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A new approach for constructing polar-like boundary-conforming coordinates inside
a toroid with strongly shaped cross-sections is presented. A coordinate mapping is
obtained through a variational approach, which involves identifying extremal points of
a proposed action in the mapping space from [0, 2π]2 × [0, 1] to a toroidal domain
in R

3. This approach employs an action built on the squared Jacobian and radial
length. Extensive testing is conducted on general toroidal boundaries using a global
Fourier–Zernike basis via action minimisation. The results demonstrate successful
coordinate construction capable of accurately describing strongly shaped toroidal
domains. The coordinate construction is successfully applied to the computation of
three-dimensional magnetohydrodynamic equilibria in the GVEC code where the use of
traditional coordinate construction by interpolation from the boundary failed.

Keywords: fusion plasma, plasma confinement, plasma simulation

1. Introduction

The toroidal geometry, topologically characterised by a single hole and homeomorphic
to a continuous surface formed by rotating a circle about an axis external to its plane, is
fundamental in plasma physics due to its inherent capacity to provide closed magnetic flux
surfaces, essential for confining and stabilising plasmas in magnetic fusion devices. In that
context, any study of confinement, coil engineering, stability and transport relies on the
description of a magnetic field in a toroidal domain.

Using coordinates may not be the only possible choice to describe magnetic fields in a
toroidal geometry. For instance, some codes employ the surface integral method, such as
BIEST (O’Neil & Cerfon 2018; Malhotra et al. 2019), which represents the magnetic field
using the generalised Debye source formulation. On the other hand, many different kinds
of coordinate systems may be used, some of which are not boundary conforming. For
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2 Z. Tecchiolli and others

example, M3D-C1 (Jardin 2004) exploits an unstructured cylindrical grid because of the
advantages of not having a coordinate singularity. Furthermore, cylindrical coordinates
(R, φ, Z) are the natural choice for describing a toroidal geometry owing to their close
correspondence to a laboratory frame and due to their simplicity in applying boundary
conditions. Such constraints can be imposed via boundary-conforming coordinate systems
that are designed to align precisely with the boundaries of the domain.

The construction of a polar-like coordinate grid, or coordinate mapping that is boundary
conforming, can be made explicit by the input boundary representing the outermost
surface of a set of non-intersecting nested torus-shaped surfaces, such that a monotonically
increasing radial coordinate exists with a starting point identifying the coordinates axis.
This class of coordinate maps is very common in computations of magnetohydrodynamics
(MHD) equilibria.

Given the double periodicity of toroidal boundaries, spectral methods (Matsushima
& Marcus 1995) are a popular choice. These methods construct coordinates through
a linear combination of global basis functions, expressing cylindrical coordinates
(R, φ, Z) in terms of generalised toroidal-like coordinates (s, θ, ζ ) via Fourier–polynomial
decomposition. Here, s constitutes the monotonically increasing radial coordinate with θ
and ζ being some general poloidal and toroidal angles. The main challenge resides in
being able to correctly choose the coefficients for the basis functions in such a way that
the mapping becomes bijective.

The challenges of such task are well depicted by codes routinely used for computing
three-dimensional equilibria, in stellarators and tokamaks, such as VMEC (Hirshman &
Whitson 1983), GVEC (Hindenlang et al. 2019), SPEC (Hudson et al. 2012; Loizu, Hudson
& Nührenberg 2016) or DESC (Dudt & Kolemen 2020; Conlin et al. 2023). These codes
solve the inverse problem of finding an equilibrium provided a choice for the flux surfaces.

Extreme three-dimensional (3-D) shaping poses a challenge for the numerical codes.
Such boundaries are, for example, obtained from the near-axis expansion method (Jorge,
Sengupta & Landreman 2020), for which an approximate semi-analytic expression
for the equilibrium magnetic field is quickly obtained and the large configuration
space of stellarator equilibria can be rapidly explored and optimised (Rodríguez,
Sengupta & Bhattacharjee 2023). Using the near-axis expansion, very attractive stellarator
configurations have been discovered. Examples include quasi-isodynamic configurations
with small numbers of field periods (Landreman, Medasani & Zhu 2021; Jorge et al. 2022;
Mata, Plunk & Jorge 2022), or the first reported quasi-helically symmetric configuration
to have only 2 field periods (Landreman 2022) (see figures 1 and 2).

These highly optimised configurations are invariably also strongly shaped. They are
often characterised by strong poloidal elongations with significant ellipticity and torsion
of the magnetic axis. The more exact MHD equilibrium codes are still crucial for globally
validating the near-axis results, posing a challenge; indeed, for the case shown in figures 1
and 2, some of the codes have been reported to fail by producing overlapping flux surfaces.

The problem was identified to be associated with how each code initialises the
equilibrium calculation by interpolating between the boundary and the axis, leading to
overlapping coordinate surfaces. An improved method for choosing the coordinate axis
proposed in Qu et al. (2020) partially prevented coordinate surfaces from intersecting.
However, this procedure still fails for arbitrarily strongly shaped boundaries. The
perturbation-continuation methods introduced in Conlin et al. (2023) construct a sequence
of equilibria of increasingly complex shaping to arrive at the final highly shaped
equilibrium (Nies et al. 2024). In more mathematical terms, we seek the conformal map
of a simply connected domain, with a Jordan curve as a boundary, to the unit disc. The
mapping is proven to exist (the Osgood–Carathéodory theorem Henrici 1993); however,
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Coordinate constructions for toroidal domains 3

FIGURE 1. A quasi-helically symmetric stellarator surface with magnetic field intensity |B| as
obtained in Landreman (2022), seen from above (upper left), left side (bottom left) and from the
back (bottom right). Reproduced from Landreman (2022) with permission.

