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Presentations of metacyclic groups

Bruce W. King

Each metacyclic p-group has a natural canonical presentation
which is easily derived from the usual presentation. Parameters
in the canonical presentation measure how far the group is from
splitting, and from being either commutative or dihedral. The

structure of the groups is discussed.

1. Introduction

A metacyclic p-group is usually given by a presentation

apm =1, bpn = ak N ab = ar
n

where m, n20, 0<r, k<p", p"|k(r-1) end p"| -1 . Different
values of the parameters m, n, r, k do not necessarily correspond to non=-
isomorphic groups. In order to study metacyclic p-groups it is desirable
to restrict the possible values of the parameters so that two different
sets of parameters do correspond to non-isomorphic groups. Partial
solutions to this problem exist. For fixed m, n with »n =1 the result
is well-known, and for fixed m, n with »n = 2 there is a solution in
Burnside [3]. An arithmetic solution for arbitrary fixed m, n appears in
[1], but the main theorem is incorrect as stated, and certain points are
obscure, rendering the use of [1] difficult. Furthermore, as is shown
below the same group can occur with different values of the parameters

m, n .

The explicit solution offered here is: every non-cyclic metacyclic

p-group has a unique presentation of the form
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m-c
a*P

m-c
a P

where the second alternative occurs only for p = 2 , and the parameters
satisfy simple inequalities listed in Theorem 3.2. It is claimed that this
is a natural presentation for the following reasons. The parameter 8
measures how far the group is from splitting, for every metacyclic p-group
G has a unique minimal normal subgroup S§ in its derived group such that

G/S splits and the order of S is p8 (Theorem 4.6),

In a splitting metacyclic group the order of the cyclic normal
subgroup and of its cyclic complement are fixed (Theorem 4.4); in the

above presentation these orders eare pm, pn respectively. For the first

elternative above the parameter ¢ measures how far the group is from

being commutative, and the derived group has order pc . For the second
alternative ¢ measures how far the group is from being dihedral (see
Theorem 4.9).

Solutions related to this one have recently been obtained in [2] and
[7], the former based on cohomology methods, the latter based on an
extensive treatment of the subgroup lattice of a metacyclic group in two

preceding papers [5], [6].

In the present paper the methods are a combination of presentation-
theoretic and group-theoretic arguments. An advantage of the methods
used here is that with them it is comparatively simple to derive certain
properties of metacyclic groups. A number of properties can be read off
directly from the presentations (Proposition 4.10 and §5). These properties
are needed in the proof of Theorem 5.k which Justifies the claim that
different presentations lead to non-isomorphic groups. The method of
getting from an initial presentation to the canonical one (Theorems 3.1,
3.2) is constructive (4.2, 4.3), and makes the transformstion to canonical

form a simple matter.

The results obtained on group structure are of interest in themselves,

as only a little is yet known either about non-split metacyclie p-groups,
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or about the metacyclic 2-groups whose presentations are as in the second
alternative above. In the latter case particular groups such as the
dihedral, semi-dihedral and quaternion groups are well-known and a class of

groups in has been discussed in [§). The cyclic and asbelian structure of

split metacyclie p-groups has been dealt with in [5], [6] by Lindenberg,
but the non-split groups are mentioned only briefly in [7].

2. Notation and preliminaries

Unless otherwise stated, the groups occurring are finite p-groups. p

always denotes the prime under consideration.

Generally, notation is standard. In particular, note the following

usage;

k+1*

pkllw means pklw and p  fw .

G, YQ(G)’ ceey Yi(G)’ ... 1is the descending central series of a group
G . G, %), @2(6) = ¢(¢(G)], ... defines a descending Frattini series.

If n is a non-negative integer then G = (gn; g € G) denotes the
subgroup generated by the nth powers of elements of G .

D= D(ZQ) s, S = S(Zg) and @ = Q(2g) denote respectively the
dihedral, semi-dihedral and generalized quaternion groups of order 29 .

Next, some special notation is introduced, relating to metacyclic

groups. Let m, n, 8, r, ¢ and k be integers.

(a.b) and likewise (a|b) and (alb) , denotes a metacyclic group
which is the extension of a cyclic normal subgroup €(a) by (b}.

In particular {(a.b) refers to the presentation

m

A S A B

n
with m28 20, n>0 ,. p8|r-1 and pm -1

For (a|b) and (allb), refer to Theorems 3.1 and 3.2.

If necessary the parameters of interest are included in the notation,
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as for example, {(a.b; m, n, 8, ¢, %) .
From now on, the following simplifying assumptions are made.

(i) ¢(a.b) is not cyclic,andso m>8 =20, n >0 .

(i1) » 1is an integer, 1< r = l+pm » representing an element in the
group of units of Z(f") . This is legitimate since |a| = o
s plh,

m>e=0 if p=23,but r=x1+h"%, 2fh,m>c20

if p=2 . Further,if p=2 and m23 then ml1 >ec¢ 20 .

and by (i), p|r - 1. Hence zr'=1+hpm-c

These formulee for »r correspond to the fact that the group of units

of Z(p™ has generator 1 + except if =2 and m= 3 , when it has
4 p

generators 1 + 22 s, =1+ 22 . For fixed ¢ , as h varies »r
represents all the elements of order pc . Hence ec=n.
xu-l
q(x, u) denotes the (integer) quotient = if x, u are integers,

“uz20 and x#1. If x=1 put q(1l, u)=u.

n
R is the least positive integer such that R = g 1 mod pm . Thus

b lab = o' and babl = o . Note that the same parameter ¢ is
associated with R as with r .

To complete the preliminaries it remains to observe two important but

elementary facts in connection with the arithmetic of the parameters.

The first of these facts is the nature of the p-power divisors of the
integers ¢q = g(%r, u) . For example q(r, u) arises naturally in teaking

powers of products.

Thus
alpar™) 272 ... ‘{bpk'lab' (Pk‘l)]bpk
= al+R+... bpk k .

PROPOSITION 2.1. Let k be an integer, k= 0 .

k
(@b = ab.ab.

