DECOMPOSITIONS OF LOCALIZED FIBRES AND COFIBRES

BY JOHN OPREA

ABSTRACT. In this paper *p*-local versions of the Rational Fibre and Cofibre Decomposition Theorems are given. In particular, if there exists an element in the *n*th Gottlieb group of a space F such that its image under the Hurewicz map has infinite order, then $F \simeq_p \mathcal{F} \times S^n$ for almost all primes p. A dual result is proved for cofibrations.

Introduction. In topology it has become commonplace to study spaces in terms of the fibrations of which they are a part. The fact of a space's position in a given fibration often reveals a great deal about the structure of the space itself. This viewpoint is exemplified by Cartan's analysis [1] of the cohomological structure of homogeneous spaces via consideration of the fibration

$$G/K \to BK \to BG$$
.

As a further example of this approach we mention the following result independently proved by several authors. (See the list in [10] and add to it I. Berstein, who, according to John Harper, knew the result in the early 1960's.)

THEOREM 1. If $F \to E \xrightarrow{p} B$ is a fibration of simply connected rational spaces of finite type and $p_{\#}$ is injective, then F has the homotopy type of a product of $K(\mathbf{Q}, n)$'s.

This theorem and the result of Cartan form a starting point for an investigation into the structure of spaces which occur as fibres. The rational situation was considered in [10]:

Theorem 2. If $F \to E \to B$ is a fibration of simply connected rational spaces of finite type, then there is a subproduct $K \subset \Omega B$ and a space \mathscr{F} such that $F \simeq \mathscr{F} \times K$ and $H^*(K) \cong Im(\partial^*:H^*(F) \to H^*(\Omega B))$.

(Recall that if B is rational, then ΩB is a product of $K(\mathbf{Q}, n)$'s.) If, for example, F is the rationalization of a finite complex, then $H^*(F)$ has finite dimension. This implies that no factor of K may have the form $K(\mathbf{Q}, 2n)$ since the cohomology algebra of such a space is a polynomial algebra of infinite

Received by the editors December 19, 1986, and, in revised form, June 12, 1987.

AMS Subject Classification (1980): Primary 55P99, 55P60.

[©] Canadian Mathematical Society 1987.

dimension. Each factor of K then looks like a rationalized sphere $S_{\mathbf{Q}}^{2n+1} \simeq K(\mathbf{Q}, 2n+1)$ and we have,

$$F \simeq \mathscr{F} \times \prod S_{\mathbf{O}}^{2n+1}$$
.

It is natural to ask if there are non-rational splittings of this form. In [9] McGibbon and Wilkerson showed that the decomposition of a rational loop space into $K(\mathbf{Q}, n)$'s has a p-local analogue for almost all primes p. Namely,

THEOREM 3. If X is a finite simply connected complex with $\dim(\pi_*(X) \otimes \mathbb{Q}) < \infty$, then for almost all p,

$$\Omega X \simeq_n \Pi S^{2n-1} \times \Pi \Omega S^{2m-1}$$

This result indicates that a p-local version of Theorem 2 might also exist. The purpose of this note is to verify this belief in an elementary fashion using the argument for the rational situation as a model and amplifying it via the introduction of an idea borrowed from the McGibbon-Wilkerson proof.

Conventions. Throughout this note we freely use the techniques and fundamental results of homotopy theoretic localization. Standard references are [8] and [13] for example. For a set of primes Q, we write $\mathbf{Z}[Q^{-1}] = \{(a/b)|a, b \in \mathbf{Z} \text{ and } b \text{ is a product of primes in } Q\}$. Of course, $X[Q^{-1}]$ then denotes a corresponding homotopical localization of the space X.

1. P-local fibre decomposition.

In order to motivate the proof of p-local fibre decomposition given below, we briefly review the rational situation. Let $F \to E \to B$ be a fibration of simply connected rational spaces with finite Betti numbers. Denote the Hurewicz map of F by h and the connecting map of the fibration by ∂ . Because $\Omega B \simeq \Pi K(\mathbf{Q}, i)$, there is a subproduct K such that the restriction $h\partial_{\#}:\pi_{*}(K) \to H_{*}(F)$ is an isomorphism onto $h\partial_{\#}(\pi_{*}(\Omega B))$. We may dualize via the bijections

$$\operatorname{Hom}(H_n F, \mathbf{Q}) \cong H^n(F; \mathbf{Q}) \cong [F, K(\mathbf{Q}, n)]$$

to obtain a map $\theta: F \to K$ with $\theta \partial \simeq \mathrm{id}_K$. If \mathscr{F} denotes the homotopy fibre of θ , then we have a fibration with homotopy section,

$$\mathscr{F} \xrightarrow{i} F \xrightarrow{\theta} K$$

which induces $\pi_*(F) \cong \pi_*(\mathscr{F}) \oplus \pi_*(K)$. Now, the operation of ΩB on F derived from the original fibration allows the realization of this isomorphism by the composition,

$$K \times \mathscr{F} \to \Omega B \times F \to F$$
.