FIGURE 2. Different cross-sections for the same configuration as in figure 1 for different
toroidal angles.

finding the numerical conformal map is not trivial, as shown in Trefethen (2020) and Porter
(2005).

In this paper, we propose a new method for constructing polar-like and
boundary-conforming coordinates, which enables the computation of grids in smooth and
non-intersecting strongly shaped boundaries by exploiting a variational principle. Despite
providing a solution to a plasma-physics-driven problem, this construction can be applied
to other fields where coordinate mappings in strongly shaped cross-sections are needed,
e.g. for blood flow simulation (Zhang et al. 2007).

The paper is organised as follows. In § 2, we introduce an action S and we develop
the formalism for the mapping given as input the boundary surface, illustrating the main
reasons why we expect the extremal points of the functional to be consistent with a
mapping for which the coordinate surfaces are non-overlapping. In § 3, looking at the
stationary points in S , we derive and comment the Euler–Lagrange (EL) equations. In
§ 4, representing the mapping in a Fourier–Zernike basis and exploiting the geometrical
meaning of the core terms in the Lagrangian, we provide a numerical method for the
coordinate construction. In § 5, we illustrate the results obtained by starting from ill-posed
coordinate grids both with axisymmetric and non-axisymmetric external boundaries. The
application of our coordinate construction to the computation of vacuum 3-D equilibria
by GVEC is illustrated in § 6. Finally, a discussion is presented in § 7.
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4 Z. Tecchiolli and others

2. Continuous action integral

We will consider general mappings x(s, θ, ζ ) between (s, θ, ζ ) with s ∈ [0, 1], θ , ζ ∈
[0, 2π) and R

3, analytic, and double periodic in θ , and ζ , x(s, θ, ζ ) = x(s, θ + 2π, ζ ) =
x(s, θ, ζ + 2π). Boundary conditions are realised by providing a smooth toroidal external
boundary xb(θ, ζ ) and by requiring that x(1, θ, ζ ) = xb(θ, ζ ). A coordinate axis is
defined as xa(ζ ) = x(0, θ, ζ ), demanding that the mapping continuously changes its
topological structure from surfaces with s �= 0 to a curve in space at s = 0. This condition
creates a coordinate singularity at xa, since for fixed ζ every θ corresponds to the
same point in real space, analogously to the polar coordinates. The objective of this
work is to provide a construction of x such that it becomes a polar-like coordinate
mapping, defined by having a non-vanishing coordinate Jacobian outside of the coordinate
axis. Given such mapping x(s, θ, ζ ), we can compute the covariant basis vectors es =
∂sx, eθ = ∂θx, eζ = ∂ζ x, along with the corresponding metric elements gij = ei · ej with
i, j = s, θ, ζ . The Jacobian is given by

√
g ≡ es · (eθ × eζ ). The Jacobian is defined up to

a sign depending on whether the basis vectors form a right- or left-handed coordinate
system. The contravariant basis vectors are ∇s = eθ × eζ /

√
g, ∇θ = eζ × es/

√
g and

∇ζ = es × eθ/
√

g. Considering different explicit forms of x in the space of mappings
conforming to a boundary leads to different forms of the metric elements.

We now introduce a geometrical action S for the mapping x constrained to the boundary
xb as

S[x] =
∫ 2π

0
dζ

∫ 2π

0
dθ

∫ 1

0
ds

(
1
2

f
√

g2 + ω
√

es · es

)
. (2.1)

Here, f (x; s, θ, ζ ) is a positive function of the mapping and it can explicitly depend
on (s, θ, ζ ). As discussed in § 3, f can be used for fixing the functional form of

√
g.

A specific form for f given below is chosen to recover the simple case of circular
cross-section axisymmetric torus to ensure the polar-like property of x. The parameter
ω is a constant weighting coefficient. We assert that the minimum of S in the space of
mappings maximises the set of points in coordinate space where the Jacobian is non-zero.

The corresponding Lagrangian L = 1
2 f

√
g2 + ω

√
es · es encodes the key geometrical

insights that lead to the desired coordinate mapping property. From the analyticity of x, for
having

√
g �= 0, it is crucial for the Jacobian to have a uniform sign. Considering that the

overall volume V = ∫
dζ dθ ds

√
g is independent of the mapping, if

√
g was decreasing

up to becoming negative in a given subset of volume, it must increase somewhere else
to counteract the effect, therefore leaving V constant. Having regions of negative

√
g and

positive
√

g necessarily leads to larger integrated values of
√

g2, since there are competing
parts of the volume integrand. Moreover, the minimisation of

√
g2 smooths the regions

where
√

g has a peak in its amplitude. Due to volume conservation, the gradients near the
regions where the Jacobian is changing sign get weakened up to the point where it reaches
homogeneity in sign.