8

= 4 (R,pk)bp
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(@ (011, [5)). pMlu implies that pNlq(r, u) ecept if p = 2
and U4|rt1 .
Klu, x#0, implies that 281
birel .

llglr, ) if p=2 and

k+m—c|

Under either condition above, p Ir¥-1 .

(b) zkllu implies that 2kllq(-r, u) if p=2 and 4|r+1 .

The proofs amount to expanding (tl+hpm—c)u -1 (or in (b),

(_l+h2m-c) u

p from numerator and denominator of ¢q = q(#r, u) .

+1 if 2 ) u ) in powers of p and then cancelling powers of

The second fact is that the generators a, b in (a.b) may be chosen
so as to make h = 1 in the formulae for » . The point to note is that

n m-g
this can be done without disturbing the form of the relation bp = ap

It is necessary first to prove the following lemma.

LEMMA 2.2. Let r be defined ag above and let wu, t be positive
integers with t<m and p | u .

The map ur> qlr, u) determinee a bijection of the group of unite of
Z(pt] except if p =2 and L|r+l .

The map uvr> q{-r, u) determines a bijection of the growp of units
of 1(p%) if p=2 and L|r .

Proof. The method of proof used for p =2 3 or for p =2 and 1&|11-1
also works for p = 2 and hlr*-l after + signs are replaced by -
signs as appropriate.

Let U be the group of units of Z(pt) . By Proposition 2.1, if
p I u then p I q(r, u) so that it cen be assumed that q € U . Suppose

that 0 < uy = u, < pt for two values Uy Uy of u . Now

qfr, u2] - q(r, ul) ={1+...+ ruz-l) -a+...+ rul-l)

= rq(r, u2-u1) .
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Hence if q(r, u,) = q(r, u;) md p® then pt|q(r, u2-ul) .

By Proposition 2.1 again it follows that pt|u2-u1 and so U = u2 .
Thus u+*q 1is injective, whence it is bijective as U is finite.
Thus the proof is complete. It may be remarked that u+> q 1is even

an automorphism of U if ¢ <mec¢ . This is so since

q(rs ujuy) = Q(P'“, uzlq(r, u)

1 [«]

with q(ru R u2] z q(r, u2) mod p"
Now the second fact can be proven.

PROPOSITION 2.3. Let G =({a.b) be a non-cyclic metacyclic p-growp
with parameters m, n, 8, ¢, r .

G also has a presentation (a*.b*) with parameters
m, n, 8, ¢, r* = £l +p.m°c such that (a*)=(a) and (b*) =(b) .
Proof. Let »r be as described in assumption (ii) above, that is

r=211 +hp C . Teke new generators a* = a% , b*=b* with plu.

Hence

* ] U
a*b & = (a*)ﬂ(a*)r F1

m-c
+
= (a*) L (g#)THP
where gq = q(*r, u) .
By Lemma 2.2 it follows that u can be chosen to make

=
4 +
gh =1 mod p© . Hence a*b = (a*)*1*P and r* may be defined to

equal *1 + pm—c . Note that the choice of sign in r* when p =2 is

the same as the choice of sign in r .

REMARK. From this proof it is clear that every group (a.b) has a
presentation involving only the parameters m, n, 8, ¢ and a sign, % .

(a.b) may now be taken to refer to this presentation, whenever necessary.
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3. Statement of theorems
The first main theorem provides an explicit solution to the problem of
isomorphism of extensions of a cyclic normal subgrowp C{p") by c(p") .

Each such extension is either cyclic or isomorphic to a metacyclic
group (a|b; m, n, 8, ¢, *) whose presentation (alb) is said to be in

reduced form.

THEOREM 3.1. (a) Every growp G =<{a.b; m, n, 8, ¢, t) has exactly
one reduced presentation (a*Ib*; m, n, 8%, ¢*, t) up to isomorphism.
Reduced presentations with different parameters s, ¢ represent non-
isomorphic groups, for fized m, n .

(b) A presentation is reduced if and only if its parameters satisfy
one of six sets of conditions below, where r = +1 + pm-c .

For p23,orfor p=2, bW|rl and e<ml if m=22:

(i) 0 =8 =<c¢ < min{n+l, m} ;
(#2) max{1l, m-n+1} = 8 < min{e, m-c+1} ;

(i71) max{e, mn+l} <8 <me <m.

For p=2, L|lr¥l and e <m1:

(i) 0

8 < ¢ < min{n+l, m-1} ;

(i) 1 =8, max{l, mn+tl} <= ¢ < min{n, m-1} , or 1=8, c=0,

1 =n<m, (generalized quaternion);

..\
o
o
o
~
[
[}

8, ¢=0, 2=m=n.

In the lists above, the type (Z) groups have 8 = 0 so split as
given. Groups of types (ii1) and (ZiZ) have been separately classified, as
the type (iii) groups can also be represented as split extensions
Ca*|b*; m*, n*) with m* #m , n* # n whereas type (ii) groups are never
split extensions (Theorem 3.2). If groups of type (iii) are dropped from
the list then the groups remaining have presentations (allb) said to be in
uniquely reduced form. Every metacyclic p-group has a presentation

(allb) as the next theorem, Theorem 3.2, shows.

Thus Theorem 3.2 provides a solution to the problem of associating a

unique presentation with each metacyclic p-group. There are four basic
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types of uniquely reduced presentations.

First, a metacyclic group either splits or never splits.
Correspondingly, its uniquely reduced presentation has either 8 =0
(splitting) or 8 > 0 (non-split).

Secondly, either p 2 3 or p =2 and then two kinds of group arise.
One kind has p =2 , hlr—l and consists of what may be called ordinary
metacyclic groups, along with their analogues, the metacyclic p-groups
with p 2 3 . The other kind of metacyclic 2-group has U4|r+l and is
called exceptional.

Notice that a presentation of the form {(a.b; +) always defines an.
ordinary metacyclic group, but that it msy be necessary to uniquely reduce
a presentation (a.b; -) to determine whether the group so defined is

exceptional.

It is shown in Theorem L.9 that ordinary and exceptional metacyclic
2-groups may be distinguished by certain group-theoretic properties.

