et al. 2020; Amaral et al. 2021). The Kalman filter (Kalman 1960) includes a set of
recursive algorithms that estimate the flow state with the knowledge of the statistics
of the stochastic input forcing and measurement noise, which are both assumed to be
white in time. To estimate the flow state at the current time step, the causal Kalman
filter includes two phases, namely the prediction phase and the update phase. In the
prediction phase, the current state is predicted from the state estimation at the previous
time step. Then, the prediction is modified by minimising the expected estimation error
covariance according to the current noise-containing measurements in the update phase.
For non-causal cases, the so-called Kalman smoother further corrects the estimation at
a given time step with later measurements. Regardless of whether the stochastic input
and measurement noise are Gaussian, the Kalman filter could provide the optimal linear
estimation in the minimum mean square error (MSE) sense (Humpherys, Redd & West
2012). When applied in turbulence estimation, it is crucial to appropriately model the
temporal evolution of the input forcing to ensure the prediction accuracy of the Kalman
filter. The early Kalman-filter-based studies in turbulence estimation (Hœpffner et al.
2005; Chevalier et al. 2006) assume that the forcing is white in time, which cannot model
well the real forcing that is coloured in time (Zare, Jovanović & Georgiou 2017; Zare,
Georgiou & Jovanović 2020). Zare et al. (2016) propose a stochastic modelling approach
that generates a coloured-in-time forcing sequence from the knowledge of the spatial
spectra of response along the height, which can potentially enhance the effectiveness of
the Kalman filter by introducing that coloured forcing. However, the current stochastic
dynamical modelling approach cannot well reproduce the energy distribution of forcing
in the frequency domain (Zare et al. 2020), which needs further exploration. On the other
hand, the H2-optimal control approach (Doyle et al. 1989) constructs a rational controller
that minimises the H2 norm of the transfer matrix that links the external input and the
estimation error when this approach is used for causal state estimation. The H2-optimal
control approach assumes that the forcing and measurement noise are both white in time,
which is the optimal linear causal estimator when the spatial covariance of the external
forcing is known. Illingworth et al. (2018) utilise the H2-optimal control approach in
estimating the large-scale structures in turbulent channel flow using the measurements
at the logarithmic region.

The RBE (Martini et al. 2020; Towne et al. 2020; Amaral et al. 2021) estimates the
flow state in the frequency domain, which can be regarded as the multiple-input and
multiple-output (MIMO) Wiener filter (Wiener 1930, 1949). The RBE is initially proposed
by Towne et al. (2020), which estimates the input forcing of the dynamic system by
finding the minimum L2-norm solution that reproduces the measurements. Here, the L2

norm is defined as the inner product of a vector. Later, Martini et al. (2020) improve the
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RBE, which enables the incorporation of the forcing models. The linear estimator of the
improved RBE can be constructed by searching for the stationary point of the expected
CSD tensor of the estimation error. In this sense, the original RBE by Towne et al. (2020)
can be regarded as the one that finds the stationary point of the error CSD tensor assuming
that the forcing is uniform and uncorrelated in space. With the improved RBE informed by
the real forcing statistics, Amaral et al. (2021) estimate the flow state of turbulent channel
flow with the measurements of wall shear stress and pressure.

Although the RBE has the desirable property of minimising the generic error norm,
it has a high requirement on the spatio-temporal resolutions of the measurement. In
practice, temporally resolved data could be unavailable due to the high computational
and storage costs in numerical studies or the equipment limitations in experiments. For
high Reynolds number turbulence, the temporally resolved DNS data could hardly be
stored due to the huge storage cost, which hinders the validation and application of
the resolvent-based approaches in such cases. Meanwhile, in numerical or experimental
studies, some snapshots might become unavailable due to the corruption of the digital
storage device or the failure of the measuring equipment. Thus, an estimator that enables
arbitrary sampling time intervals is needed for the flow estimations in such cases with
unresolved-in-time measurement data. In this study, a generalised version of the RBE
will be proposed, which enables physics-based estimation using the measured data with
arbitrary time intervals. By incorporating the spatio-temporal forcing statistics or forcing
models, the new approach constructs the linear estimator by finding the stationary points
of the spatio-temporal covariance tensor of the estimation error. When the real forcing and
noise statistics are incorporated into the estimator, the optimal linear estimation can be
obtained with the given temporal resolution of the measurements.

The remainder of this article is organised as follows. In § 2, the generalised
resolvent-based estimator (GRBE) approach is derived based on the linearised
NS equations. In § 3, the newly proposed method is validated for the complex
Ginzburg–Landau equation and turbulent channel flows. In § 4, the new approach is
utilised to investigate the impacts of different measuring conditions and the incorporation
of forcing models on the estimation accuracy. Discussions and concluding remarks are
presented in § 5.

2. Methodology

In this section, the linearisation of the incompressible NS equations that govern the
dynamics of turbulence is described, followed by the introduction of the resolvent analysis.
Then, the derivation and discussions of the newly proposed GRBE will be presented.

2.1. Linearisation of the incompressible Navier–Stokes equations
The incompressible NS equations are given by

∂u
∂t

+ u · ∇u = −∇p + 1
Reτ

∇ · (∇u + ∇uT), (2.1a)

∇ · u = 0, (2.1b)

where Reτ = uτ h/ν is the friction Reynolds number, uτ is the friction velocity, h is the
half-channel width, ν is the kinetic viscosity and the superscript T denotes transpose. The
linearised NS equations with respect to the fluctuation velocity u′ and pressure p′ are
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expressed by

∂u′

∂t
+ U · ∇u′ + u′ · ∇U + ∇p′ − 1

Reτ

∇ · (∇u′ + ∇u′T) = f ′
0, (2.2a)

∇ · u′ = 0, (2.2b)

where ′ denotes the fluctuation variable, U is the mean velocity and the nonlinear forcing
term is defined as

f ′
0 = −

(
u′ · ∇u′ − u′ · ∇u′

)
(2.3)

with the double overlines denoting the averaged value along the temporal and uniform
spatial directions.

On the other hand, the nonlinear term on the right-hand side of (2.2) can be further
decomposed into two parts, i.e. the eddy-viscosity terms that are linear functions of u′
and the forcing f ′ (Illingworth et al. 2018; Morra et al. 2019; Towne et al. 2020). The
linearised NS equations considering the eddy-viscosity model are expressed by

∂u′

∂t
+ U · ∇u′ + u′ · ∇U + ∇p′ − 1

Reτ

∇ ·
[
νt + ν

ν
(∇u′ + ∇u′T)

]
= f ′, (2.4a)

∇ · u′ = 0, (2.4b)

where the forcing term is defined as

f ′ = f ′
0 − 1

Reτ

∇ ·
[νt

ν
(∇u′ + ∇u′T)

]
. (2.5)

The eddy viscosity νt can be calculated from the semi-empirical expression of Cess (1958)
as reported by Reynolds & Hussain (1972)

νt = ν

2

{
1 + κ2Re2

τ

9
(2ỹ − ỹ2)2(3 − 4ỹ + 2ỹ2)2

[
1 − exp

(−Reτ (1 − |1 − ỹ|)
A

)]2
}1/2

− ν

2
,

(2.6)

where ỹ = y/h, the constants κ = 0.426 and A = 25.4. For the flow state estimation
problems that are focused on in this study, the inclusion of the eddy-viscosity terms
provides improved results (Illingworth et al. 2018; Amaral et al. 2021). Thus, we will
also adopt the eddy-viscosity-modelled linearised formulations (2.4) in this study.

Taking the Fourier transformation to (2.4) in the homogeneous spatial directions, the
linearised NS equations in each spatial scale ks are obtained. For instance, in the fully
developed turbulent channel flow, the Fourier transformation is taken in the streamwise (x)
and spanwise (z) directions, where ks = (kx, kz). The linearised NS equations are written
in a discretised state-space form with Ny points in the wall-normal direction as (Luhar,
Sharma & McKeon 2014a,b; Amaral et al. 2021)

M
∂ q̂ks

(t)
∂t

= Aks q̂ks
(t) + Bf̂ ks

(t), (2.7a)

m̂ks(t) = Cq̂ks
(t) + n̂ks(t), (2.7b)

where ˆ denotes the variable after Fourier transformation, the state q̂ks
(t) = [û, v̂, ŵ, p̂]T

and the operators are defined as

M =
[

I3Ny 0
0 0

]
, Aks =

[Lks −∇T

∇ 0

]
, B =

[
I3Ny

0

]
, (2.8a–c)
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where C is the spatial observation tensor, n̂ks(t) is the measurement noise, ∇ is the
Hamiltonian operator and Lks is the spatial linearised NS operator. The expressions of
Lks , ∇ and C are provided in Appendix A. Further taking Fourier transformations along
the statistically homogeneous temporal direction, the linearised NS equations at each
spatio-temporal scale k = (ks, ω) are obtained, as expressed by

q̂k = Hk · f̂ k, (2.9)

where Hk is the resolvent operator that is expressed as

Hk = (−iωM − Aks

)−1
, (2.10)

with i = √−1. From (2.9), q̂k is regarded as the response of the input forcing f̂ k through
the resolvent operator Hk. Taking singular value decomposition of the transfer function
Hk yields the resolvent input and output modes ordered by the gains, where the low-order
modes can be utilised to investigate the predominant coherent structures assuming the
low-rank behaviour, see, e.g. Moarref et al. (2013) and Sharma & McKeon (2013).
Meanwhile, only the linearised relationship (2.9) built by the resolvent analysis will be
utilised in this study.

Based on the resolvent formulation (2.9), the RBE that estimates the flow state from
limited measurements was proposed by Towne et al. (2020), and is further improved
(Martini et al. 2020) by considering the forcing statistics. In the following, the RBE
approach is further generalised to cases where the measurements are arbitrarily sampled.

2.2. Generalised RBE in cases with arbitrary temporal measurements
In this section, the case where the information of the turbulence field is partially available
from measurements that are noise contaminated and arbitrarily sampled in time is
considered. Before the estimation, Fourier transformations are conducted in statistically
uniform spatial directions of the flow field, such as the streamwise and spanwise directions
in fully developed turbulent channel flows, leading to the decomposed measurements at
separated spatial scales ks. Meanwhile, since the flow signals can be unresolved in time,
the Fourier transformation will not be conducted along the temporal direction. In this
section, the subscript ks denoting the spatial scale of a flow quantity is omitted for brevity.