Adding ω
√

es · es to the action serves to penalise curvature in the radial coordinate
lines, and thus increasing ω leads to coordinate mappings with straighter coordinate
lines. This contribution to the action was found to be required after an initial numerical
exploration suggested that, otherwise, the action functional would be independent of the
parametrisation in the poloidal angle coordinate. The proportionality to

√
g2, represented

by f , needs to have the same sign of ω for not introducing any competition between having
a constant sign for

√
g and the straightness of coordinate lines. By conventionally choosing

to minimise S , we impose f and ω to be both positive.
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Note that there are multiple ways to include the boundary constraint x(1, θ, ζ ) =
xb(θ, ζ ), e.g. by introducing a Lagrange multiplier λ(θ, ζ ) in S via the addition of the
term ∫ 2π

0
dζ

∫ 2π

0
dθλ(θ, ζ )|x(1, θ, ζ ) − xb(θ, ζ )|. (2.2)

3. Euler–Lagrange equations

In the variational approach, x constitutes the dynamic variable independent from
(s, θ, ζ ). The relation between x and (s, θ, ζ ), i.e. the mapping, is recovered by solving
the EL equations, analogously to the Lagrangian approach in classical mechanics. We
can compute the stationary points in the action S in (2.1) by considering the variation
of the coordinate mapping δx ≡ x − x′, where x and x′ are two independent mappings
constrained to xb. The boundary conditions fix the possible mapping variations at the
external surface, δx(1, θ, ζ ) = δxb(θ, ζ ) = 0; and at the coordinate axis, δx(0, θ, ζ ) =
δx(ζ ). The variation of the action in (2.1) with respect to the coordinate mapping x(s, θ, ζ )

yields the EL equations

∇( f
√

g) −
√

g
2

δf
δx

+ ω√
g
κ = 0, (3.1)

having defined the curvature vector as κ = ∂s(es/|es|). It accounts for the variation of
the tangential lines along the radial direction, being a measure of the straightness of
θ, ζ = const. coordinate lines. The EL equations are a set of nonlinear partial differential
equations with boundary conditions. Their derivation is presented in Appendix A. The
first term on the left of (3.1) accounts for the volume element compared with a Jacobian
that would scale as 1/f . The second term is the contribution from the variation of f with
respect to x. Lastly, the curvature term represented by κ and weighted by ω, quantifies
deviations from straight radial lines.

The function f can be either externally prescribed or determined by solving (3.1) for
a specific choice of x. To fix f , we impose that the known analytical mapping of a torus
with a circular cross-section is recovered exactly by the action minimisation when ω = 0.
The analytical mapping reads as x = R R̂ + Zez, with R̂ = (cos φex + sin φey), ex, ey, ez
unitary Cartesian vectors, and R = 1 + s cos(θ), Z = s sin(θ), with θ representing the
geometrical poloidal angle. For applying the variation approach, we note that, in general,
R depends on the coordinate mapping x and, implicitly on s, θ, ζ . By choosing

f = 1/[s R2(x, s, θ, ζ )], (3.2)

we have δf /δx = −(2/sR3)R̂. Substituting this expression into (3.1), the EL equations are
trivially satisfied, as intended. Therefore, if f is taken as in (3.2) with a circular torus
given as a boundary, the minimisation of the action integral will recover the analytic
mapping. Given the topological equivalence of toroidal domains with a torus with a
circular cross-section, we choose (3.2) to define f for the following analysis.

4. Numerical implementation
4.1. Zernike–Fourier representation

We consider the local form for the mapping as x = R(x, s, θ, ζ ) R̂ + Z(x, s, θ, ζ ) ez. The
Jacobian is computed as:

√
g = R

√
gp = R(∂sR∂θZ − ∂sZ∂θR), where

√
gp is the poloidal

part of the Jacobian. The metric elements are gij = ∂iR∂jZ + ∂jR∂iZ + δiζ R2, where δiζ =
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6 Z. Tecchiolli and others

1 if i = ζ and 0 otherwise. In addition to considering double-periodic mappings, we
impose stellarator symmetry (Lee et al. 1988) to simplify the computations. This discrete
symmetry is defined as R(s,−θ,−ζ ) = R(s, θ, ζ ) and Z(s,−θ,−ζ ) = −Z(s, θ, ζ ),
which implies a more general symmetry (Dewar & Hudson 1998). Stellarators are typically
composed of a number of identical sectors NP, called field periods. A double-periodic
function h(s, θ, ζ ) can be expressed in a Fourier–Zernike (McAlinden, McCartney &
Moore 2011) basis as

h(s, θ, ζ ) =
+∞∑
n=0

+∞∑
l=0

l∑
m=0

[(
C+,nlmZm

l (s, θ) + C−,nlmZ−m
l (s, θ)

)
cos(nNPζ )

+ (
S+,nlmZm

l (s, θ) + S−,nlmZ−m
l (s, θ)

)
sin(nNPζ )

]
, (4.1)

where the Zernike polynomials (Niu & Tian 2022) are given as Zm
l = Rm

l cos(mθ) and
Z−m

l = Rm
l sin(mθ), with radial part

Rm
l (s) =

⎧⎪⎪⎨
⎪⎪⎩

(l−m)/2∑
k=0

(−1)k(l − k)!

k!
(

l + m
2

− k
)

!
(

l − m
2

− k
)

!
sl−2k, l − m even

0, l − m odd,

(4.2)

for l � m, with n, l, m ∈ N
+. The real coefficients C+,nlm, C−,nlm, S+,nlm, S−,nlm parametrise

the mapping in the Fourier–Zernike space. The Zernike polynomials are orthogonal basis
functions on the unit disk, and they can describe the mapping with half of the coefficients
used by the parity-restricted Chebyshev polynomials (Mason & Handscomb 2002) often
used in plasma physics. The normalisation is chosen such that the inner product 〈AB〉 =∫ 1

0

∫ 2π

0 A(s, θ)B(s, θ)s ds dθ defined on the space of L2 functions on the disk gives

〈Zm
l Zm′

l′ 〉 = 1 + δm0

2(l + 1)
δmm′δll′ . (4.3)

