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Abstract

Short-channel Gallium Nitride (GaN) high-electron-mobility transistors (HEMTS) often util-
ize T-shape gates due to their large gate-line cross-sectional area and subsequent fyax
increase. In this paper, we report the linearity trade-offs associated with varying the T-gate
geometries of AlGaN/GaN HEMTs on Si, specifically the gate extensions which serve as
field plates and their impact on the large-signal performance. Small-signal characterization
and modeling, in addition to TCAD, provide initial guidelines for the optimal dimensions
for the gate field plates using the ratio of fr- and the product of the gate resistance and the
gate-to-drain capacitance. We utilize various characterization methods, including 6 GHz
non-linear vector network analyzer characterization in addition to load-pull, to quantify
the amplitude and phase distortion and their subsequent impact on the large-signal metrics
of the devices under differing matching conditions and bias points. We deduce that the influ-
ence of the gate field plates on the amplitude and phase distortion is non-negligible, particu-
larly under matched conditions.

Introduction

Modern wireless communication standards rely on spectrally efficient linear modulation tech-
niques sensitive to amplitude and phase errors. Such standards require high linear power
amplifiers (PA) in the RF front-end modules to avoid interference with the adjacent channels
[1]. The well-known trade-off between efficiency and linearity, where the linearity declines at
peak power efficiency, results in PA operation at backoff power levels below the maximum
saturated output power (Pgs7) to meet the linearity specifications. Amplitude-to-amplitude
(AM/AM) distortion and amplitude-dependent phase distortion (AM/PM) are known contri-
butors to spectral regrowth, with the latter additionally causing difficulties in the received sig-
nal detection. Their combined contribution results in out-of-band interference of the
transmitted signal and bit errors of the received signal [2].

Downscaled GaN HEMT's are capable of meeting the challenging output power and effi-
ciency requirements set by modern RF and high-power applications [3]. Nevertheless, these
devices are renowned for their non-linear behavior chiefly stemming from the transconduct-
ance derivatives and bias-dependent capacitances [4]. Furthermore, short-channel GaN
HEMTSs employ T-shape gates for a larger cross-sectional area to reduce the gate-line resist-
ance, thereby improving the cut-off frequency of the unilateral gain ( fyrax). The field plates,
which are connected to the gate electrically and kept at a distance above the semiconductor
surface, offer a conducting plane which reduces the high electric field peaks that result in
an electronic breakdown [5]. This electric field reduction at the gate edge allows the applica-
tion of high voltages and subsequently higher output powers. However, their presence involves
trade-offs between device parasitics, including the gate-to-drain capacitance, which influences
fuax and the device linearity.

Extending our work presented in [6], we aim to provide in this paper an understanding of
the trade-offs associated with T-gate geometry optimization through additional small-signal
modeling and large-signal characterization. The results of the non-linear characterization of
several geometrical configurations show the necessity of optimizing the gate-to-drain field
plate (lgf,) for an appropriate trade-oft of the phase and harmonic distortion, where phase dis-
tortion is mitigated with Ly, downscaling at the expense of the harmonic distortion and gain
linearity.

The GaN HEMT devices

The devices under test (DUTs) are eight-finger AIGaN/GaN HEMT' fabricated in a three-level
Cu damascene back end of line (BEOL) process on 200 mm Si wafers (Fig. 1) [7, 8]. The ohmic
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Fig. 1. (a) TEM cross-section of a 110 nm device with the definition of the dimensions.
(b) Eight-finger GaN HEMT device layout with three BEOL metal layers. (c) TEM cross-
section across the A-A” cutline shown in (b) highlighting the three Cu layers.

contact resistance (R¢) is ~0.15 Q.mm, and the sheet resistance
(Rsp) is ~370 Q/sq. There is an increase in the parasitic capaci-
tance of these DUTSs because the ohmic metal moved closer to
the gate head than anticipated, on both the source and drain
sides, during the device processing. For an 110 nm device, the
maximum Ip is ~1.2 A/mm, and the peak fy4x is 135 GHz,
whereas this processing issue limits the peak fr to 60 GHz (Fig. 2).
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Fig. 2. fr/fyax versus bias for the shortest device at V, =4 V. Device geometry: [; =110
nm, lgp, =250 nm, lgy =120 nm, lgs=540 nm, gy =670 nm, Nex Wr=8x25um.