Consider the MIMO estimation case where the measured data are sampled at NŤ
time instances with inadequate resolution. Meanwhile, to fully resolve the temporal
information, NT snapshots are actually needed (NT > NŤ). The amounts of response and
observation of different types or at different locations at a given spatial scale ks are
denoted as Nq and Nm, respectively. Without loss of generality, a sequence of measured
data m( j), where j ∈ [1, NmNŤ ], is taken into consideration. The linear estimation of the
flow state q(i), where i ∈ [1, NqNŤ ] is based on all the available measurements m( j), can
be expressed by the convolution operation as

qe(i) =
NmNŤ∑
j=1

h(i, j)m( j), (2.11)

where the subscript e denotes the estimated quantity and h(i, j) is the convolution kernel.
Equation (2.11) can also be expressed in matrix form by

qe = h · m, (2.12)

where h is a two-dimensional matrix consisting of h(i, j) at the (i, j) location.
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Denoting the estimation error ε(i) = q(i) − qe(i), the cost function J (i) is defined as
the MSE that is expressed by

J (i) =
〈
|ε(i)|2

〉
=

〈⎡⎣q(i) −
NmNŤ∑
j=1

h(i, j)m( j)

⎤
⎦ ·

⎡
⎣q(i) −

NmNŤ∑
k=1

h(i, k)m(k)

⎤
⎦〉

, (2.13)

where the overline denotes the complex conjugate and 〈〉 denotes ensemble average.
To minimise the MSE of the estimated signal with optimised transfer kernel h(i, j) =
hR(i, j) + ihI(i, j), the partial derivatives of the cost function J (i) to any hR(i, j) or
hI(i, j) with j ∈ [1, NmNŤ ] should be zero, i.e.

∂J (i)
∂hR(I)(i, j)

=
〈
−2

⎡
⎣q(i) −

NmNŤ∑
j=1

h(i, k)m(k)

⎤
⎦m( j)

〉
R(I)

= 0,

⇒
〈
q(i)m( j)

〉
−

NmNŤ∑
j=1

h(i, k)
〈
m(k)m( j)

〉
R(I)

= 0.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(2.14)

The optimal transfer kernel can be obtained by solving the system of linear equations
(2.14). The solution can be expressed as

h = 〈
qm∗〉 · 〈mm∗〉−1

, (2.15)

where the superscript ∗ denotes the Hermitian transpose.
Equation (2.15) provides the expression of the optimal linear transfer kernel in terms

of the covariance matrices of the flow state and measured signal. However, since such
spatio-temporal covariance matrices are not directly available, the expressions of the
optimal transfer kernel as a function of the forcing CSD tensors, which can be provided by
the forcing models, should be further derived.

Considering the resolvent formulation, the expressions of q and m in the physical space
as functions of the forcing f̂ j at ωj, where j ∈ [1, NT ], in the Fourier space are expressed
as

q = 1
NT

NT∑
j=1

ζ̌q,j · q̂j = 1
NT

NT∑
j=1

ζ̌q,j ·
(

H j · f̂ j

)
, (2.16a)

m = 1
NT

NT∑
j=1

ζ̌m,j · m̂j = 1
NT

NT∑
j=1

ζ̌m,j ·
(

C · H j · f̂ j + n̂j

)
, (2.16b)

where q̂j, m̂j and n̂j are the Fourier transforms of response, measurement and sensor noise

at ωj. Here, ζ̌q(m),j = diag[

Nq(m)︷ ︸︸ ︷
ξ̌j, . . . , ξ̌j], ξ̌j = eiωj ť, ť ∈ R

NŤ is the vector consisting of the
sampled time instances.
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Generalised resolvent-based turbulence estimation

Algorithm 1 GRBE

Input: the CSD tensors Sff , Snn and the resolvent operator H j in a wide-enough
frequency range such that the spectrum aliasing is negligible.

1: Compute the Fourier operators ζ̌q and ζ̌m according to the sensor types and sampling
time instances ť.

2: Compute the transfer kernel h with (2.18).
3: Obtain the estimations qe by convolving the measurements with (2.12).

Output: the estimated flow state qe.

Using (2.16a,b), the spatio-temporal covariance matrices can be predicted with the
forcing models by〈

qm∗〉
p =

∑
j

ζ̌q,jSqm,jζ̌
∗
m,j =

∑
j

ζ̌q,jH jSf f ,jH
∗
m,jζ̌

∗
m,j, (2.17a)

〈
mm∗〉

p =
∑

j

ζ̌m,jSmm,jζ̌
∗
m,j =

∑
j

ζ̌m,j

(
Hm,jSf f ,jH

∗
m,j + Snn,j

)
ζ̌ ∗

m,j, (2.17b)

where Sqm,j = 〈q̂jm̂
∗
j 〉, Smm,j = 〈m̂jm̂∗

j 〉, S f f ,j = 〈 f̂ j f̂ ∗
j 〉 and Snn,j = 〈n̂jn̂∗

j 〉. Substituting
(2.17a,b) into (2.15), the optimal transfer kernel that considers the forcing and noise
statistics is expressed by

h = 〈
qm∗〉

p · 〈mm∗〉−1
p (2.18a)

=
⎛
⎝∑

j

ζ̌q,jSqm,jζ̌
∗
m,j

⎞
⎠ ·

⎛
⎝∑

j

ζ̌m,jSmm,jζ̌
∗
m,j

⎞
⎠−1

(2.18b)

=
⎡
⎣∑

j

ζ̌q,jH jSf f ,jH
∗
m,jζ̌

∗
m,j

⎤
⎦ ·

⎡
⎣∑

j

ζ̌m,j

(
Hm,jSf f ,jH

∗
m,j + Snn,j

)
ζ̌ ∗

m,j

⎤
⎦−1

. (2.18c)

From the above derivations, the transfer kernel h is the optimal linear estimator of the
response q when the real statistics Sff ,j and Snn,j are incorporated, which can be obtained
from another existing database. More importantly, the transfer kernel defined in (2.18) also
constructs an open framework that enables the incorporation of the spatio-temporal forcing
models that predict the forcing CSD tensors all over the frequency domain at each spatial
scale ks when the real statistics of forcing are unknown. The current models that provide
spatio-temporal prediction of the forcing include the baseline model (B-model) (Hwang
& Cossu 2010; Madhusudanan et al. 2019), W-model and λ-model (Gupta et al. 2021),
which assume that the forcing is white in time and uncorrelated in space with certain
forms of spatial energy distributions along the wall-normal height. These forcing models
are reviewed in Appendix B. The new approach generalises the RBE to the cases with
arbitrary sampled measurements in time, and thus it is denoted as the GRBE in this study.
The procedure of the GRBE is provided in Algorithm 1.

2.3. Expected estimation error from the GRBE
In § 2.2, the theoretically optimal transfer kernel of arbitrarily sampled measurements is
derived in (2.18). On the other hand, the expected statistics of the estimation error can also
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be theoretically derived. Recall (2.13) that describes the linear relationship between the
observations and estimations, the matrix form holds〈

εε∗〉 = 〈
(q − h · m) · (q − h · m)∗

〉
= 〈

qq∗〉 + h · 〈mm∗〉 · h∗ − 〈
qm∗〉 · h∗ − h · 〈mq∗〉 . (2.19)

When the actual forcing and noise statistics are incorporated into the transfer kernel h,
the minimum expected estimation error can be obtained, as calculated by〈

εε∗〉
OPT = 〈

qq∗〉 + 〈
qm∗〉 · 〈mm∗〉−1 · 〈mm∗〉 · 〈mm∗〉−1 · 〈mq∗〉

− 〈
qm∗〉 · 〈mm∗〉−1 · 〈mq∗〉 − 〈

qm∗〉 · 〈mm∗〉−1 · 〈mq∗〉
= 〈

qq∗〉 − 〈
qm∗〉 〈mm∗〉−1 〈mq∗〉 , (2.20)

where the subscript ‘OPT ’ denotes the variable from the optimal linear estimation.
Considering that 〈qm∗〉〈mm∗〉−1〈mq∗〉 = 〈qeq∗

e〉 according to (2.12) and (2.18a), (2.20)
indicates the orthogonality principle for the optimal linear estimation, i.e. 〈qe · ε∗〉 = O.
Considering (2.16), the covariance matrix of the estimated error is further expressed by

〈
εε∗〉

OPT =
⎡
⎣∑

j

ζ̌q,jH jSf f ,jH
∗
j ζ̌

∗
q,j

⎤
⎦ −

⎡
⎣∑

j

ζ̌q,jH jSf f ,jH
∗
m,jζ̌

∗
m,j

⎤
⎦

·
⎡
⎣∑

j

ζ̌m,j

(
Hm,jSf f ,jH

∗
m,j + Snn,j

)
ζ̌ ∗

m,j

⎤
⎦−1

·
⎡
⎣∑

j

ζ̌q,jH jSf f ,jH
∗
m,jζ̌

∗
m,j

⎤
⎦ .

