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Presentations of metacyclic groups

Bruce W. King

Each metacyclic p-group has a natural canonical presentation

which is easily derived from the usual presentation. Parameters

in the canonical presentation measure how far the group is from

spl i t t ing , and from being either commutative or dihedral. The

structure of the groups is discussed.

1. Introduction

A metacyclic p-group is usually given by a presentation

y , tPn k b *
<r = 1 , It = a , a = a

where m, n 2 0 , 0 < r , k < pm , pm|fe(r-l) and pm i? -1 . Different
values of the parameters m, n, r, k do not necessarily correspond to non-
isomorphic groups. In order to study metacyclic p-groups i t i s desirable
to res t r i c t the possible values of the parameters so that two different
sets of parameters do correspond to non-isomorphic groups. Part ial
solutions to this problem exist . For fixed m, n with n = 1 the result
i s well-known, and for fixed m, n with n = 2 there is a solution in
Burns! de [3] . An arithmetic solution for arbitrary fixed m, n appears in
[ / ] , but the main theorem is incorrect as stated, and certain points are
obscure, rendering the use of [J] diff icul t . Furthermore, as is shown
below the same group can occur with different values of the parameters
m, n .

The explicit solution offered here i s : every non-cyclic metacyclic

p-group has a unique presentation of the form
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m n m-8
cf = 1 , -jP = cP

-Up1""0
a *

where the second alternative occurs only for p = 2 , and the parameters

sat isfy simple inequali t ies l is ted in Theorem 3.2. I t i s claimed that th is

i s a natural presentation for the following reasons. The parameter 8

measures how far the group is from sp l i t t i ng , for every metacyclic p-group

G has a unique minimal normal subgroup 5 in i t s derived group such that

G/S sp l i t s and the order of S is p8 (Theorem h.6).

In a sp l i t t ing metacyclic group the order of the cyclic normal

subgroup and of i t s cyclic complement are fixed (Theorem U. 1+); in the

above presentation these orders are p , p respectively. For the f i r s t

al ternat ive above the parameter a measures how far the group is from

being commutative, and the derived group has order p . For the second

alternat ive a measures how far the group is from being dihedral (see

Theorem U. 9) .

Solutions related to th i s one have recently been obtained in [2] and

[ 7 ] , the former based on cohomology methods, the l a t t e r based on an

extensive treatment of the subgroup l a t t i ce of a metacyclic group in two

preceding papers [5 ] , [6] .

In the present paper the methods are a combination of presentation-

theoret ic and group-theoretic arguments. An advantage of the methods

used here i s that with them i t i s comparatively simple to derive certain

properties of metacyclic groups. A number of properties can be read off

direct ly from the presentations (Proposition U.10 and §5). These properties

are needed in the proof of Theorem 5.^ which Justifies the claim that

different presentations lead to non-isomorphic groups. The method of

gett ing from an i n i t i a l presentation to the canonical one (Theorems 3 .1 ,

3.2) i s constructive (k.2, U.3), and makes the transformation to canonical

form a simple matter.

The results obtained on group structure are of interest in themselves,

as only a l i t t l e is yet known either about non-split metacyclic p-groups,
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or about the metacyclic 2-groups whose presentations are as in the second

alternative above. In the latter case particular groups such as the

dihedral, semi-dihedral and quaternion groups are well-known and a class of

groups P has been discussed in [8]. The cyclic and abelian structure of

split metacyclic p-groups has been dealt with in [5], [6] by Lindenberg,

but the non-split groups are mentioned only briefly in [7].

2. Notation and preliminaries

Unless otherwise stated, the groups occurring are f ini te p-groups. p
always denotes the prime under consideration.

Generally, notation i s standard. In par t icular , note the following

usage;

p \\u means p \w and p \w .

G, YO(G), . . . , Y•(<?), ••• is the descending central series of a group

G . G, <I>(G), $2(C) = $($(£)), . . . defines a descending Frat t ini ser ies .

If n i s a non-negative integer then U = < g ; g £ G) denotes the

subgroup generated by the nth powers of elements of G .

D = D[C?) , S = S{c&) and Q = Q{29) denote respectively the

dihedral, semi-dihedral and generalized quaternion groups of order 2° .

Next, some special notation i s introduced, relating to metacyclic

groups. Let m, n, 8, r, c and k be integers.

(a.b) and likewise <a|fc> and <a||i>> , denotes a metacyclic group

which is the extension of a cyclic normal subgroup <a> by <fc> .

In particular < a.b > refers to the presentation

m n m-8 ,
cc - 1 , tr = ar , a = a

n
with m > 8 > 0 , n > 0 , . p 8 | r - l and p" T? -1 .

For <a|fc> and < a||2> > , refer to Theorems 3.1 and 3.2.

If necessary the parameters of interest are included in the notation,
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as for example, (a.b; m, n, s, a, ±> .

From now on, the following simplifying assumptions are made,

( i ) (a.b) is not cyclic, and so m > 8 2 0 , n > 0 .

( i i ) r i s an integer, 1 < r 5 l+p" , representing an element in the

group of units of Z(pm) . This i s legitimate since \a\ = pm

and by ( i ) , p\r - 1 . Hence v - 1 + hp"~a , p \ h ,

m > e 2 0 i f p > 3 , but r = ±1 +

i f p = 2 . Further, i f p = 2 and m > 3 then m-1 > c > 0 .

These formulae for r correspond to the fact that the group of units

of Z(p ) has generator 1 + p except i f p = 2 and m 2 3 , when i t has
2 2

generators 1 + 2 , -1 + 2 . For fixed c , as 7i varies r
represents a l l the elements of order p . Hence a 2 n .

q(x, u) denotes the (integer) quotient x " i f x, u are integers,

u 2 0 and x # 1 . If x = 1 put <?(l, u) = u .

vn-l m
R is the least positive integer such that R = I? mod p . Thus

b ab = a and fcafc = a . Note that the same parameter o is

associated with R as with r .

To complete the preliminaries i t remains to observe two important but

elementary facts in connection with the arithmetic of the parameters.

The f i rs t of these facts is the nature of the p-power divisors of the

integers q = q{±r, u) . For example q{v, u) arises naturally in taking

powers of products.

Thus

Vk , - l w 2 -2, ' Vk-\
(ab) = ab. ab ab — a wab ] [b ab } . . . lr

PROPOSITION 2 . 1 . Let k be an integer, k > 0 .
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k k
(a) ( [ I ] , C5]). p ||M implies that p \\q(r, u) except if p = 2

and h\r+\ .