THEOREM 3.2. Every metacyclic p-group has up to isomorphiem exactly
one uniquely reduced presentation (allb; m, n, 8, e, £}, for some set of
parameters m, n, 8, ¢, * . A presentation is uniquely reduced if and only

if the parameters satisfy the following conditions, where r = 1 + p”"'c .

Ordinary metacyclic groups. p 23 or p=2, bLlrml and ¢ <m1
if m=z2.

(i) Split: 0 =g =¢<min{ntl, m};
(i1) Non-split: max{l, mn+l} <8 < min{e, metl} .
Exceptional metacyclic groups. p =2, bU|rl and e <m1l .
(i) Split: 0 =8 < ¢ < min{n+l, m-1} ;

(iZ) Non-split: 1 =8 , max{l, mn+l} = ¢ < min{n, m-1} or
l1=8, e=0, 1l=n<m (generalized
quaternion).

The proof of Theorems 3.1, 3.2 are by manipulation of the basic

presentation in Theorem 2.3. In order to establish tha.t the groups listed

in the theorems are not isomorphic, one relates the parameters to group

invariants under isomorphism. The theorem which achieves this is Theorem
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5.4, which is stated here in a simplified formulation.

THEOREM 3.3. If there exists a metacyclic p-group G of order pY,

’ '
with derived factor of type [ph, pk) and centre of type (ph , pk ),
then either

(Z) G is wnique (up to igomorphiem) in having this derived factor
and centre, or

(ii) G/G' 1is of type (2", 2) and 2(G) is of type (2%71, 2) .

If n>1 then G ={a|b; m,n, 0,0, -} or
GElalb; myn, 0,1, ->. If n=1 then G=D, 5 or Q.

4. Group properties of metacyclic p-groups

The section begins with the computational aspects of the proofs of the
first two of the main theorems.

In this section some routine calculations in metacyclic p-groups are
carried out. These results will be used to find the centre, Frattini
subgroup and derived factor of a metacyclic group. An important by-product
is a group-theoretic method for distinguishing the exceptional metacyclic
groups from others.

Recall the definition of the quotients q(r, u) and the facts
concerning divisibility (Proposition 2.1).

LEMMA 4.1. If G =(a.b) is a non-abelian metacyclic p-group, then
for integers o, B, A\, k with k=21,

K k . k k-1
@®P)P = a® B [P, LA
Also plx if and only if p =3 .
Proof. It may be assumed that a =B =1 as (aa, bB) is also

metacyclic. Let q = q(R, pk] + Thus
k
k k k Kk k

@F = P = PP 1P

k
But from the binomial expansion of (1+(R—1)]p one has
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k
q - pk = (pz](R—l) + ... and so (R-l)pqu-pk if p=23, but only

(B-1)2KY|q-2% ir p=2.

- R-
as [a, b l] = a1 and [a, b] = ™1 and both generate the cyclic
group G' , the result follows.

From the lemma it is seen that if (a.b) is a metacyclic p-group
then G' <{(dP) , whence 9(¢) =®F =(dF.bP) . The formula

(@) = (az.b2) is particularly useful in dealing with 2-groups, as is

shown in Lemms 4.7.

Lemma 4.1 and Proposition 2.1 are now to be used to show that
presentations of metacyclic p-groups may be reduced to the forms in
Theorems 3.1, 3.2. The proof of these theorems is completed by using
Theorem 3.3, which shows that the uniquely reduced presentations listed in
Theorem 3.2 define non-isomorphic groups. Due to the method for obtaining
Theorem 3.2 from Theorem 3.1 the reduced presentations listed in Theorem

3.1 also define non-isomorphic groups.

4.2 Proof of Theorem 3.1. From the discussion in &1 concerning the-
parameters ¢ and 2 , it follows that 0 < ¢ < min{m, n+l} and even
e<ml if p=2 and bW|rl .

From the basic defining relations for {(a.b) as in Proposition 2.3

it is seen that pslr—l and so 0 =8 =mc except if p =2 and L|r+1

when 0 <8 =<1 since 2|r-1 .

However, for some values of 8, ¢ it is possible to obtain a
splitting presentation by replacing b by & new generator b* , as is now
shown.

m-1-8

For if 0 <8 <mn , and b|r-1 when p =2, put b* =ba? .
Therefore by Lemma L.1,

n-1
7 n _msg m-n-8 Ap
b =P gP [a-p R b]
n _Ap2m—c-s-1
(wvith p|\ if end only if p >3 ). Thus b¥ =g . If
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g*=c+8-m+1 then 8* =<1 if p = 3 and certainly s8* < g when

p =2 since ¢ =m2.

n
If p23 then p|A and so b*p=l.pr=2 and s* < s
then, by repeating the process, eventually 8* = 0 is obtained. Then

G ={a.b*; my n, 0, ¢, +) and this is a splitting extension.

On the other hand, if p =2 and h|p+1 , suppose that ¢ = n when

n 7

2" 2 p% 4 witn q = qlr, 2") . Hence

g§=1. Put b*=Dpbag , and so b#*
by Proposition 2.1,

n
b"2 =b" a = b" a =1.

Then G = (a.b*; m, n, 0, n, -) and this is a splitting extension.

Second, it is shown thaet if m2 3, n22, g8=1, ¢ =0 vhen

p =2 and hir-'—l then one can choose a new generator a* and parameter

2n-l
e*=1. For, put a*=ab , m=2 , so that
n m=-2
a"r2 = a2b2 = a2 [l+2 ) Hence
m=-2, .2m-4 m-1
o2 = g2 2T (a*)22
since m 2 3 . Thus
m-1
- -2+
[a*, b] = la, b] = a2 = (a*)"2*2
and
2n 2m—l 2__2m-1 2"7_2 2m—l
b =a = ((a*) ] = (a*) .

Thus G = {a*, by my, n, 1,1, =) .
Finally, it is easily verified that with the restrictions on

parameters derived asbove, the groups can be listed as in Theorem 3.1.