(2.21)

On the other hand, when the forcing models rather than the real flow statistics are
incorporated in the GRBE estimator, the orthogonal principle as in (2.20) for the optimal
linear estimation no longer holds. Instead, the expected error energy from the modelled
GRBE estimator should be directly derived from (2.19) by considering (2.18a), i.e.〈

εε∗〉
MOD = 〈

qq∗〉 + hq,MOD · 〈mm∗〉 · h∗
q,MOD − 〈

qm∗〉 · h∗
q,MOD − hq,MOD · 〈mq∗〉

= 〈
qq∗〉 + 〈

qm∗〉
p · 〈mm∗〉−1

p · 〈mm∗〉 · 〈mm∗〉−1
p · 〈mq∗〉

p

− 〈
qm∗〉 · 〈mm∗〉−1

p · 〈mq∗〉
p − 〈

qm∗〉
p · 〈mm∗〉−1

p · 〈mq∗〉 , (2.22)

where 〈qm∗〉p and 〈mm∗〉p are defined in (2.17) and the subscript ‘MOD’ denotes
the variable corresponding to the linear estimation informed by the modelled forcing.
Substituting the estimation error from optimal linear estimation in (2.20) to (2.22), the
estimation error from the modelled forcing can be expressed as

〈
εε∗〉

MOD = 〈
εε∗〉

OPT +
[〈

qm∗〉 · 〈mm∗〉−1 − 〈
qm∗〉

p · 〈mm∗〉−1
p

]
· 〈mm∗〉 · [〈qm∗〉 · 〈mm∗〉−1 − 〈

qm∗〉
p · 〈mm∗〉−1

p

]∗

= 〈
εε∗〉

OPT + (
hq,OPT − hq,MOD

) · 〈mm∗〉 · (hq,OPT − hq,MOD
)∗

, (2.23)
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where hq,OPT = 〈qm∗〉 · 〈mm∗〉−1. On the right-hand side of (2.23), the extra term
[(hq,OPT − hq,MOD) · 〈mm∗〉 · (hq,OPT − hq,MOD)∗] is positive semi-definite. Thus, the
estimation error energy from the modelled forcing will be minimised when hq,MOD =
hq,OPT .

2.4. Discussions on the relationship between the GRBE and RBE
The GRBE fundamentally differs from the RBE (Martini et al. 2020) in their different
optimisation targets when constructing the transfer kernel. The RBE minimises the
expected error energy at each frequency, while the GRBE directly minimises the expected
error energy in physical space. Although these two approaches provide the same results
when the measurements are temporally resolved, their results are different when the
measurement information is unresolved in time. We will elaborate the discussions between
the GRBE and RBE in the following.

2.4.1. Temporally resolved measurements
The RBE transfer function that minimises the expected error energy at a given frequency
is given by (Martini et al. 2020)

T̂ = HSf f H∗
m
(
HmSf f H∗

m + Snn
)−1

. (2.24)

The estimated q̂e is obtained with

q̂e,j = T̂ j · m̂j. (2.25)

When the measurements are temporally resolved, the RBE approach can be applied in the
time domain through inverse Fourier transform (Martini et al. 2020; Amaral et al. 2021)
i.e.

hRBE (t, τ ) = F−1
(

T̂ (ω)
)

= 1
2π

∫ ∞

−∞
T̂ (ω) exp(iω(t − τ)) dω, (2.26)

and the flow state q can be estimated by performing a convolution of the transfer kernel
hRBE and the measurements m,

qe(t) = 1
T

∫ ∞

−∞
hRBE(t, τ )m(τ ) dτ. (2.27)

Given temporally resolved information, the discrete form of the convolution operation of
the RBE is expressed by

qe = hRBE · m, (2.28)

with

hRBE =
∑

j

ζq,jT̂ (ωj)ζ
∗
m,j

=
∑

j

ζq,jHSf f H∗
m
(
HmSf f H∗

m + Snn
)−1

ζ ∗
m,j, (2.29)

where ζq(m),j = diag[

Nq(m)︷ ︸︸ ︷
ξj, . . . , ξj], ξj = eiωjt, t ∈ RNT is the vector consisting of fine enough

time steps that are evenly distributed. Comparing the RBE transfer kernel (2.29) with the
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Algorithm 2 RBE-F

Input: the CSD tensors Sff , Snn and the resolvent operator H j in the frequency range
resolved by the sampled data.

1: Obtain m̂j in the frequency domain through DFT to the measurements in time.
2: Compute the transfer function T̂ j with (2.24).
3: Obtain the estimations q̂e with (2.25).
4: Convert the estimated flow state to the physical space with inverse DFT.

Output: the estimated flow state qe.

GRBE one (2.18c), it can be demonstrated that these two transfer kernels are the same only
when ζ̌q(m),j = ζq(m),j.

It should be noted that the above relationship between the GRBE and RBE is only
valid when the measurement information is resolved in time. In the other cases, these
two approaches are different due to their essential difference in constructing the transfer
kernel. In the next subsection, the implementations of the RBE in temporally unresolved
cases will be provided to facilitate further comparisons between the GRBE and RBE.

2.4.2. Implementations of the RBE in temporally unresolved cases
When the sampling time steps are not fine enough to resolve the flow data, the convolution
operation (2.27) of RBE cannot be well approximated by the discrete counterpart (2.28)
with the temporally unresolved measurements, even if the spatio-temporal statistics of the
flow state are available. Despite this, if the RBE is to be deployed in such case, there
are two different choices of directly applying the RBE formulation in the frequency or
temporal domain, i.e.

(i) To conduct the discrete Fourier transformation (DFT) of the measurements with the
sparse-in-time signal, then estimate the flow state via (2.25) in the frequency domain.
Since this approach estimates the flow state with a discrete-in-frequency resolvent-based
transfer function, it is denoted as RBE-F in the following section. The procedure of RBE-F
is provided in Algorithm 2.

(ii) To deploy the discrete RBE convolution formulation (2.28) in estimating the
sparse-in-time flow state. To discretise the RBE transfer kernel in sparse time instances, it
is calculated by

hRBE(i, j) =
∫ 
tj+


tj−
w(τ )hRBE(ti, tj + τ) dτ, (2.30)

where 
tj− = (tj−1 − tj)/2, 
tj+ = (tj+1 − tj)/2 and w(τ ) is the weighting function for
integration, which is specified as w(τ ) = 1 in this study. Since this approach utilises a
discrete-in-time resolvent-based transfer kernel, it is denoted as RBE-T in the following
section. The procedure of the RBE-T is provided in Algorithm 3.

From the above discussions, both RBE-F and RBE-T, although seemingly
straightforward, utilise different assumptions when applied in temporally unresolved cases.
Investigations on the sources of estimation errors of such two variants of the RBE are
provided in Appendix C. For the validations of the GRBE in § 3, only the RBE-T approach
will be included, since RBE-T can be directly applied in the cases with uneven samplings
in time.

Besides the non-causal estimation applied in post-processing of the measured data,
the causal estimation that utilises only the measurements up to the current time step in
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Algorithm 3 RBE-T

1: Initialise: prepare Sff , Snn and the resolvent operator H j in a wide-enough frequency
range such that the spectrum aliasing is negligible.

2: Compute the Fourier operators ζ̌q and ζ̌m according to the sensor types and sampling
time instances ť.

3: Compute the transfer function T̂ j with (2.24).
4: Compute the transfer kernel hRBE with (2.30).
5: Obtain the estimations qe by convolving the measurements with (2.28).

Output: the estimated flow state qe.

real-time estimation is also an interesting topic. Since the GRBE does not impose any
restrictions on the temporal resolution of the measurements, it is naturally capable of
providing an optimal causal estimation of the flow state in real-time estimation when
informed by the actual forcing colour. On the other hand, as described in Martini et al.
(2020), the RBE can also be applied for causal estimation by truncating the resolvent-based
kernel (2.26) by setting hRBE(t, τ ) = 0 when τ > t, which is essentially different from
the causal GRBE approach. The discussions on the RBE and GRBE results in causal
estimation are provided in § 3.1.2.

3. Validations

To validate the new estimation framework, two cases, i.e. the complex Ginzburg–Landau
equation and turbulent channel flows with friction Reynolds numbers Reτ = 186, 547 and
934, will be used in this section. The RBE (Martini et al. 2020; Towne et al. 2020) and
the H2-optimal estimation (Illingworth et al. 2018) are also included in this section for
comparison. To extend the RBE in temporally unresolved cases, the RBE-T defined in
§ 2.4.2 is utilised. For brevity, we will still use the term ‘RBE’ to refer to the RBE-T
approach in this section unless otherwise specified. For reference, the details of the
H2-optimal estimation method are provided in Appendix D. In all the cases tested in this
section, the measurement noise is neglected for brevity.

3.1. The complex Ginzburg–Landau equation
The complex Ginzburg–Landau equation is a one-dimensional model that mimics a real
turbulence system (Bagheri, Brandt & Henningson 2009; Towne, Schmidt & Colonius
2018; Towne et al. 2020) and facilitates the analysis of the properties of the linear operator.
The equation can be written in the same form as (2.7a), with the linear operators A, B and
M expressed by

A = −ν
∂

∂x
+ γ

∂2

∂x2 + μ(x),

M = B = I.

⎫⎬
⎭ (3.1)

The parameters in (3.1) are set as μ(x) = (μ0 − c2
u) + μ2x2/2, ν = 2 + 0.2i, γ = 1 − i,

ν0 = 0.3, cu = 0.2 and μ2 = −0.01, which are identical to those in Towne et al. (2018).
The spatial domain is discretised with second-order upwind scheme at evenly distributed
grid nodes with Nx = 221 in a computational domain x ∈ [−85, 85], where the grid size

x = 0.77. Following Towne et al. (2018), the input forcing that excites the system is
realised by setting the value at each discrete time step (with a constant step size of 0.05)
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Figure 1. Estimation of the flow states at x = 10 using the measurements at x = 0 with the GRBE (a–c)
and RBE (d–f ) in cases TR (a,d), RS (b,e) and TU (c, f ). The solid and dashed curves denote the reference
numerical results and the estimated ones, respectively.

and grid node to be a random complex number with uniformly distributed phase from 0
to 2π and normally distributed amplitude with unit variance. The forcing is then low-pass
filtered using a tenth-order finite-impulse-response filter with a cutoff frequency equal to
60 % of the Nyquist frequency ωs equal to 20π. The spatial scope of forcing is limited in
the interior of the computational domain with an exponential envelope of exp[−(x/L)p],
where L = 60 and p = 10. The equations are integrated in time with the Crank–Nicolson
scheme (Crank & Nicolson 1947). After the computational result achieves a statistical
stationary state, the flow data at the measurement location are sampled for estimation.