2k\\u , k * 0 , implies that 2k+m~°~1\\q(r, u) if p = 2 and

Under either condition above, p m~a\\ru-l .

k k
(b) 2 \\u implies that 2 \\q{-r, u) if p = 2 and h\r+l .

The proofs amount to expanding (±l+7ip °)U - 1 (or in (b) ,

n ) + 1 i f 2 | u J in powers of p and then cancelling powers of
p from numerator and denominator of q = q(±r, u) .

The second fact is that the generators a, b in <a.2>> may be chosen

so as to make h = 1 in the formulae for r . The point to note is that
n m-s

this can be done without disturbing the form of the relation V = a

It is necessary first to prove the following lemma.

LEMMA 2.2. Let r be defined as above and let u, t be positive

integers with t 5 m and p j( u .

The map u •—*• q(r, u) determines a bisection of the group of units of

Z (p ) except if p = 2 and h | r+1 .

The map u •—• q{-r, u) determines a bisection of the group of units

of lip*) if p = 2 and U|r+1 .

Proof. The method of proof used for p i 3 or for p = 2 and U|r-1

also works for p = 2 and U|r+i a f t e r + signs are replaced by -

signs as appropr ia te .

Let U be the group of uni ts of Z(p ) . By Proposit ion 2 . 1 , i f

p | u then p | q(p, u) so tha t i t can be assumed t h a t q € U . Suppose

tha t 0 < u. S «2 < p for two values u-.,u2 of u . Now

a ( r , «2) - a ( r , M^) = ( l + . . . + r 2 ) - ( l + . . . + r > 1 )

= rUlq(r, u.-uA .
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Hence if q[r, «2) = q[r, i^) mod p then p \q[r, w2""i^ *

By Proposition 2.1 again i t follows that p l"o""i a n d s o wi = uo '

Thus u i—• q i s in ject ive , whence i t i s bijective as U is f in i te .

Thus the proof i s complete. I t may be remarked that u •—• q i s even

an automorphism of U i f i s m-a . This i s so since

q{r, M IM2)

with <? r M l , u2 = q[r, u2) mod

Now the second fact can be proven.

PROPOSITION 2 . 3 . Let G = (a.b) be a non-cyelic metacyclic p-group

with parameters m, m, e, a, r .

G aleo has a presentation <a*.b*> with parameters

m, n, s, o, r* = +1 + p™'0 such that <a*) = <a) and < 2 > * > = < 2 > > . .

Proof. Let r be as described in assumption ( i i ) above, that is

r = ±1 + hp . Take new generators a* = au , b* = bu with p | u .

Hence

where q = q(±r, u) .

By Lemma 2.2 i t follows that u can be chosen to make

qh = 1 mod p . Hence a*? = (a*)~ " and r* may be defined to

equal ±1 + p"1"0 . Note that the choice of sign in r* when p = 2 i s

the same as the choice of sign in r .

REMARK. From th is proof i t i s clear that every group ia.b) has a

presentation involving only the parameters m, n, 8, a and a sign, ± .

<a.b> may now be taken to refer t o this presentation, whenever necessary.
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3. Statement of theorems

The f i r s t main theorem provides an explicit solution to the problem of

isomorphism of extensions of a cyclic normal subgroup C{p ) by c[p ) .

Each such extension is either cyclic or isomorphic to a metacyclic
group < a | i ; tn, n, e, a, ±) whose presentation <a|fc> is said to be in
reduced form.

THEOREM 3.1. (a) Every group G = <a.b; m, n, s , e, ±> has exactly

one reduced presentation (a*\b*; m, n, a*, c*, ±) up to isomorphism.

Reduced presentations with different parameters s, c represent non-

isomorphic groups, for fixed m, n .

(b) A presentation is reduced if and only if its parameters satisfy

one of six sets of conditions below, where r = ±1 + pm~a .

For p 5 3 , or for p = 2 , k\r-l and c < m-1 if m > 2 ;

(i) 0 = s £ c < min{n+l, m} ;

(ii) max{l, m-n+l) 5 e < min{c, m-c+l) ;

(Hi) max{e, m-n+l} 5 8 < m-c < m .

For p = 2 , k|r+1 and c < m-1 :

(i) 0 = 8 £ c < m i n { n + l , m-l) ;

(ii) 1 = 8 , m a x . d , m - n + l } S c < n d n { n , m - l ) , or 1 = 8 , c = 0 ,

1 = n < m j (generalized quaternion);

(Hi) 1 = 8 , c = 0 J
i 2 = m £ n .

In the l i s t s above, the type (i) groups have s = 0 so sp l i t as

given. Groups of types (ii) and (Hi) have been separately classif ied, as

the type (Hi) groups can also be represented as spl i t extensions

<a*|i*; m*, n* > with m* # m , n* ? n whereas type (ii) groups are never

spl i t extensions (Theorem 3.2). If groups of type (Hi) are dropped from

the l i s t then the groups remaining have presentations < a\\b > said to be in

uniquely reduced form. Every metacyclic p-group has a presentation

< a\\b > as the next theorem, Theorem 3.2, shows.

Thus Theorem 3.2 provides a solution to the problem of associating a
unique presentation with each metacyclic p-group. There are four basic
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types of uniquely reduced presentations.

Firs t , a metacyclic group either spli ts or never sp l i t s .

Correspondingly, i t s uniquely reduced presentation has either 8 = 0

(spli t t ing) or a > 0 (non-split).

Secondly, either p - 3 or p = 2 and then two kinds of group arise.

One kind has p = 2 , U|r-1 and consists of what may be called ordinary

metacyclic groups, along with their analogues, the metacyclic p-groups

with p > 3 • The other kind of metacyclic 2-group has U|r+1 and is

called exceptional.

Notice that a presentation of the form (a.b\ +> always defines an.

ordinary metacyclic group, but that i t may be necessary to uniquely reduce

a presentation (a.b; -> to determine whether the group so defined is

exceptional.

I t is shown in Theorem U.9 that ordinary and exceptional metacyclic

2-groups may be distinguished by certain group-theoretic properties.

THEOREM 3.2. Every metacyclic p-group has up to isomorphism exactly

one uniquely reduced presentation <a||2>; m, n, s, a, ±> ., for some set of

parameters m, n, a, c, ± . A presentation is uniquely reduced if and only

if the parameters satisfy the following conditions, where r = +1 + pm~° .