4.3 Proof of Theorem 3.2. It suffices to assume that G has a
reduced presentation {(alb; m, n, 8, ¢, £} of type (iii) in Theorem 3.1.
It is shown that such a group also has a splitting reduced presentation of

the form (bla"; n+s, m-g, 0, c*, +).
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First let G =<{a|b; +) end put a* = PF @l so that
G={(a*, b) . Now
m-g-1
m-g no_m-er 4 n+g-m Ap
a?® =P qP [a s m]
M-8 ntm-c-1
by Lemma L4.1. Hence (by Proposition 2.1), a*® =q® where
n+g-m m-g
Tpn+m—c—l = —[IP —1]Xpm-8—l . Thus a* =1 since

n+m-c¢c-1>m-1 as G is of type (i¢iZ) in Theorem 3.}.

8—-C 8-¢

m—sp np
Also & =(ap ] =lbp] €(b) and thus G' <(b) ,

(p)=¢G.

4
But |b| = pn ® ana |a*| Spm-s whence G is actually a split

extension of (b ) by (a*) and |a*| = P e

Second, let G = (alb; -) again_of type (i) in Theorem 3.1.

Rewrite the defining relations so that

n+l ” n
G=<b,a;b2 =l,a2=b2,[b,a]=b2>.
_2n+l

Next put a* = ab , and thence G = (bla*; n+l, 1, 0, n, +).
Thus, the result required is proven.

Observe that a splitting presentation (a.b) for a metacyclic
p-group is not further reduced by the operations in Theorems 3.1, 3.2. That
is to say, for a splitting presentation, {(a.b)=({allb). This observation

shows that Theorem 3.2 implies the following theorem.

THEOREM 4.4. In a splitting metacyclic p-group the order of a
eyelic normal subgroup and of its cyclic complement is fized.

The derivation of Theorem 4.4 given here relies on the isomorphism
aspect of Theorem 3.2, but the result can also be proved directly. It is

not used in the sequel imr any case.

LEMMA 4.5. Let (a|b) be a uniquely reduced presentation of a
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metacyclic p-group G , and let N be a normal subgroup of G properly
contained in the cyclic normal subgrowp (a) .

The factor group G/N has a uniquely reduced presentation (aN|bN) .

Proof. Clearly it is sufficient to consider the case in which

m-1
[N| =p, #49G, N<(a). Hence 1v=<aP . It

G ={alb; m, n, 8, ¢, ) and 0 <8 =<1 then G/N splits, whence
(al||bN} is in uniquely reduced form. Thus the only case remaining to be
proved is that of the ordinary non-split groups <{allb; +) in which if

p 23 then max{l, mn+l} =8 < ¢ < min{me+tl, m} , 822 .
But G/N = {(aVN.DN; m-1, n, 8-1, c-1, +) and so
max{1, mn} < -1 < ¢-1 < min{m-s, m1} .

Hence G/N = (al|b¥} as required. (The case for p = 2 is identical

except for the last term in the inequalities.)

Now thet Lemma 4.5 is proved, it is possible to establish the nature
of the parameter @& in a uniquely reduced presentation. The magnitude of
8 measures how far (G is from splitting. By Theorem 3.2 this result does

not necessarily hold for presentations that merely are reduced.

THEOREM 4.6. Let G be a metacyeclic p-grow and S be its unique
minimal normal subgroup contained in the derived subgrowp, such that G/S
splits.

If G=A{alb; my n, 8, ¢, £t} then S has order ps .

Proof. S exists since G/G' splits. The result is obviously true
if G has small order; so for induction it can be supposed true in G/N
where N <S5 and |N| =p .

By Lemms 4.5, G/N = {aN||b¥; m-1, 8-1, ¢, t)} for some parameter ¢ ,
where by induction IS/IVI = ps_l . Hence |S| = pe as required.

It will be seen that the parameter ¢ 1is not quite as simply related
to the presentation as 8 1is. The following lerma is fundamental in the
study of this question.

LEMMA 4.7. Let G =(a.b) be a metacyclic p-group, and let =z, y
be generators of G .
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(@) 0(G) = & =L, yP), except in case (b) below.

(b} If G has reduced relations (alb; -) and (x):(abe),

(y) = (dPb) with B, p 1integers such that B is even or zero
m-c
and p 1is odd then (z:2, y2 ) = <a2 R b2) . Furthermore

(a:a, yz) i normal in G and its factor group G/ ('ca, y2) i8
the epimorphic image of a dihedral group of order et
Proof. (i) As noted before, Lerma 4.1 implies the result if

(x)y=(a), (y)=(b).

Let G=(z, y) with =z = ao'bs s Y= aP°  for some integers
a, 8, p, 0 . From working in the vector space G/®(G) it is seen that
o0 § Bp mod p .

By Lemma k4.1, & = aapbﬁp[aa’ be]A vhere p|A if p=3 anda
similar result holds for yp .

Suppose first that G is abelian or p =2 3 ; therefore
& = adpbﬁp > yp = PP modulo QE(G’) .

Eliminating bp from these congruences gives ap(Bp-OU) = x-prBp

and thus @ € (P, F10%(6) . Hence &(G) =(dP, PP) =P, £10°(G)

whence (ap,bp)=(:cp,yp).

Suppose next that p = 2 and b|r1 . In this case

c' 5(ah> s(ah, bh

) = ¢2(G) and so G/¢2(G) is abelian. By the case
2 2, = 2 2 2
already dealt with sbove, therefore {a“, b)) =(x", y°) mod ¢°(G¢) and so
(d?, b°) = (22, %) .
(i1) Consider now the case in which p = 2 and U|r+1 .

By symmetry one may take o, 0 to be odd, and so assume Q=0 =1
by choice of generators. There are then two typical cases; first 2]8
and p arbitrary and second 2|p but 2 [ B (since 1 § Bp mod 2 ).
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In the first of these two cases, B =0 gives x=a, Yy = @b and
so G ={x.y), the case handled before. So B # 0 and then

2. al.2) 8 J2B = PA(R2B)28

and

From this it follows that

2,28 . A .2)-0q(R,28)

v
Let 2 |[8 , for some positive integer Vv . Ry Proposition 2.1 it

m-c+y

follows that 2||q(RB, 2) anda 2 lq(R, 2B) , with m-c+v =2 3 . Thus

x?y—EB = a% » J4 odd, showing that a® € (.‘L'z, y2) . Since

2 = PUB2N2 54 po1v0uws that b2 € (22, y2) . Hence
(a?, b2 = (a2, y?r .
It remains to consider the second of these two cases. As B is odd,

one has that

2m'c||q(ﬂ’6, 2) ‘and 2" Cllq(R, 28) .

m-c m-c
As 2|p therefore a® € (:ce, y2) and b° ¢ <a2 . y2> so that

m-c ¢
<a2 , b2> = (:ce, y2) = <a2 , b2> and therefore equality holds.