Hence, $F \simeq \mathscr{F} \times K$.

These same ingredients, together with one very important addition, go into p-local decomposition as well. Note, however, although the vector space structure inherent in working over \mathbf{Q} allowed us to split K in one step, we cannot expect this in general. We therefore split off one sphere at a time.

THEOREM 4. Let $F \xrightarrow{i} E \xrightarrow{p} B$ be a fibration of simply connected spaces of finite type and suppose F is a finite complex. If there exists $\alpha \in \text{Ker}(i_{\#}:\pi_n F \to \pi_n E)$ such that the Hurewicz image $h(\alpha)$ has infinite order in $H_n(F; \mathbb{Z})$, then for almost all primes p,

$$F \simeq_p \mathscr{F} \times S^n$$
.

REMARKS. (1) Note that n must be *odd* because Ker $i_{\#} = \text{Im } \partial_{\#}$ and, for finite complexes, Im ∂_{2i} consists of torsion elements ([2]). Hence $h(\alpha)$ is torsion for all $\alpha \in \pi_{2i}(F)$.

- (2) By our previous remarks, this decomposition is compatible with the rational decomposition of Theorem 2.
- (3) Theorem 2 includes the information that $H^*(K) \cong \operatorname{Im}(\partial^*:H^*(F) \to H^*(\Omega B))$. This fact has many applications (see [11]). A *p*-local analogue is unknown.

PROOF OF THEOREM 4. Let $H_n(F) = A \oplus T$ where A and T denote the free and torsion parts of $H_n(F)$ respectively. Now $h(\alpha)$ has the form,

$$h(\alpha) = \lambda_1 a_1 + \ldots + \lambda_k a_k + t$$

where $\{a_i\}$ is a basis for A and $t \in T$. Because $h(\alpha)$ has infinite order, some $\lambda_i \neq 0$. Without loss of generality, assume $\lambda_1 = \lambda \neq 0$ and let Q_1 denote the set of primes occurring in the prime factorization of λ .

We can now define a map $\phi: F \to K(\mathbf{Z}[Q_1^{-1}], n)$ by observing that the following inclusion and bijection,

$$\text{Hom}(H_n F, \mathbf{Z}[Q_1^{-1}]) \to H^n(F; \mathbf{Z}[Q_1^{-1}]) \cong [F, K(\mathbf{Z}[Q_1^{-1}], n)]$$

allow the construction of ϕ by specifying $\Phi \in \text{Hom}(H_n F, \mathbb{Z}[Q_1^{-1}])$. Define Φ by:

$$\Phi(a_1) = 1/\lambda$$
, $\Phi(a_i) = 0$ for $i \ge 2$ and $\Phi(T) = 0$.

Let $i:S^n \to K(\mathbf{Z}[Q_1^{-1}], n)$ represent $1 \in \mathbf{Z}[Q_1^{-1}]$ and denote by Q_2 the set of primes p which divide the order of some $\pi_i(S^n)$ with $n < i \le \dim F$. Then, for $Q = Q_1 \cup Q_2$,

$$S^{n}[Q^{-1}] \xrightarrow{\overline{i}} K(\mathbf{Z}[Q_{1}^{-1}], n)[Q_{2}^{-1}] = K(\mathbf{Z}[Q^{-1}], n)$$

is a (dim F)-equivalence. This implies that the groups $H^{s+1}(F; \pi_s)$ (fibre of \overline{i})

vanish for all s. Hence, by obstruction theory, we obtain a lifting θ in the following diagram,

$$S^{n}[Q^{-1}]$$

$$\downarrow i$$

$$\downarrow i$$

$$K(\mathbf{Z}[Q^{-1}], n).$$

 $(\bar{\phi} \text{ denotes the composition of } \phi \text{ with the localization of spaces corresponding to the inclusion } \mathbf{Z}[Q_1^{-1}] \to \mathbf{Z}[Q^{-1}] \text{ determined by } 1 \mapsto 1.)$

We intend to use the localized maps $\overline{\theta}$ and $\overline{\alpha}$ as our fibre map and splitting respectively. To show that $\overline{\theta}\overline{\alpha} \simeq \mathrm{id}_{S^n[O^{-1}]}$ we first compute:

$$\overline{i}_*\theta_*\alpha_*(1) = \overline{\phi}_*\alpha_*(1)$$

$$= \overline{\phi}_*h\alpha_*(1)$$

$$= \overline{\phi}_*h(\alpha)$$

$$= \Phi(\lambda a_1 + \ldots + \lambda_k a_k + t)$$

$$= \lambda(1/\lambda)$$

$$= 1.$$

Since $\overline{i}_* = \operatorname{id}$ in dimension n, we see $\theta_*\alpha_*(1) = 1$. Hence $(\theta\alpha)_*$ is the localization homomorphism $\mathbf{Z} \to \mathbf{Z}[Q^{-1}]$ given by $x \mapsto x \otimes 1$. This inclusion extends naturally to the identity $\mathbf{Z}[Q^{-1}] \to \mathbf{Z}[Q^{-1}]$. Now, the universal coefficient theorem and the Hopf-Whitney classification provide bijections,

$$[S^n, S^n[Q^{-1}]] \cong H^n(S^n; \mathbf{Z}[Q^{-1}]) \cong \operatorname{Hom}(H_nS^n, \mathbf{Z}[Q^{-1}])$$