Ordinary metacyclic groups. p > 3 or p = 2 , U | T»-1 and c < m-1

if m > 2 .

(i) Split: 0 = a 5 a < min{«+l, m} ;

(ii) Non-split: max{l, m-n+l) < 8 < min{e, m-c+l) .

Exceptional metacyclic groups. p = 2 , l»|r+l and c < m-1 .

(i) Split: 0 = 8 5 a < min{n+l, m-l} ;

(ii) Non-split: 1 = a , max{l, m-n+l} 5 c < min{n, m-l} or

l = e , o = 0 , 1 = n < m (generalized

quaternion).

The proof of Theorems 3.1, 3.2 are by manipulation of the basic

presentation in Theorem 2.3. In order to establish that the groups listed

in the theorems are not isomorphic, one relates the parameters to group

invariants under isomorphism. The theorem which achieves this is Theorem
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5.U, which is stated here in a simplified formulation.

THEOREM 3.3. / / there exists a metacyclic p-group G of order p^,

with derived factor of type (p , p ) and centre of type (p , p ) ,

then either

(i) G is unique (up to isomorphism) in having this derived factor

and centre, or

(ii) G/G' is of type (2W, 2) and Z(G) is of type [2n~1, 2) .

If n > 1 then G = <a||fc; m, n, 0 , 0 , -> or

G = <a||fc; m, n, 0 , 1 , -> . If n = 1 then G = D, S or Q .

4. Group properties of metacyclic p-groups

The section begins with the computational aspects of the proofs of the

f i r s t two of the main theorems.

In th is section some routine calculations in metacyclic p-groups are
carried out. These results will be used to find the centre, Frat t ini
subgroup and derived factor of a metacyclic group. An important by-product
i s a group-theoretic method for distinguishing the exceptional metacyclic
groups from others.

Recall the definition of the quotients q(r, u) and the facts

concerning d iv is ib i l i ty (Proposition 2.1).

LEMMA 4 .1 . If G = < a.b > is a non-abelian metacyclic p-group, then

for integers o, 6, X, k with k > 1 ,

Also p\\ if and only if p > 3 .

Proof. I t may be assumed tha

metacyclic. Let q = q[R, p ) . Thus

Proof. I t may be assumed that a = 6 = 1 as (a , b ) is also

k
But from the binomial expansion of (l+(fl-l))" one has
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q - pk = lP
2 (tf-1) + . . . and so (R-l)pk\q-pk i f p > 3 , but only

(R-l)2k~1\q-2k if p = 2 .

As [a, b ] = a and [a, fc] = cf~ and both generate the cyclic

group G' , the resul t follows.

From the lemma i t i s seen that i f < a.b > is a metacyclic p-group

then G' 5 < cP > , whence $(C) = G& - (cP .b? ) . The formula
2 2= < a ,b > i s particularly useful in dealing with 2-groups, as i s

shown in Lemma U.7-

Lemma U.I and Proposition 2.1 are now to be used to show that

presentations of metacyclic p-groups may be reduced to the forms in

Theorems 3-1, 3-2. The proof of these theorems is completed by using

Theorem 3.3, which shows that the uniquely reduced presentations l i s ted in

Theorem 3-2 define non-isomorphic groups. Due to the method for obtaining

Theorem 3.2 from Theorem 3-1 the reduced presentations l i s t ed in Theorem

3.1 also define non-isomorphic groups.

4.2 Proof of Theorem 3.1. From the discussion in §1 concerning the

parameters a and z> , i t follows that 0 5 o < min{m, n+l} and even

a < m-1 i f p = 2 and U|r+1 .

From the basic defining relations for < a.b > as in Proposition 2.3

i t i s seen that p | r - l and so 0 5 e 5 m-a except i f p = 2 and U|r+i

when 0 5 8 5 1 since 2||i*-l .

However, for some values of 8, a i t i s possible to obtain a

spl i t t ing presentation by replacing b by a new generator b* , as i s now

shown.

m-n-8
For i f 0 < s 5 m-n , and U|r-l when p = 2 , put b* = ba v

Therefore by Lemma U.I,

»-l
n m-8 r m-n-8

P [P -I
n , 2m-o-8-l

(with p\\ i f and only i f p > 3 ). Thus b* = a~^ . If
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8* = c + 8-m + l then 8* 5 1 i f p > 3 and certainly 8* < 8 when

p = 2 since a 5 m-2 .

If p > 3 then p\\ and so fc^ = 1 . If p = 2 and 8* < 8
then, by repeating the process, eventually 8* = 0 is obtained. Then
G = <a.£>*; m, n, 0, e, +> and this is a spl i t t ing extension.

On the other hand, i f p = 2 and Ulr+1 , suppose that a = n when

e = l . Put b* = ba , and so b*2 = b2 S with q = q{r, 2n) . Hence
by Proposition 2 . 1 ,

b*d =bd a = b a = 1 .

Then G = <a.b*; m, n, 0 , n , - > and t h i s i s a s p l i t t i n g extens ion.

Second, i t i s shown t h a t i f m > 3 , n 2 2 , 8 = 1 , e = 0 when

p = 2 and Ujr+l then one can choose a new generator a* and parameter

2n-X
a* = 1 . For, put a* = ab , n > 2 , so that

Hence

a = a* v

since m 2 3 • Thus

[a*, fc] = [a, b] = a"2 = (a*)~2+2

and

m-2
2n 2m~1 ( 2-2W"1] 2^>~1

b = a — (fl*) = (fl*) •

I J
Thus G = (a*, b; m, n, 1 , 1 , - > .

Finally, i t i s easily verified that with the restr ic t ions on

parameters derived above, the groups can be l i s ted as in Theorem 3.1.

4.3 Proof of Theorem 3.2. I t suffices to assume that G has a

reduced presentation <a|i>; m, n, s , a, ±> of type (Hi) in Theorem 3.1.