Stellarator symmetry imposes C−,nlm = S+,nlm = 0 for R and C+,nlm = S−,nlm = 0 for Z.
Extending the sum to negative values of n, and redefining the set of Fourier–Zernike
coefficients in terms of rnlm, znlm and n ∈ Z, the discretised mapping becomes(Qu et al.
2020)

R(s, θ, ζ ) =
N∑

n=−N

M∑
m=0

L∑
m=l

rnlmRm
l (s) cos(mθ − nNPζ ), (4.4)

Z(s, θ, ζ ) =
N∑

n=−N

M∑
m=0

L∑
m=l

znlmRm
l (s) sin(mθ − nNPζ ), (4.5)

where N, M and L ∈ N
+ indicate the resolution imposed in the Fourier–Zernike space. The

number of components in rnlm and znlm scales as 2M2N. The Fourier–Zernike mapping in
the poloidal plane directly satisfies the condition to be analytic (Boyd & Yu 2011) since
the radial part with poloidal mode number m scales as Rm

l (s) ∼ sm(Rm
0 + Rm

2 s2 + Rm
4 s4 +

. . . ). Therefore, no special treatment in terms of coordinate regularisation is required for
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FIGURE 3. Schematic illustration of the geometrical elements in the action discretisation.

the coordinate axis, where the coordinate mapping will be polar-like at the leading order.
The boundary surface xb(θ, ζ ) is given in terms of its Fourier components

Rb(θ, ζ ) =
Nb∑

n=−Nb

Mb∑
m=0

Rb
nm cos(mθ − NPnζ ), (4.6)

Zb(θ, ζ ) =
Nb∑

n=−Nb

Mb∑
m=0

Zb
nm sin(mθ − NPnζ ), (4.7)

where Nb, Mb ∈ N
+ are the prescribed toroidal and poloidal boundary resolutions. In the

following, we consider M = L. The boundary condition x(1, θ, ζ ) = xb(θ, ζ ) reduces the
number of independent components in rnlm and znlm. Using the property for the Zernike
radial part of Rm

l (1) = 1 for each m, l, the explicit form for the boundary condition
becomes

L∑
l=m

rnlm = Rb
nm,

L∑
l=m

znlm = Zb
nm. (4.8a,b)

These equations are exploited to fix (M + 1)(2N + 1) components of rnlm and znlm. The
coefficients rnmm and znmm for each n and m are indeed fixed as rnmm = Rb

nm − ∑L
l=m+1 rnlm,

znmm = Zb
nm − ∑L

l=m+1 znlm.

4.2. Action discretisation
Instead of directly using the Zernike–Fourier representation of the mapping in (2.1),
exploiting a coordinate grid highlights the geometrical properties of S in terms of areas
and radial lengths. The idea is depicted in the illustration provided in figure 3.

As drawn under (a), starting with a grid {si, θj, ζk} in coordinate space with i ∈ [0, Ns],
j ∈ [0, Nθ ] and k ∈ [0, Nζ ], x maps the corresponding points into a grid of Rijk and Zijk.
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Fixing a toroidal angle ζk, the grid in the poloidal plane is illustrated in figure 3(b).
Connecting the points with straight lines along the coordinate lines we have a set of
quadrilaterals and triangles. Each of them has an area Aijk constituted by the grid points
xijk, xi+1jk, xi+1j+1k and xij+1k. At the coordinate axis, for which i = 0, we have that
x0j+1k = x0jk. The expression of Aijk is explicitly given by the Shoelace formula (Braden
1986). Each point xijk identifies a radial length Lijk to xi+1jk via the Euclidean distance of
two points. The convention assumed for the identification of each grid point in Aijk and in
Lijk is shown in figure 3. Given a point xijk the points at i + 1 and j + 1 correspond to the
incremental radial and poloidal coordinates, respectively. For this reason, Aijk and Lijk are
not defined at the boundary.

By choosing f following (3.2), the Jacobian reduces to a poloidal Jacobian, such that
f
√

g2 = √
g2

p/s. Thus, the discrete action integral can be computed as

S[xijk] =
∑

ijk

(
1

2si
A2

ijk + ωLijk

)
, (4.9)

where we approximated the poloidal Jacobian with the area element, considered
an equispaced grid, and neglected common multiplicative factors. Here, S[xijk]
is an explicit function in terms of the free variables {rnlm, znlm}. Minimising
S is an unconstrained nonlinear optimisation problem that we solve using the
Broyden–Fletcher–Goldfarb–Shanno algorithm (Dai 2002), a descent-gradient iterative
method with an explicit computation of the gradient in the space of free parameters as
illustrated in Appendix F.

5. Results
5.1. Axisymmetry

To validate the action-based approach, we first consider the coordinate construction
for axisymmetric boundary surfaces both analytically and numerically. Exploiting the
inherent symmetry along the toroidal angle, we transform the problem into one that is
focused on optimising the Jacobian within a single poloidal plane. The toroidal index is
left out for simplicity.

We consider the family of boundaries, proposed in Qu et al. (2020), parameterised
as Rb(θ) = Rb

0 + Rb
1 cos θ + Rb

2 cos 2θ and Zb(θ) = Zb
0 + Zb

1 sin θ + Zb
2 sin 2θ . We consider

a poloidal mapping x(s, θ) with a Zernike polynomial of order L = 2. Combining
with boundary conditions, we get: R(s, θ) = Rb

0 + 2r20(s2 − 1) + Rb
1s cos θ + Rb

2s2 cos 2θ ,
Z(s, θ) = Zb

0 + Zb
1s sin θ + Zb

2s2 sin 2θ . The only degree of freedom is r20. The action
S[r20] is a second-order polynomial in r20 plus a contribution from the integrated radial
length proportional to ω. In the numerical implementation we set M = L = 2, Ns × Nθ =
1000 × 1000.