3.1.1. Non-causal estimation results
In this section, three cases in terms of different sampling time intervals are considered
in this section, namely the temporally resolved case (TR), the randomly sampled case
(RS) and the temporally unresolved case (TU), with 
t = 0.5, 
t = rand(0.5, 8.0) that is
uniformly distributed between 0.5 and 8.0, and 
t = 8.0, respectively. The same sampling
period of T = 200 is applied for each case. To construct the estimator of the GRBE in
(2.18) and RBE in (2.24), the incorporated CSD tensor of the forcing is set to be Sff = I
at each frequency.

In the TR case with 
t = 0.5, the temporal information of the measured signals is
resolved in time. In this case, the flow information at the energy-containing temporal scales
can be well recovered by the Fourier transform. According to the derivations in § 2.4,
the RBE results should be the same as the GRBE in this case. Figure 1(a,d) depicts the
estimation of the flow data at x = 10 using the measurements at x = 0. It is observed
that the prediction results of the RBE are the same as those of the GRBE, which match
pretty well with the reference numerical results. To quantitatively analyse the dependence
of estimation accuracy on the distance between the measured and predicted signals, the
relative MSE at the ith location is defined as

Err =
〈∑NŤ

j=1 |ε(i, j)|2
〉

〈∑NŤ
j=1 |u(i, j)|2

〉 , (3.2)

where ε(i, j) = u(i, j) − ue(i, j) is the error at the ith location and jth time instance.
Figure 2(a) shows the relative MSEs of the estimations at different spatial locations in
the TR case. The relative MSEs from the RBE and GRBE overlap with each other at all of
the considered locations.
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Figure 2. Relative MSEs of the estimations with measurements at x = 0 in cases TR (a), RS (b) and TU (c).
The translucent grey curves denote the spatial distribution of the relative fluctuation energy from the reference
numerical simulation.

H2-optimal
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Figure 3. Causal estimation of the flow states at x = −1.5 (a,c,e) and x = 10 (b,d, f ) using the measurements
at x = 0 with the H2-optimal estimation (a,b), GRBE (c,d) and RBE (e, f ). The solid and dashed curves denote
the reference numerical results and the estimated ones, respectively.

In the RS case, the sampling time steps are set to be uniformly distributed in the range
of 0.5 � t � 8.0. From figure 1(b,e), the GRBE results match well with the reference
numerical results, while those from the RBE deviate obviously from the reference data.
In figure 2(b), the relative MSEs of the RBE increase rapidly when moving away from
the measurement location, while those of the GRBE are much lower at corresponding
locations. Similar phenomena are observed in the TU case, where the estimation accuracy
of the GRBE is also much lower than the RBE.

3.1.2. Causal estimation results
In Martini et al. (2020), the casual RBE estimator is proposed by truncating the
resolvent-based kernel (2.26), which can be explicitly expressed in (2.30) with
the weighting function w(τ ) = 0 when τ > t, where t is the estimation time step. On the
other hand, the causal GRBE estimator can be realised by setting ť containing only the
time instances with τ = t and τ � t when constructing the Fourier bases ζ̌q,j and ζ̌m,j in
(2.18), respectively.

Figures 3 and 4 show the estimated instantaneous flow states and relative MSEs of
the one-dimensional Ginzburg–Landau equation with measurements located at x = 0.
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Figure 4. Relative MSEs of the causal estimations with measurements at x = 0 (a), with zoomed results near
x = 0 (b). The translucent grey curves denote the spatial distribution of the relative fluctuation energy from the
reference numerical simulation.

Reτ Nx Nz Ny Lx/h Lz/h Ly/h (ūcδt)/h δt+ (uτ T)/h

186 768 512 97 12π 4π 2 0.2 2.13 13.74
547 1536 1536 257 8π 4π 2 0.18 4.81 8.80
934 3072 2304 385 8π 3π 2 0.12 5.09 5.23

Table 1. Parameters of the incompressible channel DNS set-ups.

The sampling time interval is set as 
t = 0.5, which is the same as that in the TR case.
Since the H2-optimal estimation provides optimal causal results with white-in-time forcing
(Doyle et al. 1989; Zhou & Doyle 1998), which is met in this case, its results are used
for the validation of the causal GRBE herein. From figures 3 and 4, the causal GRBE
results overlap with the H2-optimal estimation results at all of the tested locations. On the
other hand, the estimation errors from the causal RBE results are obviously larger than
those from the causal GRBE results at x < 0. Even in the downstream region with x � 0,
the estimation errors of the causal RBE estimator are still subtly larger than those of the
causal GRBE estimator, as in figure 4(b). Such observations are consistent with those in
Martini et al. (2020), where the causal RBE results are found to underestimate the flow
state compared with the causal Kalman filter results.

3.2. Estimation of the turbulent channel flows
In this section, validations of the GRBE in estimating the turbulent channel flows with
Reτ = 186, 547 and 934 will be conducted, where the RBE results are also presented.

3.2.1. Descriptions of the DNS database
The code that is used to generate the widely used open-source DNS database (Del
Alamo & Jiménez 2003; Hoyas & Jiménez 2008) for incompressible turbulent channel
flows with Reτ = 186, 547 and 934 is applied to compute the DNS results in this study.
Details of the DNS set-ups are listed in table 1. To provide temporally resolved results,
the sampling time intervals δt+ = δt·u2

τ /ν are set as 2.13, 4.81 and 5.09 for cases with
Reτ = 186, 547 and 934, respectively. The normalised total simulation time (uτ ·T)/h is
larger than 5.0 in each case to obtain statistically converged results. To process the DNS
datasets, the computational domain is divided into blocks with a spatial size of Lx/h = 4π,
Lz/h = π and Ly/h = 2 in each case. Considering that the fully developed channel flow is
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Figure 5. Sampling time intervals in the RS case of turbulent channel flow with Reτ = 934.

statistically symmetric about the centreline y = h, the DNS data that are mirrored about the
centreline are treated as another set of blocks besides the original one. The time periods
of the blocks are set as 240δt, 160δt and 160δt for cases with Reτ = 186, 547 and 934,
respectively, with 75 % overlap in the temporal direction. The rectangular window function
is utilised for spectral analysis. With the above set-ups for data processing, the numbers of
blocks are 408, 352 and 252 for cases with Reτ = 186, 547 and 934, respectively. The DNS
datasets utilised in this study have been validated in Ying et al. (2023) by comparisons
with the time-averaged and r.m.s. profiles of the velocities from the open-source DNS
database (Del Alamo & Jiménez 2003; Hoyas & Jiménez 2008). In the following, the
DNS results with Reτ = 934 will be mainly discussed, supplemented by the investigations
on the estimation results with Reτ = 186 and 547.

3.2.2. Comparisons of the estimation results from the GRBE and RBE
Like the case settings in the validations with the Ginzburg–Landau equation, three cases
are set with different temporal resolutions, namely the TR, RS and TU cases. In the TR
case, the sampled data are temporally resolved with 
t+ = δt+, which corresponds to
the case where the measured data are finely sampled in time and well restored. In the
RS case, the sampling time intervals are uniformly distributed between 
t+ = δt+ and
32δt+, as shown in figure 5. In this case, the temporal information is partially utilised,
which corresponds to the case where the initially time-resolved measured data are missing
arbitrarily. As for the TU case, the sampling interval is set as 
t+ = 32δt+. Besides
the sampling temporal intervals, the types of observed quantities may also influence the
estimation accuracy. Meanwhile, in this section, we only show the estimation results from
the observations of both the wall shear stress and pressure at the wall for brevity. On the
other hand, detailed discussions on the impacts of choices of measurement types and the
inclusion of forcing models on the estimation accuracy of the GRBE will be presented
in the following § 4. The estimators of both RBE and GRBE are informed by the real
flow statistics. With the above settings, the GRBE and RBE estimators are informed by
abundant information, including all the considered wall quantities, i.e. wall shear stress
and pressure, and exact flow statistics. Such choice enables us to adequately compare the
performance of the two methods with given sampling time intervals of the measurement
while excluding the influence from other factors.

Intuitive insights into the estimation results can be found in the instantaneous flow field
at y+ = 100 with Reτ = 934 shown in figure 6. It is observed that the estimation results
from the GRBE and RBE are the same in the TR case. The estimated results from both
approaches recover well the representative flow structures in the DNS results. With the
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Figure 6. Instantaneous flow state at y+ = 100 from the DNS results (a), the GRBE results (b–d) and the
RBE results (e–g). The sampling time intervals are set as temporally resolved (in the TR case) (b,e), randomly
sampled (in the RS case) (c, f ) and temporally unresolved (in the TU case) (d,g). The values shown in the
figures are normalised by the maximum velocity fluctuation value in the DNS result.
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Figure 7. Comparison of the relative MSEs from the RBE and GRBE with different measurement sampling
intervals with Reτ = 186 (a), 547 (b) and 934 (c).

increase of the sampling intervals, the estimation accuracy of the RBE rapidly deteriorates,
where some non-physical small-scale spanwise streaks are observed, as in figure 6( f,g) in
the RS and TU cases. In the meantime, although the flow structures estimated by the
GRBE also become blurred a little in cases RS and TU, which is attributed to the decrease
of measurement information, they still provide credible estimations of the large-scale
structures.

To quantitatively investigate the estimation accuracy of the GRBE and RBE results, the
relative MSE for the estimated turbulent channel flow is defined as

Err( y) =
〈∑

kx

∑
kz

∑
t ε̂(kx, kz, y, t) ¯̂ε(kx, kz, y, t)

〉
〈∑

kx

∑
kz

∑
t û(kx, kz, y, t) ¯̂u(kx, kz, y, t)

〉 . (3.3)

The profiles of the relative MSEs from the GRBE and RBE with different Reτ and
sampling time intervals are shown in figure 7. In the TR case where 
t = δt, the curves
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denoting the estimation error from the GRBE and RBE overlap with each other, which
again demonstrates that the GRBE is equivalent to RBE when the sampling time is
resolved in time, as pointed out in § 2.4. When the sampling intervals are randomly
distributed in the RS case, the estimation errors of the GRBE along the height slightly
increase compared with those in the TR case due to the reduction of measurement
information. Meanwhile, the estimation errors of the RBE in the RS case are much larger
in comparison with those in the TR case. When the sampling time interval increases to
32δt+ in the TU case, the estimation errors of the RBE results become even larger, while
those from the GRBE maintain a relatively low magnitude. For instance, compared with
the TR cases, the relative MSE from the RBE at y+ = 100 with Reτ = 934 increases by
43.7 % in the TU case, while that from the GRBE increases by only 10.1 %.