I t is shown that such a group also has a sp l i t t ing reduced presentation of

the form < b|a*; n+e, m-8, 0, a*, + > .
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n+8-m
F i r s t l e t G = <a\b; + > and put a* = & a so tha t

G = (a*, b) . Now

m-8 n m-8 r n+8-m\ Xp
a*" = hr a * [a"1, bP j

771-8 n+77(-(J-l
by Lemma U. I . Hence (by Proposi t ion 2 . l ) , a*^ = a™ where

. . i n+8-m i m-8
n+m-a-1 IV , , Tn-s-1 „, J3 , .xp = - r^ -1 Up . Thus a* = 1 since

n + m - c - l > 7 7 i - l as G is of type (Hi) in Theorem 3.1 .

8—0 8—C
m-a i m-8}p i nvpAlso cF = Ur \ = fcP €<fc> and thus
m-a i m-8}p i

cF = Ur \ = fc
> 2 C .

But \b\ = pn+6 and |a*| < p7""8 whence G is actually a sp l i t

extension of (b > by < a* > and |<z*| =

Second, l e t G = <a\b; - > again.of type (Hi) in Theorem 3.1.

Rewrite the defining relat ions so that

ff = {b, a; b = 1, a = b , [ i , a] = 2T ^ .

2 n + 1

Next put a* = db , and thence G = <b\a*; n+1, 1, 0, n, + > .

Thus, the resul t required i s proven.

Observe that a sp l i t t ing presentation < a.b > for a metacyclic

p-group is not further reduced by the operations in Theorems 3-1, 3.2. That

is to say, for a sp l i t t ing presentation, (a.b) = <a||b > . This observation

shows that Theorem 3.2 implies the following theorem.

THEOREM 4.4. In a 8plitting metacyelic p-group the order of a

cyclic normal aubgroup and of its cyclic complement ia fixed.

The derivation of Theorem h.k given here re l ies on the isomorphism

aspect of Theorem 3.2, but the result can also be proved directly. I t i s

not used in the sequel iff any case.

LEMMA 4.5. Let < a\\b > be a uniquely reduced presentation of a
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metaayalia p-group G } and let N be a normal subgroup of G properly

contained in the cyclic normal subgroup < a > .

The factor group G/N has a uniquely reduced presentation <aN\\bN) .

Proof. Clearly i t is sufficient to consider the case in which

/ nm~1\
\N\ = p , N < G , N < <a> . Hence N = (cF ) . I f

G = <a\\b; m, n, s, c, ±> and 0 £ s £ 1 then G/N sp l i t s , whence

< aN\\bN > is in uniquely reduced form. Thus the only case remaining to be

proved is that of the ordinary non-split groups <a||£>; +> in which if

p 2 3 then rnaxd, ro-n+l} £ 8 < c < minOn-e+l, m} , e > 2 .

But G/N = (aN.bN; m-l, n, 8-1, e -1 , +> and so

max(l, m-n) £ 8-1 < e-1 < minOn-e, m-l) .

Hence G/N = < aN\\bN > as required. (The case for p = 2 is identical

except for the last term in the inequalit ies.)

Now that Lemma h.5 is proved, i t i s possible to establish the nature

of the parameter 8 in a uniquely reduced presentation. The magnitude of

8 measures how far G is from spl i t t ing. By Theorem 3.2 this result does

not necessarily hold for presentations that merely are reduced.

THEOREM 4.6. Let G be a metacyclic p-group and S be its unique

minimal normal subgroup contained in the derived subgroup, such that G/S

splits.

If G = <a||Z>; m, n, s, c, +> then S has order p8 .

Proof. S exists since G/G' sp l i t s . The result is obviously true

if G has small order; so for induction i t can be supposed true in G/N

where N £ 5 and \N\ = p .

By Lemma U.5, G/N = < aN\\bN; m-l, 8-1, c, ±) for some parameter c ,

where by induction \S/N\ = pB~ . Hence \s\ = p as required.

It will be seen that the parameter c is not quite as simply related

to the presentation as e i s . The following lemma is fundamental in the

study of this question.

LEMMA 4 .7 . Let G = <a.b> be a metacyclic p-group, and let x, y

be generators of G .
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(a) $(C) = <P = <x p , yP) , except in case (b) below.

Cb) If G has reduced relations (a\b; -> and (x> = < ab > ,

<i/> = < ab > with B> P integers such that $ i e euen or zero

2 2 / 27""0 2\and p i s odd tften ix , y ) = (a , b ) . Furthermore

2 2 2 2

< x , y > £8 normal in G and its factor group G/ <x , y > i8

tfre epimorphic image of a dihedral group of order 2m~°* .

Proof, ( i ) As noted before , Lenma k.l implies the r e s u l t i f

Let (J = < a:, y > with x = ( A , j / = a b for some integers
a, $, p, a . From working in the vector space C/*(C) i t is seen that
aa ^ gp mod p .

By Lemma U.I, a? = a^b^fa0 1 , b*]X where p|A if p > 3 and a

similar resul t holds for y? .

Suppose f i r s t tha t G i s abelian or p - 3 ; therefore

a? 5 a°PfceP , / E cfPb0? modulo $2(C) .

Eliminating ir from these congruences gives or = x "y "

and thus ^ € < aP, />* 2 (G) . Hence *(C) = < a? , b? > < < aP, />$ 2 (C)

whence < cP, lP > = < aP, / > .

Suppose next that p = 2 and U|p-1 . In th is case

G' < <a > < <a , fc > 5 *2(C) and so C/*2(C) is abelian. By the case
2 2 — 2 2 2

already dealt with above, therefore < a , b > = <x , y ) mod * (C) and so

<a2, Z>2> = <x2, i/2> .

(ii) Consider now the case in which p = 2 and U|i**i .

By symmetry one may take a, 0 to be odd, and so assume a = a = 1

by choice of generators. There are then two typical cases; first 2[3

and p arbitrary and second 2|p but 2 \ B (since 1 £ Bp mod 2 ).

https://doi.org/10.1017/S0004972700045500 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700045500


Metacyclic groups 117

In the f irs t of these two cases, 3 = 0 gives x = a , y = a b and

so G = (x.y > , the case handled before. So & ? 0 and then

From this i t follows that

Let 2 ||6 , for some positive integer v . By Proposition 2.1 i t

follows that 2||q(i?^, 2) and 2m~C+V|q(#, 2B) , with m-e+V > 3 . Thus

x t/~ = a 3 , 3 odd, showing that a € < * , j / > . Since

f o l l o w s t n a t b
2 £<x2, y2) . Hence

( a 2 ,

It remains to consider the second of these two cases. As 6 is odd,

one has that

, 2) and 2m"C|Mi?, 2(3) .