Firstly, as a sanity check for the numerical implementation, we take xb as a torus
with circular cross-section, Rb

0 = 2, Rb
1 = Zb

1 = 1 and Rb
2 = Zb

2 = 0. The action becomes
S[r20] = π(1 + 4r2

20) + ω
∫ 2π

0 dθ
∫ 1

0 ds
√

16r2
20s2 + 8sr20 cos θ + 1. The analytical study

of S shows a global minimum corresponding to optimal r20 values between 0 and 10−10.
Figure 4 shows the starting and optimised grids obtained from the numerical optimisation,
with a normalised Jacobian

√
gN/s = √

g/(max(
√

g)s), being unitary for the circular polar
grid. The starting grid on the left has been chosen with an initial coordinate axis outside the
external boundary, creating a region with ill-posed coordinates, as

√
gN becomes negative

with overlapping coordinate lines. As shown in figure 4, the algorithm finds the polar
coordinate in the poloidal plane as expected, with

√
gN/s being unitary in all the domain.
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FIGURE 4. Normalised Jacobian
√

gN/s (in colour) and constant coordinate lines (in grey) for
a circular torus and the external boundary (in red). The coordinate axis is dotted in blue. The
initial grid on the left with initial action value Si is compared with the optimisation outcome
with Sf . In the right plot, the 3-D Jacobian is shown (including the R factor as explained in the
text above) with ST being the final value of optimisation.

The parameter x(s, θ, ζ ) retrieves the toroidal coordinate with Jacobian s(Rb
2 + s cos θ) as

in figure 4 on the right. The plotted results are for ω = 10−1, and its variation does not
affect the final result significantly as the analytical discussion anticipated.

Next, a strongly shaped boundary is considered, in particular a bean-shaped contour
described by Rb

0 = 1 Zb
0 = 0, Rb

1 = 0.6, Zb
1 = 0.8, Rb

2 = 0.8 and Zb
2 = 0.1. Considering

ω = 0, the minimum of the poloidal action is found analytically at r20 = −0.42. Initiated
with r20 = 0.2, the coordinate lines in the initial grid, shown in figure 5, exhibit significant
overlap, resulting in a negative Jacobian. The minimisation algorithm yields a valid
mapping aligned with the analytical prediction, as in the centre and right plots in figure 5
illustrate. Subsequent increments in the (s, θ) grid resolution leads to the minimisation
of the action Sf asymptotically reaching the analytical value SA = 0.298. Low values for
the radial weight ω allow for more curved coordinate lines, as figure 6 shows, whereas
increasing ω straightens radial coordinate lines and shifts the coordinate axis to the left.
In the limit of large ω, the optimal mapping is mostly influenced by the straightness of
the coordinate lines, leading to possibly ill-posed results (data not shown). The maximum
value of ω is, in general, problem-dependent, being influenced by the boundary shape and
by the area of the cross-section.

5.2. Non-axisymmetry
The strongly shaped boundary in figure 1 provides a non-axisymmetric test where the
conventional coordinate construction using a polynomial interpolation from the boundary
fails. The optimisation here is performed with M = N = L = 5 and Ns × Nθ × Nζ = 80 ×
50 × 80 with ω = 10−2. The initial grid is computed by setting all the degrees of freedom
to zero. Figure 7 shows that coordinate singularities in the initial grids (top panel with
starting action value Si = 1) are avoided by the optimisation algorithm (bottom panel
with final action value Sf = 0.752). We would like to remark that, given a value of ω and
a grid resolution, the algorithm finds this same optimal mapping no matter how bad the
initial guess is (data not shown). The same happens in the axisymmetric case, showing the
algorithm’s robustness.
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10 Z. Tecchiolli and others

FIGURE 5. Normalised Jacobian
√

gN/s (in colour) and constant coordinate lines (in grey) for
the bean-shaped external boundary (in red). The coordinate axis is dotted in blue. The initial grid
on the left with initial action value Si is compared with the outcome of the optimisation with Sf
and the analytical result SA.

FIGURE 6. Comparison of optimised configurations for increasing values of ω. Plotted are
the normalised Jacobian

√
gN/s (in colour) and constant coordinate lines (in grey) for the

bean-shaped external boundary (in red). The coordinate axis is dotted in blue.

5.3. Numerical verification of the EL equations
Given a mapping x we can provide a measure of its distance from the theoretical extremal
point of S via the EL equations (3.1). Defining the operator L(x) as the left side of (3.1),
we consider the volume average

〈s4L2〉 = 1
V

∫ 2π

0
dζ

∫ 2π

0
dθ

∫ 1

0
ds

√
gs4L2, (5.1)

where V is the volume which depends solely on the boundary. Here, 〈s4L2〉 globally
quantifies the deviation of the mapping from the extremal solution. Introducing the s2

factor ensures numerical stability near the axis, as df /ds ∼ 1/s2.
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(a) (b) (c)

(d ) (e) ( f )

FIGURE 7. Comparison between the starting (a–c) and optimised (d–f ) configurations at
different toroidal planes. Plotted are the normalised Jacobian

√
gN/s (in colour) and constant

coordinate lines (in grey) for a strongly shaped boundary (in red). The coordinate axis is dotted
in blue. The different figures use different axis scaling, which distorts the real-space appearance.