To study the impact of varying the T-gate geometries, we
consider Ly, ranging from 50 to 450 nm and gate-to-source field
plates (/) of 50 and 120 nm. The downscaled gate-drain (lyy)
and gate-source (lg) spacings are adjusted according to the Ly,
lg(s) lengths to maintain a constant effective gate-to-drain and
gate-to-source distances. The devices have an off-state lateral
breakdown voltage (Vpp) of ~105V at a breakdown criterion of
1 mA/mm.

The extrinsic transconductance (g;,,.), obtained from DC char-
acterization, decreases with increasing the [y (Fig. 3). This
decline is due to the larger effective gate length which results in
a decline in the drain saturation current in addition to the longer
leq for larger Ly, devices [9].

T-gate geometry: RF small-signal trade-offs

Measured S-parameters, using a two-port vector network analyzer
(VNA), determine the small-signal device behavior. The small-
signal behavior of these devices is describable by an 11-element
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Fig. 3. Peak extrinsic transconductance for varying gate field plate lengths with error
bars marking the variation across 10 measured dies at V5 set to the bias correspond-
ing to the maximum g, and V, =4 V. Device geometry: [, =190 nm, lgs =220 nm, lgg=
170 nm + g, lg(s) =50 nm, Nex We=8x 25 um.
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Fig. 4. Small-signal equivalent circuit used in the extraction of the intrinsic parameters and the extrinsic resistances after open-short de-embedding.

small-signal equivalent circuit (SSEC) (Fig. 4). This modeling
approach is useful for identifying possible device improvements
and performance limiters; particularly since the cut-off frequen-
cies ( fp fuax) can be approximated from the values of the equiva-
lent circuit [10, 11]. fyax can be expressed in terms of the
charging time constant 7z ¢, as follows:

fr

fuax = ¢))
2\/gds(RG + Rgs + Rg) + 27 XfT X TRCap
fr=—rt @
= 27Ty
Cgs + C
Tt = @ ap > TreCop = RaCop. S

8m;

Initial estimation of the values of particular parameters in the
SSEC allows for validating the extraction of the small-signal
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parameters from the de-embedded RF measurement data. The
source and drain access resistances (Rs, Rp) can be calculated
from the Rgy and Re, where Rgp = Rgr lgs 0 + Re. The gate resist-
ance (Rg) estimation relies on the T-gate dimensions, the gate-
line sheet resistance and via resistances as detailed in [12]. A first-
order prediction of the gate-to-source capacitance (Cgg), neglect-
ing the fringing effect, can be deduced from the gate length and
barrier thickness (Tgar) using Cgs=&l/Tpar. Whereas the
gate-to-drain capacitance (Cgp) should be kept at a value below
0.3 of Cgs in PA to limit the influence of the input Miller reflected
capacitance in GaN HEMTs with scaled source-to-drain distances
below 1 um. The extraction of the parameter values for the SSEC
follows the procedures in [10, 11]. The final stage of extraction
validation depends on comparing the SSEC S-parameters and
the RF measurement data (Fig. 5). The visible kink in S,,
(Fig. 5) is an indicator of the parasitic conduction through the
Si substrate, and the SSEC accounts for this effect through the
RsupCsyp branch (Fig. 4) [13, 14]. The work in [15, 16] provides

+1

+05 _ +2

Fig. 5. Measured (symbols) versus modeled (lines) S-parameters with a frequency ranging from 100 MHz to 50 GHz at V, =4V and V;; set to maximum g,,,. Device
geometry: I, =190 nm, Ngx Wr=8x25um, lgs=220 nm, [gg=170 nm + lgz, lg) =50 nm, and lgg, = (a) 50 nm, (b) 250 nm.
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Fig. 6. Extracted and predicted small-signal parameters for three different [, Device geometry: [; =190 nm, lgs =220 nm, lgg =170 nm + [y, and Npx We=8 % 25 um.
The remaining SSEC parameters with marginal l,;, dependence: Cps =495 fF/mm, r, =900 Q/mm, and Csys =50 fF, Rsys =250 Q.

further insight into the substrate-related RF losses and non-
linearities for these GaN HEMTSs on Si.