9m-c ? 2 / 2m~c 2 \
As 2 |p therefore a € < x , y > and b € <a , 1/ ^ so t h a t

/ •Jn~c ->\ O P / P " 1 " 0 o\
<ct , 2> ) £ <x *, y > < ^a , b y and therefore equality holds.

This proves most of the lemma. Finally i t is necessary to look at the

2 2
factor group G/< x , y > .

F i rs t , <x2, y2) 2 G . For [a, fc2] = a 2 so that

-1 -2 h2m~°*1 -2 / 2m~° 2 \
a i> a = a fc € \ a , b ) .

This y i e l d s [b2]9 i {a , b j f o r any ^ € <a.fc> . But <a> 2 C

and t h e r e f o r e ( a , b ) 2 G .

2 n '~ c 2 2 / 2 W " C 2 \
Also a i i i 1 , [a, b] = a modulo <a , b ) whence t h e
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factor group is the epimorphic image of a dihedral group of order at most

2 . This completes the proof of the lemma and also of the next
corollary.

COROLLARY 4.8. If G ie a metaayolio p-group then <b(G) ie an

ordinary metacyolic group.

I 2m~c 2\Consider in more detail the subgroup <a , 1 ) in a group

• / '?m~° 2 \ 9 2
<a\b; -> . I t i s usually the case that <a , b ) < *(G) = < a , b > .

Suppose f i r s t of a l l that th i s inequality holds. If G s p l i t s , or i f

a > 0 when G does not spl i t then \{a , b / = 2n+0~1 . Hence in

/ / 2 ^ c
 2 \

these cases i t follows that G / (a , b ) i s dihedral of order

2m-c+l _ F o r t h e c a s e r e m a i n i n g i n w n i c h 0=o one has G = Q(2m+1) ,

m > 3 , and {a , Irj = <b> > has order 2 .

Therefore, suppose instead that (a , b ) = $(C) . Since

/ 2"^° 2\ I 2
<a , b ) I * (G) is cyclic therefore •(£) is cyclic. Hence either

1 * b2 € < a2 > and so n = 1 , or a2 € < 2>2 > and n > 1 . The first of
these alternatives shows that G = Q(8) , whilst the second shows that
m = 2 and that the reduced relations for G are of type (Hi) in Theorem
3.1. In the latter case therefore G is not exceptional.

This argument leads to the next theorem.

THEOREM 4.9. Let G = <a.b; a, -> be some presentation of an

exceptional metaayolia 2-group <a*||2>*; a*, -> .

/ 2^"° 2\ / 2^"°* 2\G_ = < a , b ) = \a* , b* ) is independent of the choice of

preeentation <a.b > .

Furthermore G- is a charaaterietic subgroup of G which ie the

intersection of all normal subgroups of G which give dihedral factor
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groups, and G/G- is the largest dihedral faator group of G .

Either G/GD has order 2m~°*X or G = G(2m+1) and G/GD has order

2m .

Proof. By Lemma k.T, G= <x , y > which is unique. Further i t is

obviously s t i l l unique modulo N i f N 2 G and so if G/N is dihedral

t h e n N > GD .

Hence Gfl is a characteristic subgroup of G , which (.according to

the discussion preceeding this theorem) does give a dihedral group G/G
D

of the desired order via a reduced presentation of G . Note, that since

G is by hypothesis an exceptional 2-group, there is only one case in

which GD = $(C) ,' namely when G = Q(8) . In this case therefore G/Gp

is (abelian) dihedral of order It .

Finally this section is completed by a l i s t of further group

properties in relation to group parameters.

PROPOSITION 4.10. Let G = <a\b; m, n, 8, a, ±> be a reduced

presentation of a metacyclic p-group.

(i) Let G have nilpotent class v . If G = <a\b; +> then

v(m-c ) > m > ( v - l ) ( m - c ) . If G = (a\b; -) then v = m .

(ii) Let Z{G) = \cp , V } < G . If G = (a\b; +> then

u = v = c . If G = <a|fc; -> then u = m - 1 , v = max{l, c} .

2%U8 •£/ G is exceptional then either Z{G) is cyclic or else G

splits and Z{G) is of type (2*, 2] , t > 1 .

(Hi) Let G have class at least 3 . If G = <a\b; +> then

max{l,c-lK
CG{

. c> , max{l,c-lK
{G') = (a, If } . If G = (a\b;-> then C^G1) = \a,. If ) .

(iv) The exponent p of G is m a x { | a | , \b\] and so

to = max{n+s, m) .
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(v) The derived factor group is of type (pm~C, pn) if

G = <a\b; +> , or of type [2n, 2) if G = <a\b; -> .

/ D"~O\ ?
Proofs, (i) G' = <<r ) or G' = < a > r e spec t i ve ly .

(ii) a? = cP ^ r " 1 ^ a P = aP i f and only i f a 5 w when

G = < a | £ ; +> or i f and only i f a £ 1 when C = <a|i>; -> .

( V\a i v Ui v

tP = a~ Up ab~P = iP , i f and only i f both v Z. 1
v

(as G is non-abelian) and also p \lf -1 , that i s , u 2 e .
m-c

Tiitj Similar to (ii) with a replaced by a? and pm replaced

by p i f G = <a|fc; +> or with a replaced by a and 2 replaced by

2m~1 i f G = <a|2>; -> .

(iv.) This follows from the fact that by Corollary 1».8,

$(G) = <ar |Zr > i s an ordinary metacyclic group, containing <ar , i/° > for

any pair of generators.

By induction $(G) has exponent equal to max{|cr | , | i ^ |} , and so

\aP\ <max{\cP\, \lP\} . Therefore \x\ £max{|a|,

m-o n ms
(v) Modulo G' one has of B 1 , iP = cP , [a, fc] = 1 , if

G = (a\b; +> and th is factor group is therefore abelian of type

[p"~O, Pn) . It G = <a\b; - > t h e n modulo G' ,

a = Z> E l , [a, b] = 1

and so the factor group is abelian of type (2 , 2J .

This section i s concluded with the following remarks. I t is well

known that for odd primes p , metacyclic p-groups are regular. This

may be proved by application of Lemma U.I, or by the general theory of

regular p-groups ( [4 ] , Satz 10.13, p- 332). From this follows the
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odd-prime case of Proposition U.10 (iv). Regularity is not found

particularly useful in problems of the kind dealt with here.