In figure 8, we observe that increasing the Zernike–Fourier discretisation, equivalent
to having a higher number of free parameters Ndof in the optimisation, results in a better
approximation of the mapping solution, both in axisymmetric and non-axisymmetric cases
for strongly shaped boundaries. Both cases show an exponential convergence, resulting
from the spectral representation of x, with the axisymmetric geometry being faster owing
to simpler geometry. Notably, L2 deviates from zero primarily near the boundary and
where the coordinate lines exhibit rapid variation compared with inner regions (figure 9).
This error near the edge is related to the Zernike polynomial’s known rapid fluctuations
near s = 1 with increasing radial mode number. The boundary coefficients used for the
numerical convergence study in figure 8 can be found in Appendix E.

6. GVEC application

The approach of minimising the action functional (A5) is successfully tested in GVEC
(Hindenlang et al. 2019), a 3-D MHD equilibrium solver assuming closed nested flux
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FIGURE 8. Convergence of the solution from the discretisation of the numerical action with
the increase in the free parameters to the EL stationary point for an axisymmetric case and a
non-axisymmetric one.

FIGURE 9. The value of L2 is analysed locally for Ndof = 3 (red circle of figure 8). The
coloured regions show L2 normalised to its maximum value.

surfaces. In GVEC, the flux surface coordinate mapping R(s, θ, ζ ), Z(s, θ, ζ ) is discretised
by a tensor product of B-splines in s and Fourier modes in angular directions. Using a 1
element B-spline of degree equal to the maximum poloidal mode number, and smoothness
constraints at the axis, the Zernike–Fourier representation is exactly recovered. As a 3-D
test case, a W7-X-like boundary with an initial circular magnetic axis was taken, where
the usual initialisation of GVEC produces an initial state with regions having

√
g < 0,

as shown in figure 10(a). The maximum Jacobian used for the normalisation is always
positive.

The minimisation of S with a gradient descent successfully produced
√

g > 0. This
is shown in figures 10(b), 10(c) and 10(d), where the initial invalid (s, θ) grid and final
valid grids for different weighting factors ω are shown, as well as the normalised scaled
Jacobian.

The free parameter ω > 0 acts as a penalty term in the minimisation, increasing the
straightness of θ contours, but its maximum value is not known a priori. The strength of ω
is a trade-off between the straightness of the θ -contours, the axis position and consequently
also the minimal scaled Jacobian. As seen in figures 10(b)–10(d), for increasing ω, the
θ -contours are straightened, at the cost of a smaller minimal Jacobian, being close to zero

https://doi.org/10.1017/S0022377824001119 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377824001119


Coordinate constructions for toroidal domains 13

(a) (b)

(c) (d)

FIGURE 10. GVEC results for the minimisation of the action functional (A5) using a 3-D
W7-X-like boundary and a circular axis for initialisation. The normalised scaled Jacobian
is shown in colour, along with the (s, θ) grid for 4 poloidal cross-sections. The mapping
is discretised with a Zernike–Fourier representation, using 1 B-spline element in the radial
direction and (m, n)max = 7. (a) Initial state with

√
g < 0. (b–d) Valid optimised grids for

increasing weighting factor ω. Note that max(
√

g) is always positive.

for ω = 0.8. In (b), ω = 0.01 leads to a slightly oscillating behaviour of the θ -contours.
Using these solutions as initialisation for the MHD energy minimisation, it was found that
GVEC had no difficulties converging to an equilibrium for moderate ω � 0.2.

7. Discussion

This paper introduces a method for constructing polar-like and boundary-conforming
coordinates within arbitrarily shaped toroidal domains based on identifying a mapping
that extremises an action formulated from geometric principles. Preserving bijectivity
follows from minimising the squared Jacobian (scaled by a positive factor f ) and the
radial curvature of the mapping. The first variation of S yields a set of nonlinear partial
differential equations, balancing a gradient comparing the relative scaling of f and

√
g, a

radial curvature term and the variation of f with respect to the mapping. The value of f
is determined using a topological argument with a torus with a circular cross-section in
cylindrical coordinates as a reference.

Both axisymmetric and non-axisymmetric tests, conducted through analytical and
numerical means, demonstrate the effectiveness of minimising S in constructing
coordinates for domains with complex shapes. As the poloidal and toroidal discretisation
increases, the volume average 〈s4L2〉 indicates convergence of the optimised mapping
towards the EL zero, with notable discrepancies observed, primarily in regions near
the boundary where significant variations occur and high resolution is essential. The
robustness of the action formalism is further validated by its application in computing
3-D MHD equilibria within the GVEC framework (Hindenlang et al. 2019), emphasising
its efficacy where alternative coordinate choices need a careful a priori choice of the initial
axis position, without the guarantee of yielding a valid mapping.
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A thorough study of the existence of global minima for the action in (2.1), along with
an exploration of solutions to the EL equations (3.1), could significantly expedite the
computation of the optimal coordinate mapping. Ongoing analysis is directed towards
studying the action formalism in the formalism of harmonics maps (Eells & Sampson
1964; Hamilton 1975) with their close relation to conformal mappings. Analysing the
influence of parameters f and ω on these solutions can provide insights for enhancing the
Jacobian in specific regions of a given boundary. While directly solving the EL equations
(3.1) instead of employing a global approach based on minimising an action integral may
offer faster convergence, the inherent challenge persists due to the nonlinear nature of the
problem and the prescribed strongly shaped boundary conditions.