From the above comparisons between the estimation results from the RBE and GRBE,
the GRBE is capable of providing a satisfying estimation for the turbulent channel flows
with different sampling time intervals when the measurements are wall shear stress and
pressure with real flow statistics informing the estimator.

4. Applications

In this section, the validated GRBE will continue to be applied in the estimations of
turbulent channel flows to systematically investigate the characteristics of the GRBE in
different application scenarios. In general, there are several related problems to be further
uncovered, including (i) the influence of the abundance of the measured information
on the estimation accuracy, including the amount of temporal information and sensor
types, (ii) the Reynolds number effects and (iii) the performance of the forcing models
when incorporated into the GRBE estimator. Discussions on the impacts of measurement
abundance and Reyolds number effects are provided in § 4.1, while those on the impacts
of the forcing models are presented in § 4.2.

4.1. Impacts of the abundance of measurement information on the estimation accuracy
The impact of different observation types, including wall shear stress and pressure,
is preliminarily studied in Amaral et al. (2021), leading to the conclusion that the
estimation accuracy is improved with the increasing amount of the measured quantity
types. Meanwhile, the problem becomes more complex when the abundance degree
of temporal information is introduced. The variations of estimation accuracy with the
measurement abundance at different flow scales also await further examination.

To investigate the impact of the abundance of temporal measurement information, three
cases with different sampling temporal intervals are set, namely TU for the temporally
unresolved case, RS for the randomly sampled case and TR for the temporally resolved
case. Note that the sampling intervals in the TU case in this section are further enlarged
to be 240δt, 160δt and 160δt for turbulent channel flows with Reτ = 186, 547 and 934,
respectively, which are all the same as the lengths of the DNS data in temporal direction
for each block with corresponding Reτ , as presented in § 3.2.1. This means that the flow
information at only one snapshot is used for each TU case. On the other hand, to investigate
the impacts of the sensor types on the estimation accuracy, different combinations of wall
quantities, including the streamwise shear stress τu, spanwise shear stress τw and pressure
p, are also considered in this study. All of the to-be-tested combinations of the sampling
intervals and sensor types in this study are summarised in table 2. In this section, the
estimations with wall measurements informed by the real flow statistics are conducted.
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τu τw p τu, τw τu, τw, p

Temporally unresolved (TU) TUu TUw TUp TUu,w TUu,w,p
Randomly sampled (RS) RSu RSw RSp RSu,w RSu,w,p
Temporally resolved (TR) TRu TRw TRp TRu,w TRu,w,p

Table 2. Nomenclature of the cases testing the impacts of the sampling time intervals and sensor types on
estimating the turbulent channel flow in this study.
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Figure 8. Estimated instantaneous flow state at y+ = 100 with measurements at the wall from the GRBE.
The DNS result (a) is presented as a reference. The measured quantities are set as (τu, τw, p) (b–d), (τu, τw)

(e–g) and τu (h–j). The sampling time intervals are set as temporally resolved (b,e,h), randomly sampled (c, f,i)
and temporally unresolved (d,g, j). The values shown in the figures are normalised by the maximum velocity
fluctuation value in the DNS result.

Instantaneous snapshots of the DNS result and the estimations at y+ = 100 with Reτ =
934 are depicted in figure 8. Different types of sensors with various extents of temporal
information are considered. In case TRu,w,p where the measured flow information is the
most abundant, the GRBE estimator provides the most accurate results, where the flow
structures recover well the representative ones in the DNS results. With the decrease
of either the sensor types or temporal information, the estimated small flow structures
become blurred. In case TUu with the least measured information, only the large-scale
structures with long streaky structures could be observed. Interestingly, it is found that the
flow structures are still well estimated in case TUu,w,p where the flow information at only
one snapshot is used for the estimation. Compared with case TRu with measurements of
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Figure 9. Profiles of the relative MSEs of the streamwise velocity fluctuations from the GRBE in turbulent
channel flows with Reτ = 186 (a), 547 (b) and 934 (c).

Nx × Nz × NT , the results from case TUu,w,p with 3 × Nx × Nz provide comparable flow
information with a much lower requirement of measured data.

Next, we further investigate the impacts of the measurement abundance through the
profiles of the relative MSEs. Figure 9 shows the profiles of the relative MSEs along the
height. For all the tested Reτ , it is observed that the estimation errors generally increase
with the enlarged distance from the measurement location, i.e. the wall. At each height,
the results in TR cases are the most accurate among those with the same sensor types.
Meanwhile, case TUu,w,p that only needs the measured data at one instant has an even
smaller error compared with case TRu that needs temporally resolved measurements when
y+ < 100. The Reynolds number effects on the GRBE accuracy can also be observed from
figure 9. At a given height y+, the estimation errors decrease with the enlargement of Reτ

for each case. For instance, at y+ = 100, the estimation errors in case TRu,w,p are equal
to 0.88, 0.60 and 0.48 when Reτ = 186, 547 and 934, respectively. In the meantime, an
approximate plateau of the relative MSEs in the buffer zone is observed when Reτ = 547
and 934, which is more obvious with the higher Reτ . When Reτ = 934, the estimation
errors even slightly decrease with the increase of height for cases with measurements of
τu.

To further excavate the underlying mechanism of the differences in the estimation
accuracy with different Reτ , the relative estimation error energy as a function of y and
the flow scale λx is defined by

Errx(λx, y) =
〈∑

kz

∑
t ε̂(kx, kz, y, t) ¯̂ε(kx, kz, y, t)

〉
〈∑

kz

∑
t û(kx, kz, y, t) ¯̂u(kx, kz, y, t)

〉 , (4.1)

where λx = 2π/kx. As shown in figure 10, with the increasing flow scale, the estimation
errors at a given height decrease monotonically. In the meantime, the plateaus in the
estimation errors that are observed in the overall error energy profiles in figure 9(b,c) are
much more obvious for the VLSMs (λx � 3h) (Adrian, Meinhart & Tomkins 2000; Lee &
Sung 2013; Lee et al. 2014) in the buffer zone. Especially, for the VLSMs with λx = 4π,
the values of the estimation errors are around 0.18 at the plateaus at y+ = 40 ∼ 100 in
case TRu,w,p with Reτ = 934. Meanwhile, for the motions with small scales of λx � 3h,
the plateaus are not found in the buffer zone, which indicates that the nonlinear effects are
stronger for such small-scale motions.

In the following, deeper investigations on the GRBE estimator are conducted by
studying the two-dimensional energy spectra of the estimation and the corresponding
energy distributions of the errors as functions of λx and λz. Similar to (4.1), the
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Figure 10. Relative MSEs of the streamwise velocity fluctuations from the GRBE in turbulent channel flows
as functions of the flow scale λ+x and wall-normal distance y+ in cases TRu,v,w (a,c,e) and TUu (b,d, f ) with
Reτ = 934 (a,b), 547 (c,d), and 186 (e, f ). The blue curves denote the profiles of the relative MSEs for flow
motions with given λ+x , while the red ones denote the contours of Errx = 0.2, 0.4, 0.6 and 0.8, respectively.

two-dimensional relative energy distribution of the estimation error at a given height yo is
defined by

Errxz(λx, λz) =
〈∑

t ε̂(kx, kz, yo, t) ¯̂ε(kx, kz, yo, t)
〉

〈∑
t û(kx, kz, yo, t) ¯̂u(kx, kz, yo, t)

〉 , (4.2)

where λx = 2π/kx. The premultiplied spectra of estimated velocity fluctuation energy and
the corresponding relative MSEs of u at y+ = 40 and 100 are shown in figures 11 and
12, respectively. To quantify the spectral region with relatively high estimation accuracy,
the contours of Errxz(λx, λz) = 0.25 and 0.75 in the corresponding figures are highlighted
with white solid and dashed curves, respectively. Meanwhile, the scope of the self-similar
attached eddies, i.e. λx � 2λz, λx � 10y, and λz � 2y, as suggested by Lozano-Durán,
Flores & Jiménez (2012), Hwang (2015) and Cheng et al. (2019), are also highlighted with
black dot-dashed lines.

From figures 11 and 12, estimated premultiplied energy spectra in the dashed curves
match relatively well with the DNS results within the spectral region corresponding to
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Figure 11. Premultiplied energy spectra (1st and 3rd panels) and the relative error energies (2nd and 4th
panels) of u at y+ = 40 using the measurements at the wall. The sensor types are τu, τw, and p (a–d), τu
(e–h), τw (i–l) and p (m–p). The black dot-dashed lines in each figure denote the range of the attached eddies.
In the 1st and 3rd panels, the solid and dashed curves denote the contours of the energy spectra from DNS and
estimations, respectively. In the 2nd and 4th panels, the contours of Errxz = 0.25 and 0.75 are highlighted with
white solid and dashed curves, respectively.

the attached eddies when the sensor types are {τu, τw, p} or {τu}. Correspondingly, the
relative energies of the estimation errors are generally smaller for the flow portions
with larger wavelengths. On the other hand, the spectral regions where Errxz � 0.75 at
y+ = 40 are much larger than those at y+ = 100, which means that the estimation errors
of the small-scale structures are significantly enlarged. Meanwhile, the extents of the
regions where Errxz � 0.25 for the large-scale flows do not shrink so obviously when the
estimation layers lifts from y+ = 40 to y+ = 100. This phenomenon is consistent with the
plateaus for the VLSMs existing at the buffer zones observed in figure 10.