This proves most of the lemma. Finally it is necessary to look at the
2 2
factor group G/(z", y ).

. m-c+l
First, (22, y) 26 . For [a, b°] = so that

m-c+l m-c
a2 = a’12 b2 ¢ <a2 , b2> .

2 e 2
This yields (b )g€<a ,b> for any g € {a.b). But (a)=2¢

e 2
and therefore <a s b >S G .

2

_ e,
Also d =p“=z1, [a, b] = a © modulo <a , b ) vwhence the
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factor group is the epimorphic image of a dihedral group of order at most

2”'-6.+l . This completes the proof of the lemma and also of the next
corollary.

COROLLARY 4.8. If G tieg a metacyclic p-group then &(G) is an
ordinary metacyeclic growp.

e 2
Consider in more detail the subgroup <a s b > in a group

2

e 2 2
(alb; ~). It is usually the case that <a , b ><¢(G) ={(a~, b7 .

Suppose first of all that this inequality holds. If G splits, or if

-c
<a2m , b2>| = 2n+c—l . Hence in

e >0 vwhen G does not split then

m-c
these cases it follows that G/(a2 R b2> is dihedral of order

-+
2m-c 1 . For the case remaining in which ¢ =0 one has G = Q(2M+1) s

m-c
m= 3, and <a2 s b2> = (b%) has order 2 .

e 2
Therefore, suppose instead that <a s b >= ®(G) . Since

o™e 2 2
<a , b >/d> (G) 1is cyclic therefore ®(G) is cyclic. Hence either

1¢b2€(a2) and so n =1, or a2€(b2) and n >1 . The first of
these alternatives shows that G = Q(8) , whilst the second shows that
m = 2 and that the reduced relations for G are of type (771) in Theorem

3.1. In the latter case therefore G is not exceptional.
This argument leads to the next theorem.

THEOREM 4.9. Let G =(a.b; ¢, -) be some presentation of an

exceptional metacyclic 2-growp ({a*|lb*; o*, -) .

- _c#
GD = <a2m . b2> = <a*2m s b*2> i8 independent of the choice of
presentation (a.b).

Furthermore G, is a characteristic subgrowp of G which is the

D
intersection of all normal subgroups of G which give dihedral factor
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groups, and G/GD 18 the largest dihedral factor group of G .

1 m+l)

Either G/G, has order 2" % or G = Q(2 and G/G, has order

Proof. By Lemms 4.7, Gy = (xe, y2)
obviously still unique modulo N if N 2 (G and so if G/N is dihedral

then N = GD .

which is unique. Further it is

Hence GD is a characteristic subgroup of G , which {according to
the discussion preceeding this theorem) does give a dihedral group G/GD

of the desired order via a reduced presentation of G . Note, that since
G 1is by hypothesis an exceptional 2-group, there is only one case in

which G = ®(G) , nemely when G = @(8) . 1In this case therefore G/GD
is (abelian) dihedral of order L .

Finally this section is completed by a list of further group

properties in relation to group parameters.

PROPOSITION 4.10. Let G ={alb; m, n, 8, e, *) be a reduced
presentation of a metacyclic p-group.

(i) Let G have nilpotent class v . If G =(alb; +) then
vime) zm > (v-1)(m-e) . If G={(alb; -) then v =m.

u u
(i1) Let Z(G) = <ap , B > <G. If G={(alb; +) then
u=v=c. If G=(alb; -) then u=m-1, v=max{l, e}.
Thus if G 1ie exceptional then either Z(G) 1is cyelic or else G

splits and 2(G) is of type [Zt, 2), t=z1.

(iii1) Let G have class at least 3 . If G ={alb; +) then

I

Cpl6') = <a, bpc> . If G=(al|b; -) then C(G') <a,_ max{l,c:1}> .

(iv) The e:cponent.pw of 6 is max{|a|, |b|} and eo

w = max{n+s, m} .
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(v) The derived factor grow is of type (" <, p") if

G ={alb; +), or of type (2", 2) if G =(alb; -).
m-c o
Proofs. (i) G' = <ap > or G' ={(a°) respectively.
b U(pe1) pH u
(ii) (ap} =& @ =d if end only if ¢ < u when
G =(alb; +) or if and only if ¢ <1 when G ={(alb; -) .

ma 1(.p¥ . —p? v
Similarly (bp] =a [bpabp]=bp , if and only if both » =1
m P
(ss G 1is non-sgbelian) and also p |Rp -1 , that is, v 2>e¢e .

m-a
(i72) Similar to (7Z) with a replaced by & and pm replaced

by p® if G =(a|b; +) or with a replaced by @ ana 2" replaced by
™1 ir G =(alp; =) .

(Zv) This follows from the fact that by Corollary 4.8,
®(G) = (aplbp) is an ordinary metacyclic group, containing (.'Lp, yp) for
any pair of generators.

By induction ¢(G) has exponent equal to ma.x{lapl, Ibpl} , and so
l:cpl Emax{[a‘p[, |bp|} . Therefore |z| = max{|a|, |BI} .

= n m-g
(v) Modulo G' onehas & =1, Y =d , [a,b]l =1, if

G = (a[b; +) and this factor group is therefore sbelian of type
(Pm-c, p?) . If G =(a|b; -) then modulo ¢ ,

n
a25b2

1, [a,P]l =1

and so the factor group is abelien of type (2n, 2]

This section is concluded with the following remarks. It is well
known that for odd primes p , metacyclic p-groups are regular. This
msy be proved by application of Lemma k.1, or by the general theory of
regular p-groups ([4], Satz 10.13, p. 332). From this follows the
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odd-prime case of Proposition 4.10 (iv). Regularity is not found
particularly useful in problems of the kind dealt with here.