The findings presented in this paper hold potential value for 3-D MHD equilibrium
codes and other codes utilising a global set of toroidal flux coordinates. This method can
facilitate the exploration of complex, strongly shaped configurations that were previously
challenging to address or enhance the convergence and precision of existing geometries
across various applications.
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Appendix A. Derivation of EL equations

First, we take the variation of the term proportional to the Jacobian squared, leading to

δ

∫ 2π

0
dζ

∫ 2π

0
dθ

∫ 1

0
ds

1
2

f
√

g2 =
∫ 2π

0
dζ

∫ 2π

0
dθ

∫ 1

0
ds

[
f
√

gδ
√

g +
√

g2

2
δf
δx

· δx

]

(A1)
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= −
∫ 2π

0
dζ

∫ 2π

0
dθ

∫ 1

0
ds

√
gδx ·

[
∇( f

√
g) −

√
g

2
δf
δx

+f
(

∂

∂s
(
√

g∇s) + ∂

∂θ
(
√

g∇θ) + ∂

∂ζ
(
√

g∇ζ )

)]
(A2)

= −
∫ 2π

0
dζ

∫ 2π

0
dθ

∫ 1

0
ds

√
gδx ·

[
∇( f

√
g) −

√
g

2
δf
δx

]
.

(A3)

Here, δf /δx is the variation of f with respect to the mapping x. From the first to the second
line, we used the definition of

√
g and integrated by parts. In Appendix B, the explicit

application of the boundary conditions in the integration by parts is presented. The
parameter x being analytical and sf being finite in the limit of approaching the coordinate
axis are sufficient conditions for the vanishing of the local boundary terms. As shown in
Appendix C, the last term in (A2) is zero using the Christoffel symbols (Wald 2010).

Regarding the variation in the radial length

δ

∫ 2π

0
dζ

∫ 2π

0
dθ

∫ 1

0
ds

√
es · es =

∫ 2π

0
dζ

∫ 2π

0
dθ

∫ 1

0
ds

es

|es| · ∂δx
∂s

= −
∫ 2π

0
dζ

∫ 2π

0
dθ

∫ 1

0
dsδx · κ, (A4)

with κ = ∂s(es/|es|). As illustrated in Appendix D, from analyticity at the coordinate axis
the boundary terms from integration by parts vanish. The variation of the action in (2.1)
with respect to the coordinate mapping yields

δS = −
∫ 2π

0
dζ

∫ 2π

0
dθ

∫ 1

0
ds

√
g

[
∇( f

√
g) −

√
g

2
δf
δx

+ ω√
g
κ

]
· δx. (A5)

The stationary points of S are obtained when δS = 0 for arbitrary δx. Since (A5)
holds for arbitrary δx satisfying the boundary conditions, implying the vanishing of the
expression inside the square brackets for a stationary point, the EL equations for the
coordinate mapping x(s, θ, ζ ) are derived.

Appendix B. Boundary terms in the EL equations

We expand the first term on the right side of (A2). Using the definition for
√

g∫ 2π

0
dζ

∫ 2π

0
dθ

∫ 1

0
ds f

√
g

[
∂δx
∂s

· (eθ × eζ ) + ∂δx
∂θ

· (eζ × es) + ∂δx
∂ζ

· (es × eθ )

]
.

(B1)

The integration by parts in s leads to∫ 1

0
ds f

√
g
∂δx
∂s

· (eθ × eζ ) = f
√

gδx · (eθ × eζ )

∣∣∣∣
1

0
−

∫ 1

0
ds δx · ∂

∂s
( f

√
geθ × eζ ). (B2)

The local term evaluated at the boundary is zero, since at s = 1 δx vanishes. The term at
the axis gives a local contribution that needs to be evaluated in the limit where s is zero∫ 2π

0
dζ

∫ 2π

0
dθ f

√
gδx · (eθ × eζ )

∣∣
s=0 . (B3)
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We prove the integrated part in (B3) is zero for each δx. Since the mapping is analytical
near the axis, we have that eθ = 0 and eζ , es are finite. We are left to prove that f

√
g is

finite in the limit of s vanishing. This is equivalent to checking that f eθ is a finite quantity.
Using the condition of analyticity at the coordinate axis

f eθ = f
∂

∂θ

(
xa(ζ ) + es|s=0 s + ∂2x

∂s2

∣∣∣∣
s=0

s2 + O(s3)

)

= fs
∂es

∂θ

∣∣∣∣
s=0

+ f
∂

∂θ

∂2x
∂s2

∣∣∣∣
s=0

s2 + O(s3), (B4)

where ∂sxa = 0 and with ∂n
s x and its derivatives to θ are well defined. Equation (B4) states

that for f eθ to be defined for s going to zero, we need fs to either be fixed or go to zero
simultaneously. We have that the term in (B3) is zero in these conditions for every δx.

Going back to (B1), integrating by parts along the poloidal angle ∂θδx · (eθ × eζ )∫ 2π

0
dθ f

√
g
∂δx
∂θ

· (eζ × es) = f
√

gδx · (eθ × eζ )

∣∣∣∣
2π

0
−

∫ 2π

0
dθ δx · ∂

∂θ
( f

√
geζ × es).

(B5)

Due to periodicity, the local term is zero. The same steps are applied for the integration
over ζ .