Finally there are group-theoretic tests which verify whether a

metacyclic 2-group suspected of being exceptional is exceptional. The

simplest is the following:

op 2 2
If G = < x, y) then one considers whether < x , y > , < (xy) , y > ,
2 2

< {xy) , x > are equal. 3y Lemma k."J they are. equal i f and only i f the

group G is either an ordinary metacyclic 2-group or is isomorphic to

Q(8) . In case G is exceptional this test also determines values for the

parameter a .

5. Invariants of metacyclic p-groups

The purpose of this section is to relate the parameters of a

metacyclic group G = <a||ij m, n, s , a, ±> to isomorphism invariants such

as order, exponent and the abelian types of the derived factor and centre.

By this means one is able to choose metacyclic groups which satisfy
c

given conditions on their group structure. Various possibilities will be

obvious from the text. In particular, one fairly simple set of conditions

in Theorem 5.1+ is enough to specify metacyclic p-groups uniquely up to

isomorphism. It follows that distinct uniquely reduced presentations

determine non-isomorphic metacyclic groups, thus completing the proofs of

the main theorems.

Throughout this section, the following notation will be used, g, u,

2, K, y> a> E a r e non-negative integers such that |c | = p^ ,

| z ( G ) | = p 2 , expff = p" , expZ(G) = pK and \G' \ = pY .

It remains to define a and £ . A group element not contained in

the Frattini-subgroup of the group is said to be a non-Frattini element.

a is defined so that pa is equal to the minimum of th.e orders of the

non-Frattini elements of the group.

e is defined to equal zero if G is an ordinary metacyclic group,

and to equal m - c - 1 if G is exceptional. By use of e some

repetition of arguments in the ordinary and exceptional cases is avoided.
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The f i r s t lemma rela tes a, u and g .

LEMMA 5.1 . Let G = <a||fc; m, n, a, a, ±> be a non-cyclic metaayclic

p-group of order p& 3 exponent p , in which pa is the minimum of the

orders of the non-Frattini elements of G . n + e = a if and only if

m - 8 > n and m - a = a if m - s < n .

Further a + to = g except if G is a non-split exceptional 2-group

with m - 1 > n , in which case a + to = g + 1 .

Proof. ( i ) Let u, v be integers, a D is a non-Frattini element

of G if and only i f p divides at most one of u and v . Putting

u = u'pX , V = v'p* with p j u' , p \ v' makes i t possible to restate

th is condition as :

a D i s a non-Frattini element of G i f and only i f either
0 = j 5 i < » o r 0 = x < j / £ r t .

Let B be a non-negative integer such that [aubV)P = a^b^ = 1 ,

where q = q[B , p ) as in §1.

There are two cases; f i r s t , that |a | = p \uq , or equivalently that

|2>| = p | up ; second that G does not sp l i t and uq = kpm~B and

up = -kp modulo p for some integer k .

Case 1. pm\uq .

If 0 = y 5 x 2 m then RV is of the form +1 + hp™'0 by

Proposition 2.1. Hence |a| uq and if and only if pm\px+&+Z

(by Proposit ion 2.1) and p " + 8 | p ^ , tha t i s ,

6 > maxOn-x-e, n+s) .

By choosing x > 0 such that m-x-e S n+e one therefore a t t a ins a

minimal value of 8 , namely f$. = n + 8 .

Next consider the other inequality O = x < y S n . By Proposition

2 . 1 , py*m~°\\RV-l where j/+m-c > 2 . Hence by Proposition 2 . 1 ,
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and so pm|p6 if \a\ vq . Also p"+8
| p 6 + J /

vp

Hence B £ max{7n, n+s-y} so that if y is chosen large enough then

n+s-y £ m and plainly B2
 = m is a minimal value for B .

Case 2. uq = kp and vp = -kp mod p .

It suffices to assume that p"^/ fep S else Case 1 applies. If

y = 0 , then equating p-power divisors of k gives

mlv^s >

t he quot ients being i n t e g e r s . Hence

m - x - s - e = n S f } < / 7 ! - a : - £ = n + s .

Thus n S m-8 and a l so n S 6 < w+s so t h a t 8 ^ 0 .

By Theorem 3.2 these two fac ts imply t ha t G i s except ional and so

s = l . Therefore n = m - \ - x - Z = o - x so t h a t a t 0 and n £ c .

But Theorem 3.2 implies tha t c < n , a con t rad ic t ion . Thus in s t ead i t

must be t h a t x = 0 < y £ n . Proceeding as above gives

P V > p*/p™ = py+*/pn

whence m-8 = n - y s & < m . In p a r t i c u l a r m - s < n as i / > 0 .

Now q = fa'p , p \ h' , whence from t h e two e x p r e s s i o n s i n v o l v i n g

k , i t i s t h e ca se t h a t u'h' = -v' mod p

Converse ly q (and hence h' ) i s de te rmined by w1 and 6 . From

h' and U1 one may de te rmine u' = u by s o l v i n g t h e congruence . Hence,

p r o v i d e d B s a t i s f i e s t h e i n e q u a l i t y m - 8 = n - i / < B < m t h e r e f o r e

uq = kp and vp = -kp modulo p , with p \ uq . Thus $ attains

i t s lower bound m - s < n whence a minimal value for i t is 6 = m - s .

( i i ) Let o = min{B-} for the B. appropriate to the group

considered. By Proposition U.10, co = max{n+8, m} .

Firs t , let m - 8 > n . By Theorem 3.2 either G i s spli t or G i s

a non-split exceptional group with 8 = 1 .
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If G sp l i t s then s = 0 and a = min{3. , 3p} = ndnCn, m) ,

a) = maxim, n} and therefore a + w = m + n = g . If G i s non-split and

m-1 2 M then a = min{3,, 3p} = min{n+l, m} = n + 1 and hence

a + a) = g + 1 .

Second, l e t m - 8 < n . If G sp l i t s then a + to = g as above. If

G i s non-split then a = min{6, , 3p> &•,} = min{n+8, m-s} = m - a since

m - 8 2 n . But u = max{w+s, m} = n + e whence a + a) = g .

This completes the proof of the f i r s t lemma. The second lemma deals

with relationships between other parameters and group invariants.

LEMMA 5.2. Let G = <o||b; m, n, e, a, ±> .

(a) If G is an ordinary metaayolio group then y = ° > z = g - 2c

and < = max{m-c, n+e-c} . Also, if G has class greater than 2 , then

\CQ{G')\ =P
9-° .