The sensor types are found to have significant impacts on the energy distributions of
the estimation errors in figures 11 and 12. Comparing the results in cases TRu,w,p and
TRu, obvious increases of the estimation errors are observed in the spectral region of
10y < λx < 2λz. At (λx/h, λz/h) = (0.36π, π) on y+ = 40, the value of the error energy
is 0.52 and 0.94 in cases TRu,w,p and TRu, respectively, with an increasing rate of 81.5 %.
On the other hand, at (λx/h, λz/h) = (4π, 0.5π) inside the scope of the attached eddies,
the error energy increases by 20.0 % in case TRu in comparison with that in case TRu,w,p,
which is not so dramatic as that at (λx/h, λz/h) = (0.36π, π). Besides the estimation
results with measurements of {τu, τw, p} and {τu}, those with {τw} and {p} are also shown
in figures 11 and 12 to study the characteristics of the GRBE in cross-quantity estimation.
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Figure 12. Same as figure 11, but at y+ = 100.

In case TRw, the region where Errxz(λx, λz) � 0.75 that is surrounded by the white dashed
lines is comparable to that in case TRu, which roughly matches the range of the attached
eddies. However, for large-scale flow motions, the estimation errors in case TRw are
generally larger than 0.25, which is larger than those in TRu. Thus, although the GRBE is
capable of providing fair estimations of the small-scale structures of u with measurements
of τw, the large-scale structures cannot be well estimated from cross-quantity estimations.
In case TRp with wall pressure measurements, the estimation errors are obviously lower
than those in the TRu case for the small-scale flows, which is beyond the scope of the
attached eddies. For (λx/h, λz/h) = (0.36π, π) at y+ = 40, the error energy in case TRp
is 0.75, which is 20 % lower than that in case TRu. Meanwhile, for the estimations of
large-scale structures, the GRBE in the TRp case is not as good as those in other cases.

Besides the sensor types, the abundance of the measurement temporal information
is indeed another factor that influences the performance of the GRBE. Compared with
cases TRu,w,p and TUu,w,p, the reduction of the measured information in time reduces
the estimation accuracy for all the considered spatial scales. Unlike the sensor types,
which have significant influences on the patterns of the energy distributions of errors, the
variations of the temporal information of measurements do not obviously change the error
energy distributions. For instance, at (λx, λz) = (0.36π, π) and (4π, 0.5π) on y+ = 40
that are outside and inside the scopes of attached eddies, the value of the relative error
energy increases by 46.2 % and 53.9 % in cases TUu,w,p compared with those in the TRu,w
case, respectively, which are relatively close to each other.

To find out the performance of the GRBE with the variations of sampling intervals, we
gradually increase the sampling time interval. The variations of the relative MSEs with the
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Figure 13. Variations of the estimation error energies with measurement time intervals. (a) Values of the
relative MSEs. (b) Variations of the relative MSEs compared with those in the TR cases with the corresponding
measured quantities.

enlargement of the sampling intervals are shown in figure 13(a), while the increasing rate
of the relative MSEs compared with those in the TR cases are shown in figure 13(b). For
each combination of the sensor types, the estimation error does not obviously increase
when 
t/δt � 5. The relative deviations compared with the TR cases are no greater
than 5 % until 
t/δt increases to 16 (
t+ = 81.41). When 16 � 
t/δt � 80, a relatively
obvious increase in the estimation error with the enlarging sampling interval is observed.
When the sampling intervals increase over 80δt, the estimation errors become almost
unchanged with a further increase of 
t. For the estimations with measurements including
τu, the largest relative MSEs in the case with 
t = 160δt are around 15 % larger than the
temporally resolved cases. Meanwhile, the errors of the cross-quantity estimation with
measurements of {τw} and {p} increase by around 8 % in TU cases compared with the
TR ones. The relatively small increase in the cross-quantity estimation errors should be
attributed to the fact that their magnitudes are already large in the TR cases, as shown
in figure 13(a). In the meantime, it is noticed that the estimation error in case TUu,w,p is
almost the same as that in the TRu case with a discrepancy of less than 1 %.

To further investigate the impact of sampling temporal intervals on the estimation
accuracy, the increasing rates of the error energies compared with those in the TR cases
as functions of measurement time intervals 
t and the streamwise wavelength λx are
depicted in figure 14. To quantify the impact of the increasing sampling temporal intervals
on the estimation accuracy of flow motions with different scales, the threshold sampling
interval 
tT is defined herein as the maximum sampling interval with which the increasing
rate of Errx compared with the TR cases is smaller than 5 %. For the attached eddies
with λx � 10y, the threshold temporal interval 
tT is generally larger than 20δt, where

t+T � 101.76. On the other hand, when 3y � λx < 10y, 
tT decreases with decreasing
wavelength, which indicates that finer temporal resolution is required to provide effective
information of the smaller flow scales. When λx = 3y with the sensor of {τu, τw, p}, 
tT
decreases to the minimum value of approximately 10δt. When the flow scales further
decrease to λx < 3y, 
tT dramatically increases instead, which is attributed to the fact
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Figure 14. The increasing rate of the estimation error energies compared with those in the TR case as
functions of sampling time intervals 
t and streamwise wavelengths λx at y+ = 100 with wall measurements
of {τu, τw, p} (a), {τu} (b), {τw} (c) and {p} (d). The black dashed and solid lines denote the contours of 5 % and
15 %, respectively.

that the estimation errors with λx < 3y are already near 1.0 in the TR cases, as shown in
figure 10.

From the above discussions, it can be concluded that the temporal information has
limited impacts on the estimation accuracy, with a maximum reduction of around 13.0 %
of the estimation error in the TR case compared with the TU cases at y+ = 100 with
measurements of wall shear stress and pressure. When the sampling time intervals

t = 16δt (
t+ = 81.41), the increasing rates of the estimation errors are around 5 %
compared with the TR results. Such findings indicate that the measurements with sparse
samplings can be effectively used to provide reasonable estimations of the flow state with
the GRBE. On the other hand, the inclusion of more types of observations can be efficient
in improving the estimation accuracy. In the TU cases without temporal measurement
information, the estimation error reduces by 12.3 % when the sensors for τw and p are
added besides that for τu. Consequently, the relative MSEs at y+ = 100 in the TUu,w,p
case with the most sensor types but least temporal information are almost the same as
those in the TRu case with the least sensor type but most temporal information.

Besides the above conclusions, we would also like to discuss the tolerated estimation
error from the GRBE when applied in real engineering scenarios. Generally speaking,
the feasibility of the GRBE depends on specific requirements on the estimation accuracy
for a given range of flow scales. For instance, in flow control problems, the combination
of sensors and actuators that are both limited to one wall-normal location provides a
comparable control performance to the case where the limited-in-space actuators are
informed by the entire flow information (Oehler & Illingworth 2021). This is due to
the fact that the linear actuators are also limited by the flow coherence like the linear
estimator, which means that the energy-containing LSMs could be better controlled. Since
the GRBE provides reliable estimations of the large-scale structures in the inner layer, it
can already well excavate the potentials of the linear actuator in controlling the large-scale
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turbulent flows. On the other hand, for the estimation problem of small-scale structures
outside the scale range of the attached eddies, which is unresolved yet for all the current
linear and nonlinear estimators (e.g. Guastoni et al. 2021) to the best of the authors’
knowledge, the GRBE is also not able to provide reliable results. Meanwhile, since GRBE
has been validated to be the optimal linear estimator, the comprehensive discussions in
this section are meaningful to evaluate the reliability and quantify the uncertainties of the
linear estimation results in engineering applications.

4.2. Performance of the forcing models in flow state estimation
In the above, the performance of the GRBE estimators informed by the real flow statistics
under different cases is discussed. Thus, no matter how the performance varies in different
cases, they are already the optimal linear estimators with given measurements. In practice,
the flow statistics are not always available when estimating the flow state, where the forcing
models that predict the spatio-temporal statistical properties of turbulent flows are needed
to inform the GRBE estimator. Thus, it is important to clarify their performance when
informing the linear estimator of GRBE. In the following, three existing forcing models
that provide spatio-temporal descriptions of the forcing statistics, including the B-model
(Hwang & Cossu 2010; Madhusudanan et al. 2019), W-model and λ-model (Gupta et al.
2021), will be applied to inform the GRBE estimator. Mathematical descriptions of these
three models are provided in Appendix B. Estimation results with the wall measurements
will be used for the discussions in this section.

Figure 15 shows the estimation errors of different forcing models with different sensor
types along the wall-normal direction. Moreover, to provide intuitive results, figures 16,
17 and 18 show the instantaneous flow states estimated by GRBE estimators that are
informed by the B-model, W-model and λ-model, respectively. In the TU case, the
W-model-informed GRBE provides the most accurate results, which are closer to the
optimal linear estimated results than those from the other models. In case TUu, the
estimation error in the W-model-informed result at y+ = 100 is 13.3 % larger than that
from the optimal linear estimations, as in figure 15(b). From figure 17(d,g, j), it is also
observed that the estimated large-scale structures from the W-model match well with the
DNS results in the TU cases. Such good agreement between the W-model-informed result
and the optimal linear result in case TUu indicates that the W-model can effectively predict
the spatial coherence of the streamwise velocity between the wall and the higher region.
Compared with the estimation errors from the W-model and λ-model, those from the
B-model are obviously larger in the near-wall region of y+ � 10. Meanwhile, with the
increase of estimation height, the errors from the λ-model rapidly increase and exceed
those from the B-model where y+ � 15. On the other hand, the estimation error from
each forcing model does not obviously decrease with the increase of sensor types. When
converting the sensor types from {τu} to {τu, τw, p}, the estimation errors at y+ = 100
decrease by 0.7 %, 3.9 % and 8.0 % for the B-model, W-model and λ-model, respectively,
which are lower than the value of 13.3 % by the optimal linear estimator. The relatively
low efficiency of the forcing-model-informed GRBE estimator to improve the estimation
accuracy with an increasing number of measured variables is attributed to the fact that
all the tested forcing models cannot effectively predict the covariance between different
quantities.