Finally there are group-theoretic tests which verify whether a
metacyclic 2-group suspected of being exceptional is exceptional. The

simplest is the following:

If G ={x, y) then one considers whether (x2, y2) , ((xy)e, y2) .

((xy)z, x2) are equal. By Lemma 4.7 they are equal if and only if the
group G 1is either an ordinary metacyclic 2-group or is isomorphic to
Q(8) . In case G 1is exceptional this test also determines values for the

parameter ¢ .

5. Invariants of metacyclic p-groups

The purpose of this section is to relate the parameters of a
metacyelic group G =({allb; m, n, 8, ¢, £} to isomorphism invariants such

as order, exponent and the abelian types of the derived factor and centre.

By this means one is able to choose metacyclic groups which satisfy
given conditions on their group structure. Various possibili%ies will be
obvious from the text. 1In particular, one fairly simple set of conditions
in Theorem 5.4 is enough to specify metacyclic p-groups uniquely up to
isomorphism. It follows that distinct uniquely reduced presentations
determine non-isomorphic metacyclic groups, thus completing the proofs of

the main theorems.

Throughout this section, the following notation will be used. g, W,
z, K, Y, &, £ are non-negative integers such that |G| = pg .
lz(6)| = p% ., expG = pw , expZ(G) = pK and |G'| = pY .

It remains to define @ and € . A group element not contained in

the Frattini-subgroup of the group is said to be a non-Frattini element.

a is defined so that pa is equal to the minimum df the orders of the

non-Frattini elements of the group.

€ is defined to equal zero if G 1is an ordinary metacyclic group,
and to equal m = ¢ - 1 if G 1is exceptional. By use of € some

repetition of arguments in the ordinary and exceptional cases is avoided.
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The first lemma relates o, w and g .
LEMMA 5.1. Let G =(d|lb;m, n, 8, ¢, +) be a non-cyelic metacyclic

p-group of order 9 , exponent p‘u s in which pol i8 the minimum of the
orders of the non-Frattini elemente of G . n+ 8 =a if and only if

m-gz=n ad m-8=0a if m-8 <n.

Further o + w =g except if G i8 a non-split exceptional 2-group
with m-12n, in which case a + w=g + 1 .

Proof. (i) Let u, v be integers. a*p’ is a non-Frattini element
of G if and only if p divides at most one of u and v . Putting
u=up®, v=v'pY with plu' , p | v' makes it possible to restate

this condition as:

a*p’ 1is & non-Frattini element of G if and only if either

O=y=x=m or 0=x<y=n.

Let B be a non-negative integer such that (aubv)p = P =1,
)

where gq = q(Rv, p as in §1.

There are two cases; first, that |a| = pm|uq , or equivalently that
+ -
ip] = p” 3|va ; second that G does not split and ug = kp" ° and

= -kp"' modulo pm for some integer k .

3

Case 1. plug .

m-c

If 0=y =x=<m then R’ is of the form 1 + hp by

Proposition 2.1. Hence |a|lug and |bl'va if and only if pmlpx+f3+€

+ .
i 3IpB , that is,

(by Proposition 2.1) and p
B = max{m-az-¢, n+s} .
By choosing £ 2 0 such that m-ax-€ = n+s one therefore attains a
minimal value of B , namely Bl =n+3.
Next consider the other inequality O = x <y =n . By Proposition

2.1, pyﬂhclle-l where y+m-c 22 . Hence by Proposition 2.1,
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n+s |pB+y

pBHuq(Rv, pB] and so pmlpB it |a||ug . Also p as |b] vp8 .

Hence B = max{m, n+s-y} so that if ¥ 1is chosen large enough then
n+s~y < m and plainly 82 =m 1is a minimal value for B .

Case 2. uq = kp"hs and vp8 = -kpn mod pm .

It suffices to assume that pm\f kpm_'S else Case 1 applies. If

y = 0 , then equating p-power divisors of k gives

m-8

x+B+s/p

m, m-s B, n

p/p " >p =p/p

the quotients being integers. Hence
m-x-8-eg=n<B<m-x-€=n+3s8.

Thus n <ms and elso n s B <n+ts so that & # 0 .

By Theorem 3.2 these two facts imply that &G is exceptional and so
s§=1. Therefore n=m-1-x~-€=c¢c=-x sothat ¢ #0 and n =c .
But Theorem 3.2 implies that ¢ < »n , a contradiction. Thus instead it

must be that £ =0 < y =n . Proceeding as asbove gives

pm/ppks S pB/pn»s - y+6/pn

wvhemce m-8=n-y =B <m. In particllar m- § <n as y >0 .
Now g = h'pB s P X h' , whence from the two expressions involving
m+
k , it is the case that u'h’' = -v' mod PP .
Conversely ¢q (and hence h' ) is determined by v' and B . From
h' and v' one may determine u' = u by solving the congruence. Hence,

provided B satisfies the inequality m- 8 =n - y =<8 < m therefore

uqg = kp" ° and va Z -kp” modulo p" , with p" | ug . Thus B attains

its lower bound m - 8 < n whence a minimal value for it is 83 =m- 8.

(ii) Let a = min{Bi} for the Bi appropriate to the group
considered. By Proposition 4.10, w = max{n+s, m} .

First, let m~- 8 2 n . By Theorem 3.2 either G 1is split or G is

a8 non-split exceptional group with g =1 .
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If G splits then 8 =0 and o = min{Bl, 32} = min{n, m} ,

w = max{m, n} and therefore a+w=m+n=g . If G is non-split and

m-1 2 n then a = min{B,, 82} = min{n+l, m} = n + 1 and hence
a+tw=g+1.

Second, let m~ g <n . If G splits then o + w =g as above. If

G is non-split then o = min{Bl, By 83} = min{n+s, ma} = m - 8 since
m-8 <n. But w=max{nts, m} =n + & whence a+w=g.

This completes the proof of the first lemma. The second lemma deals
with relationships between other parameters and group invariants.

LEMMA 5.2. Let G =({alb; m, n, 8, ¢, =} .

(a) If G 18 an ordinary metacyeclic group them Y =c¢, 2z =g - 2¢
and «k = max{m-c, n+g-c} . Also, if G has class greater than 2 , then
legten)] = p77% .