The sharp increase in Rg (Fig. 6(b)) as the 4, reduces to 50 nm
causes a consequent decline in fyr4x (Fig. 7(b)) even though fr (2)
(Fig. 7(a)) continues to improve with smaller Ly, due to the con-
sistent increase in the intrinsic transconductance (g,,;) (Fig. 6(c))
and capacitance reduction (Figs 6(b) and 6(d)). Variation in the
los, dimensions results in a trade-off between Rg and Cgp [12].
Assuming negligible I, influence on the ratio between the output
and input device impedance' in the formulation for fy.x, the
time constant 7g.c,, (Fig. 8(a)) can be used as an initial design
guideline for [y, optimization.

"The ratio between the output and input device impedance refers to the term g (R¢ +
Rgs + Rg).
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Technology Computer-Aided Design (TCAD) device simula-
tions performed using the Sentaurus Device software enable add-
itional validation of the extracted Cgp, where the TCAD GaN
HEMT structure is generated using the Sentaurus Structure
Editor software [17, 18]. The TCAD simulations include the drift-
diffusion model for carrier transport and Fermi statistics.
Additionally, the mobility model incorporates the doping-
dependent and high-field saturation dependency. The built-in
strain piezoelectric polarization model automatically computes
the polarization charges at interfaces [17, 19]. The model coeffi-
cients have been carefully calibrated based on measurements of
different GaN devices. The simulations also include the bulk
and interface traps.

Using the Rg model in [12] and the TCAD simulations to
explore more Ly, geometries, it is observable that the parabolic
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Fig. 7. (a) frand (b) fyax for varying gate field plate lengths with error bars marking the variation across 10 measured dies at V; set to the bias corresponding to the
maximum g, and Vp=4V. Device geometry: lgs =220 nm, lgq=170 nm + gz, lgy(s) =50 nm, and Npx We=8x 25 um.

ratio between fr and 7gr.c,, has an optimum beyond which its
value declines. In the case of small Ly, the decline is a result of
a rise in Rg, and for larger Ly, it is a consequence of an increase
in Cgp coupled with a lower g,,. There is no impact of Ly, vari-
ation on the Ry (Fig. 6(f)). However, the direct proportionality
between Rp and the [y, captures the influence of the gate-to-drain
field plate (Fig. 6(e)).

As discussed in the next section, the Ly, can be optimized fur-
ther for linearity; since the voltage-dependent Cpy results in an
amplitude-dependent phase shift which affects AM/PM. Longer
lo» exhibit a higher capacitance variation for a given V¢ range
(0Cn/0Vs) (Fig. 8(b)), thereby negatively affecting the phase
distortion.

Non-linear characterization
Measurement setups

This study relies on three different setups which enable the non-
linear and large-signal device characterization to examine various
metrics at different fundamental frequencies. The non-linear vec-
tor network analyzer (NVNA), previously described in [6], pro-
vides non-linear device behavior insight at a fundamental
frequency (fy) of 6 GHz under unmatched conditions (50 €2)
with the harmonics acquired up to 18 GHz (3f;) [20]. The

'_‘75 I I I
?;:, o

3

Tesf o -
%

S 60}-0
360 ~ -
a
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frequency specifications of some setup components, such as the
pre-amplifier and the coupler, limit the acquisition of higher-
order harmonics. The matched large-signal performance of the
devices is measured using passive continuous-wave load-pull set-
ups calibrated at 6 and 28 GHz (Fig. 9). Load-pull measurements
rely on controlling the reflection factor (I) presented to the
device, which is the ratio of the reflected power to the injected
power wave into the load [21]. In passive load-pull measurements,
the transmission losses and the tuner reflection capacity limit the
achievable loads; hence the [ is always less than 1, rendering all
the achievable impedances inside the smith chart. The losses of
the coupler, connected between the tuner and the DUT, limit the
I to 0.69 (voltage standing wave ratio (VSWR) ~5.6) in the 6
GHz setup. In the 28 GHz load-pull measurement setup, the
tuner is connected directly to the probe, thereby enabling a high
I of 0.891 (VSWR ~ 17.4). Rigorous calibration moves the refer-
ence plane to the tip of the 100 um-pitch ground-signal-ground
(GSG) probes. The devices are biased in the frequently preferred
class AB since this class offers advantages in terms of linearity
and efficiency when compared to classes B and A, respectively
[22]. This study considers two bias conditions; a mid-class AB
bias point, consistent with the NVNA results presented in [6], at
a current density of 320 mA/mm, and a deep class-AB bias at 60
mA/mm.
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Fig. 8. (a) The ratio between fr and the product of Rg and Cgp extracted from Rg modeling and TCAD simulations. (b) Ciy—Cparasitic; and 0Cyn/dVes versus Vg for varying