With the increase of the temporal information of measurements, it is interesting to find
that the estimation errors from the W-model- and λ-model-informed estimators increase
accordingly, the tendencies of which are opposite to those of the optimal linear estimator.
In the TRu,w,p case, where the estimation error is minimised in the optimal linear estimator,
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Figure 15. Variations of the estimation errors from the B-model (a,d,g), W-model (b,e,h) and λ-model (c, f,i)
with the wall-normal height in the TU (a–c), RS (d–f ) and TR (g–i) cases. The scattered symbols and
translucent curves denote the estimation results from the GRBE estimator incorporating the forcing models
and real flow statistics, respectively.

it is instead maximised for the W-model results, which are 48.9 % larger than that in
case TUu,w,p. A similar non-physical phenomenon is observed in the λ-model results.
From figures 17(a) and 18(a), the fluctuation energy of small-scale structures is incorrectly
amplified by the W- and λ-models in the TR cases compared with the estimated results in
the TU cases. Such non-physical increase of estimation error with the increase of temporal
measurement information and sensor types indicates that the W-model and λ-model cannot
effectively predict the temporal properties, although the W-model works well in predicting
the spatial coherence of the streamwise velocity. On the other hand, the estimation errors
of the B-model results decrease monotonically with the increase of the measurement
abundance. Compared with the relative MSE in case TUu,w,p at y+ = 100, that in case
TRu,w,p decreases by 13.2 % from the B-model results.

In summary, the tested forcing models perform differently in cases with different
measurement abundance. In case TUu with the least measurement information, the
W-model performs the best. When the sensor types increase from {τu} to {τu, τw, p}, the
estimation accuracy of the tested forcing models is not obviously improved. Moreover,
with the increase of temporal information, the estimation errors from the W-model and
λ-model non-physically increase. Such tendencies are opposite to those in the optimal
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Figure 16. Estimations of the flow state with the B-model-informed estimator. The depicted figures are
reference DNS result (a); estimations with measurements of wall shear stress and pressure (b–d), wall shear
stress (e–g) and streamwise wall shear stress (h–j). The measurements are temporally resolved (b,e,h), randomly
sampled (c, f,i) and temporally unresolved (d,g, j). The values shown in the figures are normalised by the
maximum velocity fluctuation value in the DNS result.

linear estimation results, indicating that the temporal properties predicted by the W-model
and λ-model cannot effectively reflect these of the real turbulence. A forcing model that
properly models the forcing in the temporal domain will effectively improve the linear
estimation accuracy of the GRBE without the requirement of the real flow statistics, which
is to be explored in the future.

5. Conclusions

In this study, the RBE that estimates the turbulence field with temporally resolved
measurement data is generalised so that credible linear estimations of the flow state can
be obtained when the measurement data are arbitrarily sampled in time. The generalised
version of RBE is named the GRBE herein. Unlike the RBE that minimises the expected
error energy at each frequency, the transfer kernel of the GRBE is constructed with the
target of directly minimising the expected error energy in physical space, by means of
finding the stationary point of the MSE as a quadratic function of the transfer kernel.
The flow statistics, including the CSD tensors of the forcing and measurement noise,
are considered when constructing the GRBE estimator. In cases where the flow statistics
are unavailable, the GRBE enables the incorporation of the forcing models that provide
spatio-temporal predictions of the flow statistics.

Validations of the GRBE approach include the one-dimensional complex Ginzburg–
Landau equation and turbulent channel flows with Reτ = 186, 547 and 934. The estimation
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Figure 17. Same as figure 16, but with the W-model-informed estimator.

results from the original RBE (Martini et al. 2020; Towne et al. 2020) and the H2-optimal
estimation (Doyle et al. 1989; Illingworth et al. 2018) are also included in the case of the
complex Ginzburg–Landau equation. When the measurement information is resolved in
the temporal direction, the GRBE results are equivalent to those from the RBE. As the
sampling time intervals arbitrarily increase, the relative MSEs of the GRBE results still
keep relatively low magnitudes, while those of the RBE are obviously enlarged when the
sampling time intervals increase. The GRBE also provides the optimal results in causal
estimations by comparing with the H2-optimal estimation results. In the validation cases
with the turbulent channel flows with Reτ = 186, 547 and 934, the measured signals are
set to be the shear stress and pressure at the wall, with the real flow statistics incorporated
in the GRBE and RBE estimators. The results of the GRBE and RBE are the same when

t+ = δt+ = 5.09, i.e. the measurements are well resolved in time. When the sampling
time intervals 
t+ increase to 32δt+, the estimation errors of the RBE are obviously
enlarged, while those from the GRBE maintain relatively low magnitudes.

After validations, the GRBE is further utilised to comprehensively investigate its
performance in different measuring conditions, where the factors influencing the
estimation accuracy include the abundance of temporal measurement information and
sensor types, as well as the Reynolds number effects. With the increase of Reτ , the
relative MSE at a given height decreases accordingly, where the plateaus of the relative
MSE magnitudes are observed in the buffer zone when Reτ = 547 and 934. Investigations
on the estimation errors with different streamwise scales λx reveal that the plateaus
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Figure 18. Same as figure 16, but with the λ-model-informed estimator.

mainly appear in the VLSMs, which are more energetic when Reτ increases. By
increasing the measurement types, the estimation accuracy of the turbulence state can be
effectively improved. For instance, the relative MSE reduces by 12.3 % when the additional
measurements of τw and p are added to the original estimations where τu is measured in
the temporally resolved case. On the other hand, increasing the temporal information of
the measurements can also reduce the estimation error. When measuring the wall shear
stress and pressure, the relative MSE at y+ = 100 with Reτ = 934 decreases by 13.0 % in
the TR case compared with the TU case with only spatial measurements.

Finally, the current spatio-temporal forcing models, including the B-model, W-model
and λ-model, are incorporated into the GRBE estimator to investigate the performances of
these existing models when conducting the linear estimation. The estimated results with
wall measurements are investigated to test the abilities of the existing forcing models in
turbulence state estimation. The estimation errors from the W-model-informed estimator
are relatively low in the TU cases, where the estimation error at y+ = 100 in case TUu
is only 13.3 % larger than that from the optimal linear estimations. This indicates that the
W-model-predicted spatial statistics of turbulence reflect well the DNS results. However,
for the TR cases, the estimation errors in the results from the W-model and λ-model
non-physically increase, especially for the estimations with multiple types of observations.
Thus, given a forcing model that provides a fair prediction of the spatial covariance of
turbulence, its prediction accuracy on the temporal information is not guaranteed, and it
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might induce huge errors for state estimation. This highlights the importance of proper
modelling strategies of forcing in the temporal domain.

When applied to experiments or engineering scenarios, the flow patterns and sensor
locations may not be the same as those in this study. In such cases, the resolvent
operator and, correspondingly, the GRBE transfer kernel, should be tuned to match the
specific flow configuration and sensor layouts. More importantly, an appropriate forcing
model should be incorporated in the GRBE framework such that the linear relationships
between the measurement and estimations are properly evaluated in the given application
scenario. With continuous studies on the colour of forcing in the frequency domain
(e.g. Zare et al. 2016, 2020; Morra et al. 2021; Nogueira et al. 2021), an advanced forcing
model that provides a more accurate description of the spatio-temporal properties of
turbulence is promising to be proposed in the future, which will make the GRBE a more
powerful tool in estimating the turbulence.
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Appendix A. The spatial linearised Navier–Stokes operator

The spatial linearised NS operator Lks ∈ C3Ny×3Ny in (2.8a–c) for the momentum
equations is calculated as

Lks = L0 + ikxLx + LyD + ikzLz + L2(−k2
x + D2 − k2

z ), (A1)

with

Lx =
⎡
⎣U −v ′

T 0
0 U 0
0 0 U

⎤
⎦ , Ly =

⎡
⎣−v ′

T 0 0
0 −2v ′

T 0
0 0 −v ′

T

⎤
⎦ ,

Lz =
⎡
⎣ 0 0 0

0 0 0
−v ′

T 0 0

⎤
⎦ , L0 =

⎡
⎣0 u′ 0

0 0 0
0 0 0

⎤
⎦ ,

L2 =
⎡
⎣−vT 0 0

0 −vT 0
0 0 −vT

⎤
⎦ ,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A2)

where U is the mean streamwise velocity profile, vT = (1/Reτ )(νT/ν), D and ′ denote
∂/∂y. The Hamiltonian operator ∇ ∈ CNy×3Ny in (2.8a–c) is calculated as

∇ = [
ikxINy D ikzINy

]
. (A3)
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The observation matrix C in (2.7b) is determined by the location of the measured
variable. For instance, denoting (u1, u2, u3) = (u, v, w), if the measured variable is the
velocity ui (i = 1, 2, 3) at the nth node, then the observation matrix C ∈ C1×4Ny should
be expressed as

C =
[
O1×[(i−1)Ny+n−1] 1 O1×[4Ny−(i−1)Ny−n]

]
. (A4)

Appendix B. The spatio-temporal forcing models

The concept of the spatio-temporal forcing model defined in this study refers to the
method that provides the statistical description of forcing in both the wall-normal and
temporal directions at each spatial scale ks. Such spatio-temporal forcing models can be
incorporated in the GRBE transfer function h as in (2.18) when the measurements are
unresolved in time. The existing methods that belong to the spatio-temporal forcing models
include the B-model (Hwang & Cossu 2010), W-model and λ-model (Gupta et al. 2021).
All these three models assume that the forcing is white in time and uncorrelated along the
wall-normal direction. This means that the CSD tensors of the forcing at a given spatial
scale ks are diagonal and unchanged all over the frequencies ω. The B-model specifies the
forcing energy E(ks,ω) to be unchanged along the height, i.e.

E(ks,ω,y) = σks, ∀ω, y. (B1)

With such a precise description of the forcing, the B-model is widely applied in relevant
studies (Hwang & Cossu 2010; Madhusudanan et al. 2019; Gupta et al. 2021).

Extended from the work of Jovanović & Bamieh (2005) in laminar flow, the W-model
(Gupta et al. 2021) assumes that the vertical profile of forcing energy is proportional to
that of the eddy viscosity, i.e.

E(ks,ω,y) = σksν
2
t ( y), ∀ω, y. (B2)

Considering that the nonlinear interactions of turbulence are scale dependent (Cho,
Hwang & Choi 2018), the λ-model (Gupta et al. 2021) is further proposed with the
modified eddy viscosity, i.e.