(h) If G is an exceptional metacyclia group then y = m - 1 ,

z = n + 1 - c for c ± 0 and z - n for c = 0 . K = z - 1 if G is

split, or K = z if G is not split. Also, if G has class greater than

2 , that is if m > 3 , then \CQ(G' )| = 2?~
a+1 if c > 2 , whilst if

a S 3 then C-AG' ) is a maximal subgroup of G .

Proof. Suppose first that G is an ordinary metacyclic group, whence

Y = c . By Proposition U.10,

pz

since c < m - 8 and c 2 n by Theorem 3-2.

But
I CI I Tfi— 8

m-c \iV n+e-c . i / > /, > i I p
= p , Zr = p and |<a>n(Z>>| = \aT

p

s m+n-2c g-2cs m+n-2c a-
whence P - P - p

I t is clear that Z(G) has exponent p where K = max{m-c, n+8-c) ,

c
Z{G) has generators <r , If and is abelian.
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To prove that \CJG')\ = pa~a one observes thatCJ

Ce[G')/Z[G) = (a, fcP ) / ( a P , bP ) has order p° .

Next suppose that G is exceptional, whence Y = m - 1 • By

Proposition It.10, i f a t 0 then

= 2.2n+1"C/2 when s = 1

and

= 2.2W"° when 8 = 0

Thus z = n + 1 - o i f c # 0 . Similar arguments show that z = n i f

e = 0 .

Clearly K = a - l i f G is sp l i t , but i f G is not sp l i t then

Z(G) is cyclic and < = z . Finally suppose G 'has class 2 3 . By

Proposition It.10, ^J,G') = <a, fc \ . Hence if a 2 2 i t i s

easily seen that Cj,G')/Z{.G) has order 2m whence

If 0 < o < 1 then CG(G')/Z(G) = < a, i 2 > / (a2 , b 2 ^ and has

order 27""1 , whence \cJG')\ = 2 3 " 1 . There i f e S 3 , C G ( G ' ) i s a

maximal subgroup of G .

By combining the preceding two lemmas one obtains some in teres t ing

relationships between e and various group invar iants . The methods used

are purely numerical, however, and do not explain the origin of the

relat ionships .

COROLLARY 5 . 3 . Let G be as in the lemma.

(a) If G ie an ordinary metaayalia group and Z(G) is of type

[pBl, pZi) irith z = K then g = z + 2y , O> = K + Y and
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z1 - z2 = 0) - a .

(b) If G is can. exceptional metacyelic group then g + e = z + 2y

if a * 0 or g + E = z+2y + l if a = 0 . Also a + e = K + y if

o t 0 , m - 8 2 n , a + E = K + y + l if c = 0 , m - 8 > n ,

a i + e = K + y i / c # O j m - e < « a n d o o + e = K + Y + l i / c = 0 ,

m - 8 < n .

Proof of (a) . g = z + 2y from Lemma 5.2 . As u = max{n+s, m}

the re fo re Lemma 5-2 shows t h a t w = K + y • F ina l ly

Sĵ  - s2 = 2K - s = 2K + 2y - g

= 2w - g (since w = K + y)

= o)-oi by Lemma 5.1-

Proof of (b).

g + Z = n + 2 m - o - l by de f in i t ion of e

= « + 2 y - c + l s ince y = m - 1

= 3 + 2 y i f e ^ O b y Lemma 5.2

or

= s + 2 y + l i f o=0 by Lemma 5.2 .

Hext, consider t h e expression

n + 8 + E = n+8 + m - c - l .

The expression equals 3 + m + s - 2 i f e # 0 by Lemma 5 .2 , and hence

rt+s+e=K+m-l=K+y whether G s p l i t s or no t , by Lemma 5.2.

On the o ther hand i f a = 0 then

n + s + E = n + 8 + m - l = K + m = tc + y + l

by Lemma 5-2 ( t h i s i s s imi l a r t o the case for o ± 0 ).

F ina l ly n + e = a i f m - s > n by Lemma 5 . 1 , whi ls t n + 8 = u i f

m - 8 < n . Hence the s t a t e d r e s u l t s follow.

Suff ic ien t machinery has now been developed so t h a t the main isomor-

phism theorem can be proved. (A s impli f ied formulation i s given in Theorem

3.3.)

THEOREM 5.4. There exists up to isomorphism at most one metaayolia
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group G of the form <a||£>; m, n, e, ±> of given order p& , with derived

factor of given type [p , p ) and centre of given type (p , p ) ,

except if both lph, pk) = (2n, 2) and \ph<, pk') = (s""1 , 2) .

If G has derived factor of type [2n, 2) and centre of type

[2n~ , 2) there are two possibilities for G .

First, if n > 1 then G = <a\\b; m, n, 0, 0, - > or

G = <a\\b; m, n, 0, 1, - > .

These groups are distinguished by the orders of their greatest

dihedral factor groups.

Second, if n = 1 , m > 2 , then G = 0(2m+1) , S (2^ 1 ) or «(2m+1) .

These groups are distinguished by the order of their greatest dihedral

factor groups together with the minimum of the orders of their non-Frattini

eIement8.

COROLLARY 5.5. Distinct presentations in uniquely reduced form

define non-isomorphic metacyclic groups.

The corollary follows since there are at most three possible

metacyclic groups of fixed order, having given types of derived factor and

centre. However, the theorem shows also that the dist inct presentations so

obtained define non-isomorphic groups. Thus, to complete a l l the proofs of

this paper, i t remains to prove Theorem 5.U.

Proof, ( i ) Let G = G. be a given metacyclic group and le t G_ be

a metacyclic group in which

|ff1l = \G2\ , G^Gl = G2/G'2 and Z[GJ S Z{G2) .

Put G. = <a.||fc.; m., n., 8., c , +> with appropriate choice of sign,

i = 1, 2 .

I t simplifies details of the proof i f the special cases of abelian

groups and groups of order £ p are assumed to be t r i v i a l .

Now G. and G2 are either both ordinary metacyclic groups or both

exceptional. For by Proposition U.10 (v) i f G^ is exceptional then
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G2/G'2 is of type [2n, 2) . Hence by Proposition U.10 (v) i f G± i s not

exceptional then w, = 1 since m. - a, > 2 .