lgrp- Ig =190 nm, [ge =220 nm, [gq=170 nm + [y, and Nex Wr=8x25um.
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Fig. 9. Passive load-pull characterization setup with the Focus L-67100 Delta Tuner. Ach

Amplitude and phase distortion

Since GaN HEMTs show soft-compression behavior, the input
power level that results in the peak power-added efficiency
(PAE) and Pg,r is at approximately 3 dB of compression [23].
Hence, the maximum phase distortion reported, computed from
the difference between the phase of the measured B2 and Al
waves, is at Pgat.
AM/PM = Phase(B2 ) — Phase(Al f). 4)
The reduction of the Ly, results in mitigation of the AM/PM
(Figs 10 and 11) owing to the lower dCj\/0Vs for the smallest
Ly (Fig. 8(b)) [6]. The larger the rate of change of the capacitance
fluctuates for a given Vi range (dCin/0Vs), the higher the phase
distortion [23-25]. The discussion of the impact of the matching
conditions and operating frequency on the distortion will follow.
Although the impact of gate-to-drain capacitance (Cgp) vari-
ation with the excitation amplitude on AM/PM is negligible,
there is an influence of the input Miller reflected Csp on AM/
PM. Such Miller capacitances are dependent on the non-linear
voltage gain (A,) of the device, their loop gain (1 —A,) accord-
ingly varies at the onset of gain compression [26, 27].

9 7 — _
4| lg—190nm V= S-Y-— o _m
m—--— " -5 Z,: Pgpt

6}
5F _

z 4l =30nm f=6GHz

S .| 1pg~320mA/mm

3}
9L Z;‘: 50Q
| [ — o
05-0 1(I)0 léO 260 250 360 3%0 4(I)0 4;30

gfp (nm)

Fig. 10. Phase distortion characteristics at 6 GHz for differing Iy, at unmatched
(NVNA) and matched (load-pull) load conditions with /po =320 mA/mm and V,=8V.
lg =190 nm, lgs =220 nm, lgg=170 nM + [gg,, lgy5) =50 nm, and Npx We=8x 25 um.
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ieved VSWR: 17.4 (I: 0.891), characterization frequency f=28 GHz.

The linearity of the transconductance profile in the region
where Ip is in saturation is critical at high input power levels.
The g, roll-off of GaN HEMTs results in the gain compression
and worsens the linearity in the Pgsr regime. The non-linear
access resistance is a known contributor to this g, roll-off, and
its impact increases with direct proportionality to the drain cur-
rent because of the rise of the electric field in the access region.
Since the area below the field plate acts as a transition between
the non-linear access region and the intrinsic device, it similarly
influences the g, roll-off.

There is consistent direct proportionality of [, and AM/PM at
different matching conditions (Fig. 10), operating frequencies,
and bias points (Fig. 11). A 120 nm gate-to-source field plate, I,
results in a 22% increase in AM/PM compared to a 50 nm Ig
(Fig. 11), implying that the I has a similar impact on AM/
PM as the Ly, These findings infer that the optimal gate field
plate extension lengths for linearity within the optimal range,
defined in section “T-gate geometry: RF small-signal trade-offs,”
are dependent on the target application. Shorter lengths are the
recommended topology for phase distortion-sensitive applications
at low voltage operation to maintain a sweet-spot balance of gain,
AM/AM and AM/PM.