Appendix C. Useful identities for EL derivation

We now prove that the third term on the right side of (A2) vanishes. To light up the
notation and be clearer in the computations, we introduce ξ i, with i = 1, 2, 3 as (s, θ, ζ ),
and xi are the Cartesian coordinates for the mapping. We use Einstein’s notations, where
the sum over repeated indices is omitted

∂

∂ξ i

(√
g∇ξ i

) = ∇√
g + √

g
∂∇ξ i

∂ξ i
. (C1)

Considering the second term on the right side

∂∇ξ i

∂ξ i
= ∂xm

∂ξ i

∂∇ξ i

∂xm
. (C2)

Using the identity (Wald 2010)

∂∇ξ i

∂xm
= −Γ i

mk∇ξ k, (C3)

∂∇ξ i

∂ξ i
= −∂xm

∂ξ i
Γ i

mk∇ξ k = −δl
i
∂xm

∂ξ l
Γ i

mk∇ξ k. (C4)

From the Christoffel identity Γ i
ik = ∂ log

√
g/∂xm, then

∂xm

∂ξ l
Γ i

mkδ
l
i = ∂ log

√
g

∂ξ k
. (C5)

Substituting (C5) into (C4), we obtain that

∂∇ξ i

∂ξ i
= −∂ log

√
g

∂ξ i
∇ξ i = −∇ log

√
g. (C6)

https://doi.org/10.1017/S0022377824001119 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377824001119


Coordinate constructions for toroidal domains 17

Giving
∂

∂ξ i

(√
g∇ξ i

) = ∇√
g − √

g∇ log
√

g = 0. (C7)

Appendix D. Local curvature term

The local term in s obtained by integrating by parts the right side of (A4) is

∫ 2π

0
dθ

∫ 2π

0
dζ

es

|es| · δx
∣∣∣∣
s=0

. (D1)

Writing it explicitly in the limit of vanishing s

∫ 2π

0
dθ

∫ 2π

0
dζ

δxR
∑

n x̃n cos(θ − nζ )R + δxZ
∑

n ỹn sin(θ − nζ )Z√
(
∑

n x̃n cos(θ − nζ ))2 + (
∑

n ỹn sin(θ − nζ ))2
, (D2)

and using Ptolemy’s identities, the integral in (D2) can be rearranged into

∫ 2π

0
dθ

∫ 2π

0
dζ

δxR(a cos(θ) + b sin(θ))R + δxZ(c cos(θ) + d sin(θ))Z√
(a cos(θ) + b sin(θ))2 + (c cos(θ) + d sin(θ))2

,

a =
∑

n

x̃n cos(−nζ ),

b =
∑

n

x̃n sin(−nζ ),

c = −
∑

n

ỹn sin(−nζ ),

d =
∑

n

ỹn cos(−nζ ).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(D3)

Since a, b, c, d are functions only of ζ , we integrate first along θ treating them as constants.
For each term, the integral can be split from 0 to π and from π to 2π. Considering only
the latter, we can translate θ to θ + π, making the two integrals have the same integration
extreme. Since sin(θ + π) = − sin θ and cos(θ + π) = − cos(θ), the sign is absorbed in
the denominator by the square, but it is left at the numerator, getting the wanted result.

Appendix E. Boundary coefficients for convergence study

For the axisymmetric case, the boundary coefficients in figure 9 are Rb
0 = 1, Rb

1 = 0.6,
Rb

2 = 0.8, Zb
0 = 0, Zb

1 = 0.8 and Zb
2 = 0.1, with Ns × Nθ = 1000 × 1000. The boundary

coefficients for the non-axisymmetric domain are in table 1, where computations are
performed with a grid of Ns × Nθ × Nz = 120 × 120 × 120.

Appendix F. Gradient of S in Zernike–Fourier space

The action gradient is given as

∂S
∂Xpqr

=
∑

ijk

1
si
Aijk

∂Aijk

∂Xpqr
+ ω

∂Lijk

∂Xpqr
, (F1)
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n m Rb
nm Zb

nm

−1 0 0 0
0 0 1.0 0
1 0 0.2 0.4
−1 1 −0.2 0
0 1 0.8 0.8
1 1 0.03 0.1
−1 2 0.2 0.4
0 2 0.03 0.03
1 2 0.01 0.05

TABLE 1. The set of boundaries coefficients Rb
nm and Zb

nm with N = 1 and M = 2.

with Xpqr = rpqr, zpqr. Its derivatives are given by

∂Aijk

∂rpqr
= sign

(
arg(Aijk)

)
2

[
(Zij+1k − Zi+1jk)

(
∂Rijk

∂rpqr
− ∂Ri+1j+1k

∂rpqr

)

+(Zijk − Zi+1j+1k)

(
∂Rij+1k

∂rpqr
− ∂Ri+1jk

∂rpqr

)]
, (F2)

∂Aijk

∂zpqr
= sign

(
arg(Aijk)

)
2

[(
∂Zij+1k

∂zpqr
− ∂Zi+1jk

∂zpqr

)(
Rijk − ∂Ri+1j+1k

∂rpqr

)

+
(

∂Zijk

∂zpqr
− ∂Zi+1j+1k

∂zpqr

)
(Rij+1k − Ri+1jk)

]
, (F3)

∂Lijk

∂rpqr
= Ri+1jk − Rijk

Lijk

(
∂Ri+1jk

∂rpqr
− ∂Rijk

∂rpqr

)
, (F4)

∂Lijk

∂zpqr
= Zi+1jk − Zijk

Lijk

(
∂Zi+1jk

∂zpqr
− ∂Zijk

∂zpqr

)
, (F5)

∂Rijk

∂rpqr
= cos(rθj − pNfpζk)

(Zq
r (si) − Z r

r (si)Θ(q − r − 1)
)

(F6)

∂Zijk

∂zpqr
= sin(rθj − pNfpζk)

(Zq
r (si) − Z r

r (si)Θ(q − r − 1)
)
, (F7)

with Θ(x) = 0 if x < 0 and Θ(x) = 1 otherwise.
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