νt,ks( y) = λ

λ+ λm( y)
νt( y), (B3)

where λ = 2π/(k2
x + k2

z )
0.5, and λm( y) = 50/Reτ + (2 − 50/Reτ ) tanh(6(1 − |1 − ỹ|)).

The forcing energy profile is thereby calculated by

E(ks,ω,y) = σksν
2
t,ks

( y), ∀ω, y. (B4)

Appendix C. Analyses of the estimation errors from the RBE in temporally
unresolved cases

In this section, the estimation errors from the RBE-F and RBE-T approaches in the
TU cases will be analysed. The estimation errors on different frequency bands will be
separately investigated to study how the estimation errors are induced from the RBE
approaches due to spectrum aliasing. The flow motions on each frequency band are firstly
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Figure 19. Sketch of spectrum aliasing due to down-sampling of the measurement signal at x = 10 of the
Ginzburg–Landau equation in the TU case. Grey curve: the original spectrum without aliasing; red curve: the
measured spectrum with aliasing; blue curves: the piecewise spectra, with colour shades indicating the numbers
of the frequency bands.

extracted from the original flow signal with high temporal resolution, then separately used
for estimation in the TU case after down-sampling. To facilitate the following discussions,
we denote Pi to be the frequency band with ω ∈ [(2ni − 1)ωN, (2ni + 1)ωN], where
ni = 0, −1, 1, −2, 2, . . . for i = 1, 2, 3, 4, 5, . . ., respectively, and ωN is the Nyquist
frequency. Two cases, including the one-dimensional Ginzburg–Landau equation and
turbulent channel flow with Reτ = 934 with temporally unresolved measurements, will
be included in the discussions in this section. Settings of the sampling intervals in the
TU cases can be found in §§ 3.1 and 3.2 for the Ginzburg–Landau equation and turbulent
channel flows, respectively.

C.1. The one-dimensional Ginzburg–Landau equation
Firstly, the spectrum aliasing due to the under-sampling of the measurement data is
investigated, which induces the estimation errors in the RBE-F results. Since the RBE-F
uses the Fourier series directly from the DFT to conduct the estimations, the flow motions
with ω = ωP1 + 2niωN are identified to have a frequency of ωP1, where |ωP1| � ωN
(Karban et al. 2022). As a result, the flow motions with ω = ωP1 + 2niωN (ni /= 0) are
incorrectly estimated by RBE-F with the transfer function for ωP1. As shown in figure 19,
the under-sampled spectrum in the TU case obviously differs from the original spectra.
In figure 20(a), the relative MSE in the RBE-F result corresponding to frequency band
P1 with lowest frequencies is the same as that from the optimal GRBE/RBE results in
the TR case, and both are lower than the GRBE results in the TU case. This is due to
the fact that the RBE-F constructs the transfer function according to P1, while the GRBE
comprehensively considers the overall statistics across all the scales. Meanwhile, for the
frequency bands with higher frequencies, the relative MSEs from the RBE-F rapidly
increases to be larger than unity, which means that the optimal transfer function for band
P1 is not effective for the other frequency bands with different frequencies.

On the other hand, the RBE-T uses the discretised temporal transfer kernel by
integration of the transfer kernel in the temporally resolved case, as shown in (2.30). From
figure 20(a),the relative MSE of RBE-T at frequency band P1 is the largest one among
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Figure 20. Relative MSEs at x = 10 for different frequency bands of the Ginzburg–Landau equation in the
TU case. (a) The estimation error at separated frequency bands. (b) The accumulated estimation error by
sequentially increasing the considered numbers of frequency bands.

those from the other methods. For the sequential frequency bands, the estimation errors
of the RBE-T approach appear to be lower than those of the RBE-F approach. Meanwhile,
both the RBE-F and RBE-T results have larger estimation errors than the GRBE approach
when considering the summation of flow motions at all the frequency bands.

Appendix D. The H2-optimal estimation

The H2-optimal estimation (Illingworth et al. 2018) originates from the H2-optimal control
problem (Zhou & Doyle 1998), where the term ‘H2’ is from the H2 norm that is used to
define the cost function in this problem. The H2 norm of a stable matrix M(s) is defined
by

‖M‖2 :=
(

1
2π

∫ ∞

−∞
Tr

[
M(iω)M(iω)∗

]
dω

)1/2

. (D1)

Now consider a dynamic system with the state evolution equation expressed by

∂u(t)
∂t

= Au(t) + B1w(t) + B2ue(t),

e(t) = C1u(t) + D12ue(t),

y(t) = C2u(t) + D21w(t),

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (D2)

where u is the state variable; ue is the control input, which corresponds to the estimation
for the optimal estimation problems; w is the spatio-temporally white external input, which
includes the effects of disturbances, i.e. nonlinear forcing and sensor noise. Note that the
cross-spectra of nonlinear forcing and the sensor noise are defined with w along with the
matrices of B and D introduced below. Here, e is the output of the closed-loop system,
which corresponds to the estimation error for the optimal estimation problems and y is
the measurement. A diagram of the closed-loop system is shown in figure 21, where G(s)
denotes the state-space representation of

G(s) =
[

A B
C D

]
= C (sI − A)−1 B + D, (D3)

with

B = [B1 B2] , C =
[

C1
C2

]
, D =

[
O D12

D21 O

]
. (D4a–c)
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G(s)

F(s)

e w

yue

Figure 21. Diagram of the closed-loop system.

The transfer matrix G(s) actually defines the linear relationship between [e, y]T and
[w, ue]T after taking Laplace transforms along the temporal direction, i.e.[

ê(s)
ŷ(s)

]
= G(s)

[
ŵ(s)
ûe(s)

]
. (D5)

For output estimation problems, with respect to the parameters in (2.7), the linear operators
and the external input w in (D2) are given by

A = A, B1 = [B O] , B2 = [O] , C1 = [I] , C2 = [C] ,

D12 = [−I] , D21 = [O D] , w =
[

f̃
ñ

]
,

⎫⎪⎬
⎪⎭ (D6)

where B and D are obtained from the Cholesky decompositions of the CSD tensors of
forcing and measurement noise, respectively, i.e. Sff = B · B∗, Snn = D · D∗.

Equation (D5) describes the mathematical definitions of the estimation error ê(s) and
observation ŷ(s) as functions of the external input ŵ(s) and the state estimation ûe(s)
through the linear operator G(s). Considering (D3)–(D6), (D5) is equivalent to

ê(s) = û(s) − ûe(s),

ŷ(s) = Cû(s) + D ˆ̃n(s),

}
(D7)

where û(s) = (sI − A)−1B ˆ̃f (s) is the response generated by the stochastic forcing that is

defined as B ˆ̃f (s), and D ˆ̃n(s) defines the sensor noise.
Now define the controller F(s) and transfer matrix Tew(s), i.e.

ûe(s) = F(s)ŷ(s),

ê(s) = Tew(s)ŵ(s),

}
(D8)

where the explicit expression of Tew can be derived to be

Tew(s) =
[
(I − F(s)C) (sI − A)−1 B, −F(s)D

]
, (D9)

according to (D5). The goal of the H2 control problem includes finding a rational controller
F(s) that minimises the H2 norm of the transfer matrix Tew that links the external input w
and the estimation error e (Zhou & Doyle 1998), which directly builds up the foundation
of the H2-optimal estimation in Illingworth et al. (2018). Details of the mechanism and
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Figure 22. Relative MSEs at y+ = 100 for different frequency bands of the turbulent channel flow with Reτ =
934 in the TU case. (a) The estimation error at separated frequency bands. (b) The accumulated estimation
error by sequentially increasing the considered numbers of frequency bands.

methodology for solving the H2 optimisation problem can be found in Doyle et al. (1989)
or Zhou & Doyle (1998). The algorithm for solving the H2-optimal problem has been
integrated in MATLAB and can be solved via the function h2syn, i.e.

[F, Tew, γ ] = h2syn(G, ny, nue), (D10)

where G is assigned in MATLAB via G = ss(A, B, C, D), ny and nue are the dimensions
of the measurement y and estimation ue, respectively, and γ is the resultant minimum H2
norm of Tew.

According to Doyle et al. (1989) and Zhou & Doyle (1998), the H2-optimal approach
provides causal estimations, and utilises the measurement information at τ � t when
estimating the flow state at time t. From the definition of the H2 norm in (D1), the
expected estimation error energy is minimised only when the forcing is white in time,
i.e. the CSD tensors of the forcing at a given spatial scale ks are unchanged for all the
temporal frequencies.

D.1. The turbulent channel flow with Reτ = 934
The distributions of the estimation errors at y+ = 100 with Reτ = 934 in the TU case for
different frequency bands are shown in figure 22. As in figure 22(a), the RBE-F results
have the smallest estimation error at P1, since the RBE-F utilises the optimal transfer
kernels for P1 to estimate the flow state at all the sequential frequency bands. From the
second frequency band P2 on, the relative MSEs of the RBE-F results become larger
than those from the GRBE. Meanwhile, the RBE-T results nearly overlap with the RBE-F
results in almost all the considered frequency bands. On the other hand, the GRBE results
in the TU and TR cases are pretty close to each other for the turbulence estimation.

In figure 23, the instantaneous flow states at y+ = 100 within different frequency
bands are depicted. For the first frequency band P1 with the lowest frequencies, all the
tested methods provide reasonable results. For the sequential frequency bands P2 and
P8, the patterns of the flow structures become different in the GRBE and RBE results.
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Figure 23. Instantaneous flow state at y+ = 100 in the TU case corresponding to the frequency bands of P1
(a,d,g, j), P2 (b,e,h,k) and P8 (c, f,i,l). The results are from DNS (a–c), GRBE (d–f ), RBE-F (g–i) and RBE-T
( j–l).

Although the estimated flow energies are lower than those from the DNS, the flow patterns
of the GRBE results in the sequential frequency bands keep consistent with the DNS
ones. Meanwhile, the flow patterns estimated by the RBE-F and RBE-T become different
from the DNS results in the sequential frequency bands. Specifically, for P8 with higher
frequencies, flow structures that are elongated in the spanwise direction can be observed
in the RBE results, which are considered to contribute to the non-physical small-scale
spanwise streaks in the RBE-T results shown in figure 6.
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