(b) If G 1is an exceptional metacyelic group them Y =m- 1,

z=n+l-c for ¢e#0 and z2=n for ¢=0. Kk=2z-1 i1f G is

gplit, or k =2z <if G 1is not split. Also, if G has class greater than

2, that <5 if mz 3, then |Cl6")] = if ez, whitst if

e < 3 then CG(G') 18 a maximal subgrouwp of G .
Proof. Suppose first that G 1is an ordinary metacyclic group, whence
Y = e . By Proposition 4.10,

c

p® = l(apc, bpc> = bpcl/l(a)n(b)|

since e<m-8 and ¢ =n by Theorem 3.2.

m-g
=p™%° ana [(@n®)]| = |ap

n
i)

(+] . [+]
But Iap =p"°, |bp

whence pz - pm+n—2c - pg-2c .

K
It is clear that 2Z(G) has exponent p where K = max{m-e, n+ts-c} ,

e e
since Z(G) has generators & , b’ and is abelian.
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To prove that ]CG(G')| = p9"° one observes that

CG(G')/Z(G) = <a, bpc>//<apc, bpc> has order pc .

Next suppose that G 1is exceptional, whence Yy =m -1 . By
Proposition 4.10, if e # 0 then

m-1 c 1 c -1 (<]
o7 = <a2 ’b2> =|a2”"Hb2 /(azb >n<b2>
= 2.2n+1-c/2 when g =1
and
= 2.2"¢ when g =0 .

Thus z2=n+1-¢ if ¢ #0 . Similar arguments show that 2z =n if

Clearly K =2z -1 if ( is split, but if G 1is not split then
z(G) 1is cyclic and x = z . Finally suppose G ‘has class = 3 . By

ma.x{l,o—l}>

Proposition 4.10, CG(G') = <a, b2

Hence if e 2 2 it is
easily seen that CG(G')/Z(G) has order 2" whence

+1- -
|CG(G')| = 2n 1-ctm - 29 ctl .

2 ™ 5
If 0<e =1 then CG(G')/Z(G) =(a, b )/(a , b > and has

order 2™ » whence |CG(G')| =291 | There if ¢ =3, CG(G') is a
maximal subgroup of G .

By combining the preceding two lemmas one cbtains some interesting
relationships between € and various group invariants. The methods used
are purely numerical, however, and do not explain the origin of the

relationships.
COROLLARY 5.3. Let G be as in the lemma.
(a) If G is an ordinary metacyclic group and Z(G) <8 of type

(%', p*?) with z) =K then g=3+2Y, w=K+Y and
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B, = 22,=W-~-0a,

1 2

(b) If G <& an exceptional metacyclic group then g + € = z + 2y
if e#0 or g+e=2+2y+1 if e=0. Also a+e=x+Yy 1if

c#0, m-82n, a+te=K+Yy+1 if e=0, m-g=2n,

w+e=xk+yY if ¢e#0, m-8<n and wre=x+Yy+1 if e=0,
m-8<n.

Proof of (a). g = 3 + 2Y from Lemma 5.2. As w = max{n+s, m}

therefore Lemma 5.2 shows that w = K + Yy . Finally

zl-22=2|<-z=20<+2y—g

2w-g (since w=kK +7Y)

w=-0 by Lemma 5.1.

Proof of (b).

gteE=n+2m-c~1 by definition of ¢
=n+2y-c+ 1 since y=m-1
=2z + 2y if ¢ #0 by Lemma 5.2
or
=2 +2y +1 if e¢=0 by Lemma 5.2.

Next, consider the expression
n+sgst+e=n+sg+m=-c-1.

The expression equals =z + m+ 8 -2 if ¢ # 0 by Lemma 5.2, and hence

n+s8+e=K+m-1=kK+7Y whether (G splits or not, by Lemma 5.2.
On the other hand if ¢ = 0 then
n+s+eE=n+g+m-1=K+m=K+y+1
by Lemma 5.2 (this is similar to the case for ¢ # 0 ).

Finally n +e8 =0da if m-8 2 n by Lemma 5.1, whilst n + 8§ = w if

m -8 <n . Hence the stated results follow.

Sufficient machinery has now been developed so that the main isomor-

phism theorem can be proved. (A simplified formulation is given in Theorem
3.3.)

THEOREM 5.4. There exists up to isomorphism at most one metacyclic
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growp G of the form (alb; m, n, s, +) of given order p9 , with derived
' ]
factor of given type (ph’ pk) and centre of given type (ph , Pk ]
' Ne
except if both (ph, pk) = (2", 2) and [ph , pk ) = (2n-1’ 2)

>

If G has derived factor of type (27, 2} and centre of type
("1, 2) there are two possibilities for G .

First, if n >1 then G = (allb; m, n, 0, 0, =) or
G ={q|lb; myn, 0, 1, =),

These groups are distinguished by the orders of their greatest
dihedral factor groups.

Second, if n=1, m=2, then G2 DE@™Y), s(@™) or @™ .
These groups are distinguished by the order of their greatest dihedral
factor groups together with the minimum of the orders of their non-Frattini
elements.

COROLLARY 5.5. Distinet presentations in wniquely reduced form
define non-isomorphic metacyeclic groups.

The corollary follows since there are at most three possible
metacyclic groups of fixed order, having given types of derived factor and
centre. However, the theorem shows also that the distinct presentations so
obtained define non-isomorphic groups. Thus, to complete all the proofs of

this paper, it remains to prove Theorem 5.k.
Proof. (i) Let G-= G, Ybe a given metacyclic group and let G, be

a metacyclic group in which

ine

le,| = le,l o 676 = 6,/6) ena z(g) = z(c,)

Put G, = (ai”bi; Moy iy 815 Cps +) with appropriate choice of sign,
=1, 2.
It simplifies details of the proof if the special cases of abelian
3

groups and groups of order =<p are assumed to be trivial.