Thus by Proposition U.10 CiiJ , Z ^ ) = ^ ( c j , so that Z(G2) = $(G2)

as Z(G ) has index k in G2 and GJZ{G^ is not cyclic as G i s

not cyclic. This shows that G~ has class 2 and m_ = 2 . By Theorem

3.2 i t follows that either G^ = Q(8) ( t r iv ia l ) or

G2 ~ < a p " b 2 ' 2> W2' ° ' ^ " > • I n t h e l a t t e r c a s e z ( cp^ i s n o t c v o l i c by

Proposition U.10 (ii) whereas Proposition U.10 (ii) shows that Z(ff ) is

cyclic since n^ = 1 , contradicting that

( i i ) If Gr
1, <J2 are both ordinary metacyclic groups, i t i s shown

tha t , under the hypotheses of the theorem, G^ = G^ . To do th is i t i s

sufficient to show that m^ = m^ , nx = n2 ' 8 1 = S2 ' c l = C2 "

Observe that by Proposition 1+.10 (v) , G./G'. has abelian invariants

p , p and order p . Hence by hypothesis

max{m.-c , n } = max{mp-<3p, n^} = e (say) and c = Cp = Y •

One can assume that Y > 0 as Y = 0 makes G ,̂ G2 abelian. Also

by hypothesis, the exponent of the centre is the same for both Ĝ  and

Gr, , whence by Lemma 5-2, K = maxim.-o., n .+s.-c.} , £ = 1, 2 .
2 % u if % V

The f i r s t step i s to show that m^ - e^ > «., i f and only i f

pip - e2 5 «p . This i s seen as follows.

Suppose on the contrary that tn^ - e± < n^ and m - <?2 > «2 , for

example. By Theorem 3.2, 8. S c. whence mo - o > no 2 n + s o - c

and therefore < = m - e = e by use of G2 . Applying this to G

gives K = maxl^-e^^, "i+ s-i~ci} = s = n^ and so n j + 8 i " e i = " i •

Hence e, = a. and (by supposition that Y ^ 0 ) this is non-zero. Thus
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G. is non-split and so the defining relations in Theorem 3.2 imply that

e. < o. (a contradiction).

For the second step there are therefore two alternatives to consider,
namely, m. - a. 2 n. (i = 1, 2) or m. - a. < n. (i = 1, 2) .

If If X- U If If

If m. - o. 2 n. , i = I, 2 , then e = m - Y = "!_ - Y whence
If v t* J. t

m, = m_ and so n = n o . By Theorem 3.2 the condition m. - a. > n .
J~ d. J. c. x- % If

implies that each G. spl i t s and hence s. = e_ .

If m. - c . < «. , i = l , 2 , then e = n. = n. = n and
If Is 1r J. £

m. = m? = m . Again i t remains t o prove t h a t 8. = 8- . I f K = m - y

then m - Y - w + S v - Y • Hence m - n > 8 . and so e . = s_ = 0 by
u if i. d.

Theorem 3.2.

If K t m - y then m - Y < n + s 1 - Y = w + 8 p - Y and so

e l = 82 •

( i i i ) Finally suppose that G. and G? are exceptional but not of

maximal class (by Proposition 1*.1O (i) and Theorem 3.2, the (metacyclic)

2-groups of maximal class are D, S and Q ). Thus by Proposition U.10

n.in. -I
(v), G./G'. is of type 2 v , 2 with n. > 2 , whence n = n = n and

TJ1-. — /77^j = 77?

By Proposition It.10 Cii^ (since n 2 2 ) G. splits if and only if

Z[G.) splits non-trivially (that is, Z[G.) is not cyclic), whence

8 1 = 82 •

By Lemma 5.2, z = n + 1 - c. = n + 1 - c~ and so e, = c~ i f

c , , Cp ^ 0 , whence there remains to be considered the following case:

z = n + 1 - c. , c ^ 0 , in G. and a = n , <?„ = 0 in Gp . Thus

0. = 1 , Cp = 0 . From th is i t follows that G. and Gp s p l i t , as

otherwise G^ = Q[2 ) by Theorem 3-2, contrary to the supposition that
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the groups do not have maximal class.

Thus ei ther G^ = G or else G = < a ||2> ; m, n, 0, 1 , -> and

G2 = (a2\\b2; m, n, 0, 0, -> vith n > 1 .

Note t h a t i n t h i s c a s e G., ? <?2 s i n c e ( f rom Theorem k.9),

(GJD = {al ' bl) = ZCci) whereas (C2)p = (fc^) < Z (ffg) .

Putting n = 1 , th i s argument shows G1 = 5 £ G_ = 0 provided that

m > 3 . The remaining maximal class group Q is distinguished from D by

the fact that Qj. $ 1 , and i s distinguished from S by having no non-

Fra t t in i element of order 2 (by Lemma 5-l)-

The paper i s concluded with the following remarks.

I t may be noted that the proof of Theorem 5.1* involves no essential
use of Lemma 5.1 or Corollary 5-3> nor of the order of the centralizer of
G' discussed in Lemma 5.2. The facts used about the group exponent in
Proposition U.10 (iv) have been derived from Lemma h.f; by establishing
the exponent resul t directly one could also avoid the use of Lemma U.7 in
the proof of Theorem ^.k.

The hypotheses of Theorem 5-^ can be modified in various ways by the

use of Lemma 5.1 and Corollary 5.3. For example, i f the group G i s known

to have class greater than 2 , then the order of the centralizer of G'

i s often sufficient to determine a from Corollary 5-3, particularly i f

the orders of the centre and derived groups are known. Or, i f the group is

known to be an ordinary metacyclic group, by Corollary 5-3, one can

determine the abelian type of the centre from the orders of the group and

i t s derived group, together with either the group exponent or (by Lemma

5.1) the minimum of the orders of the non-Frattini elements.

I t i s of in teres t t o know how subgroups and factor groups are related

to the type of presentation that the group has. In part icular there are

c r i t e r i a (not stated here) which determine whether a group is exceptional

by whether certain subgroups or factor groups are exceptional.

In th i s connection, Lindenberg shows that the ordinary metacyclic

p-groups together with 6(8) are precisely the metacyclic p-groups whose
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subgroup l a t t i ce is modular; the remaining exceptional 2-groups have a

non-modular subgroup l a t t i ce ( [5 ] , [6], [7]) . The l a t t e r statement is a

direct consequence of Theorem k.9, since P(8) i s not modular.
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