;gfp= !fp(sl
Lato o)

50,50

120,120 250,50 250,120
!gfp’ / fo(s) (nm)

Fig. 11. AM/PM characteristics obtained from the 28 GHz passive load-pull character-
ization for varying lys, l(s) at Ipg =60 mA/mm and Vp=4V. [;=190 nm, lgo =170 nm +
lip(s) lga =170 nm + gg,, and Nex We=8x12.5um. Z, is matched for PAE.
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Fig. 12. (a) Dynamic load lines, obtained from 6 GHz NVNA characterization at different compression levels, superimposed upon the DC characteristics, Ngx Wr=8 x
25 um, g, = lps)= 50 nm, Vg ranges from —6 to 0.8V with a 0.4V step and /pg =200 mA/mm, Vpo=4V. (b) PAE optimal load points obtained from load-pull char-
acterization at 6 and 28 GHz for varying lyf,. [;=190 nm.
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Fig. 14. Median PAE, Ps,; obtained from the 6 GHz passive load-pull characterization of three dies for varying Iy, at Ipg =320 mA/mm and Vp=8V. [; =190 nm, [y =
170 nm + lgy(e), lgg =170 nM + lgg,, lgg, =50 nm, and Nex We=8x25um.
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Fig. 15. Peak PAE, Pg,r obtained from the 28 GHz pas-
sive load-pull characterization varying s, [ at Ipg=
60 mA/mm and Vp=4V. [;=190 nm, lgs=170 nm + lgy(),
lgg =170 nm + g, and Nex Wr=8x12.5um.

Presenting the device with a matched load raises the value of
the distortion (Fig. 10). In single-stage PAs, this impact of a
matched reactive load on AM/PM is linked to implicit non-linear
feedback through the reverse current of the device from the drain
voltage phase to the drain current phase [26]. The need for
inductive tuning for device matching is due to the capacitive
nature of the device, which results in an elliptical dynamic load-
line (Fig. 12(a)) [5]. The dynamic load-line shifts and extends
outside the DC IV characteristics as the device is pushed further
into compression. The average RF current value also increases,
which results in the commonly observed rise in Ip at higher
input power levels. The network capacitance rises further as the
device is pushed into saturation, necessitating inductive tuning
(Fig. 12(b)) for matched conditions where the device delivers
peak RF performance. The change in the optimal load impedance
with the operating frequency explicates the difference in AM/PM
values at 6 and 28 GHz (Fig. 12(b)).

Large-signal metrics

Following the g, and fr trends, the 6 GHz load-pull characteriza-
tion under matched conditions for Ly, of 120 nm and 1.32 um
shows a reduction in the device power gain for the longer [y, lead-
ing to a lower Psyr and PAE (Fig. 13). The PAE continues to
improve with decreasing the Ly, until it saturates for lengths
between 250 and 50 nm. The Pgyr follows the same direction
until it declines for a 50 nm [y, (Fig. 14). Performing load-pull
at 28 GHz leads to similar observations (Fig. 15). Varying the
Iy shows a decline in PAE for the longer 120 nm length. To
optimize the T-gate geometry for low-voltage (Vp<10V)
mm-wave operation and considering the previous findings with
regards to the device gain, AM/AM, AM/PM, and large-signal
performance, the smallest feasible [, is the recommended choice
in the range where the ratio between fr and 7r,c,, does not
sharply decline.

Conclusion

This optimization study of T-gate geometries for linearity and
improved large-signal performance indicates an optimum range
for the gate field plate extension lengths for downscaled devices
targeting mm-wave operation. The ratio of fr and the product
of gate resistance and gate-to-drain capacitance defines this opti-
mum, thus accounting for the sharp increase in gate resistance
with aggressively downscaled gate field plates. Within that opti-
mal range, a symmetric T-gate with a smaller gate field plate is
ideal for phase distortion-sensitive applications since we find
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that AM/PM is inversely proportional to the gate field plate length
in consequence of the direct proportionality between phase dis-
tortion and capacitance. This T-gate configuration provides the
best trade-off for gain and phase linearity, thus improving the
large-signal performance metrics, PAE, and Pg4r:

Conflict of interest. None.
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