Now G, and G, are either both ordinary metacyclic groups or both

1 2

exceptional. For by Proposition 4.10 (v) if 02 is exceptional then
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Gg/Gé is of type (2”, 2) . Hence by Proposition 4.10 (v) if G, is not

exceptional then n = 1 since m o= ey =2,

Thus by Proposition 4.10 (i), 2(6)) = @(6)) , so that 2(G,) = 2(G,)

as Z(Gz) has index 4 in G, and GZ/Z(GQ) is not cyclic as G, is

not cyclic. This shows that 02 has class 2 and m2 = 2 . By Theorem

3.2 it follows thet either G, = Q(8) ({trivial) or
G, = (azﬂbe; 2, n,, 0, @ -). In the latter case Z(G2) is not cycliec by
Proposition 4.10 (Z7) whereas Proposition 4.10 (Z7) shows that Z(Gl) is

cyelic since n, = 1 , contradicting that Z(Gl) = Z(Gg) .

1

(ii) 1f Gl’ 02 are both ordinary metacyclic groups, it is shown

that, under the hypotheses of the theorem, Gl = 62 . To do this it is

sufficient to show that ml =My, Ny =N, , 8y =85, &) =0y -
Observe that by Proposition 4.10 (v}, Gi/Gé has sbelian invariants

me=c, n, g-c,
p s P and order p . Hence by hypothesis

ma.x{ml- X nl} = ma.x{mz-c?, n2} = ¢ (say) and ey =y =Y .

0 makes Gl, 62 abelian. Also

One can essume that Yy >0 as Y

by hypothesis, the exponent of the centre is the same for both Gl and

62 , whence by Lemma 5.2, K = max{mi—ci, ni+si-ci} , 1=1,2.

The first step is to show that m o= e > n if and only if
my = Cy = ng’. This is seen as féllows.

Suppose on the contrary that ml - cl < nl and m2 - c2 > n2 , for
example. By Theorem 3.2, Bi = ci whence my = > k< n2 > n2 + 32 - 02
and therefore Kk = m2 - 02 = e by use of G2 . App}ying this to Gl
gives K = max{ml-cl, nl+sl-cl} =e=n and so "y + 8, - ¢ = ny .

Hence 8, = ¢; and (by supposition that Yy # O ) this is non-zero. Thus
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Gl is non-split and so the defining relations in Theorem 3.2 imply that

8 < (a contradiction).

For the second step there are therefore two alternatives to consider,

namely, m, - ¢, Zn, (2=1, 2) or m, - e, <n, (=1, 2).

1
- > L = = - - -
Ifr m; ci - ni , 1 1,2, then e m1 Y my Y whence
= = iti - >
my = my and so n o=ny . By Theorem 3.2 the condition m, ci > ni
implies that each Gi splits and hence 8, = 32 .
.-a. <n. L = = = =

If mL : cz nL , 1 1, 2, then e nl n2 n and

mi = m2 =m . Ageain it remsins to prove that 81 = 32 . If kK =m-Y
- > . - . - . = =

then m-Y 2 n + 81 Y Hence m-n 2 8; and so 31 32 0 by
Theorem 3.2.

If K#m-Y then m-Y <n + 8, ~Y=n+ 8, - Y and so
8, =8, -

(iii) Finally suppose that G1 and G, are exceptional but not of

2
maximal class (by Proposition 4.10 (Z) and Theorem 3.2, the (metacyclic)
2-groups of maximal class are D, S and § ). Thus by Proposition 4.10

n,
Vs 1 : > = =
(v), Gi/Gi is of type (2 . 2] with n, = 2 , whence ny=n,=n and

By Proposition 4.10 (iZ) (since n 2 2 ) Gi splits if and only if

Z(Gi] splits non-trivially (that is, Z(Gi) is not cyclic), whence

By Lemma 5.2, z=n +1 ~ cl =n+1 -e, and so e = e, if

e1s S # 0 , whence there remasins to be considered the following case:

z2=n+1- e cl #0 , in Gl and z=n, )

e, =1, e, = 0 . From this it follows that Gl and 62 split, as

=0 in 62 . Thus

otherwise 62 = Q(ZM+1) by Theorem 3.2, contrary to the supposition that
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the groups do not have maximal class.
Thus either G, = G, or else G, = (alel; m, n, 0, 1, -) and

G, = (a2|lb2; m, n, 0, 0, =) with n >1 .

Note that in this case G, # G, since (from Theorem 4.9),

G,), = <a2m—l b2> = 2(G,) vhereas (¢,), = <b2> < z(6,)
1D 1 7 1 ereas  \Golp 2 2) -
Putting 7 = 1 , this argument shows G, =35 # G, = D provided that

m= 3 . The remaining maximel class group & is distinguished from D by
the fact that QD #1 , and is distinguished from S by having no non-

Frattini element of order 2 (by Lemma 5.1).
The paper is concluded with the following remarks.

It may be noted that the proof of Theorem 5.4 involves no essential
use of Lemma 5.1 or Corollary 5.3, nor of the order of the centralizer of
G' discussed in Lemma 5.2. The facts used sbout the group exponent in
Proposition 4.10 (Zv) have been derived from Lemms 4.7; by establishing
the exponent result directly one could also avoid the use of Lemma 4.7 in
the proof of Theorem 5.k.

The hypotheses of Theorem 5.4 can be modified in various ways by the
use of Lemma 5.1 and Corollary 5.3. For example, if the group G is known
to have class greater than 2 , then the order of the centralizer of G’
is often sufficient to determine ¢ from Corollary 5.3, particularly if
the orders of the centre and derived groups are known. Or, if the group is
known to be an ordinary metacyclic group, by Corollary 5.3, one can
determine the abelian type of the centre from the orders of the group and
its derived group, together with either the group exponent or (by Lemma

5.1) the minimum of the orders of the non-Frattini elements.

It is of interest to know how subgroups and factor groups are related
to the type of presentation that the group has. In particular there are
criteria (not stated here) which determine whether & group is exceptional

by whether certain subgroups or factor groups are exceptional.

In this connection, Lindenberg shows that the ordinary metacyclic
p-groups together with @(8) are precisely the metacyclic p-groups whose
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subgroup lattice is modular; the remaining exceptional 2-groups have a
non-modular subgroup lattice {[5], [6], [7]). The latter statement is a

direct consequence of Theorem 4.9, since D{(8) is not modular.
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