 $\cong \operatorname{Hom}(\mathbf{Z}, \mathbf{Z}[Q^{-1}]),$

which reveal $\theta \alpha$ to be the homotopical localization $S^n \to S^n[Q^{-1}]$ realizing $(\theta \alpha)_*$. Consequently, with respect to this localization, the induced map $\theta \overline{\alpha} : S^n[Q^{-1}] \to S^n[Q^{-1}]$ realizes id: $\mathbf{Z}[Q^{-1}] \to \mathbf{Z}[Q^{-1}]$ and is therefore homotopic to the identity on $S^n[Q^{-1}]$.

Now, let \mathscr{F} denote the homotopy fibre of $\overline{\theta}$. We then have a fibration with homotopy section,

$$\mathscr{F} \xrightarrow{j} F[Q^{-1}] \overset{\overline{\theta}}{\underset{\overline{\alpha}}{\rightleftharpoons}} S^n[Q^{-1}]$$

which induces $\pi_*(F[Q^{-1}]) \cong j_\#(\pi_*\mathscr{F}) \oplus \bar{\alpha}_\#(\pi_*S^n[Q^{-1}])$.

We now invoke the hypothesis $\alpha \in \operatorname{Ker} i_{\#}$ for the fibration $F \xrightarrow{l} E \xrightarrow{p} B$. Because $\operatorname{Ker} i_{\#} = \operatorname{Im} \partial_{\#}$, there exists $\beta \in \pi_{n}(\Omega B)$ with $\partial_{\#}(\beta) = \alpha$. It follows that $\partial_{\#}(\overline{\beta}) = \overline{\alpha}$ for the localized fibration $F[Q^{-1}] \to E[Q^{-1}] \to B[Q^{-1}]$ as well. The operation of $\Omega B[Q^{-1}]$ on $F[Q^{-1}]$ provides a composition,

$$S^n[Q^{-1}] \times \mathscr{F} \xrightarrow{\overline{\beta} \times j} \Omega B[Q^{-1}] \times F[Q^{-1}] \xrightarrow{c} F[Q^{-1}]$$

where $c_{\#}$ is given by $c_{\#}(x, y) = \partial_{\#}(x) + y$ (see [7]). We then have

$$c_{\#}(\overline{\beta}_{\#} \times j_{\#})(x, y) = \partial_{\#}\overline{\beta}_{\#}(x) + j_{\#}(y) = \overline{\alpha}_{\#}(x) + j_{\#}(y).$$

Since this is the form of the direct sum decomposition of $\pi_*(F[Q^{-1}])$ derived above, we see that $c_\#(\overline{\beta}_\# \times j_\#)$ is an isomorphism. Hence, $c(\overline{\beta} \times j)$ is a homotopy equivalence.

Finally, observe that Q is a *finite* set of primes and, for any $p \notin Q$, we have $F \simeq_p \mathscr{F} \times S^n$.

EXAMPLES. (1) The Hopf fibration $S^3 \xrightarrow{i} S^7 \to S^4$ is the first example which comes to mind. Here, $\operatorname{Ker}(i_{\#})_3 = \pi_3 S^3 \cong \mathbb{Z}$ (and, of course, h_3 is an isomorphism), so $\mathscr{F} = pt$.

(2) In contrast with the Hopf fibration, it is usually too much to ask that α as in Theorem 4 generates a **Z**-summand. In fact, except for n = 1, 3, 7, the Stiefel fibration with n = odd,

$$S^n \to V_{n+2} \xrightarrow{p} S^{n+1}$$

has $\operatorname{Ker}(i_{\#})_n = 2\mathbf{Z} \subset \mathbf{Z} \cong \pi_n S^n$. (Here, $V_{n,k}$ denotes the Stiefel manifold of k-planes in \mathbf{R}^n and we have identified $S^{n+1} = V_{n+2,1}$.) Also, if X is any finite 1-connected complex, then the fibration

$$X \times S^n \to X \times V_{n+2,2} \xrightarrow{* \times p} S^{n+1}$$

gives $X \simeq_p \mathscr{F}$ for almost all p. In both of these examples, the splitting of the theorem results from inverting 2 (since $h(2\iota) = 2\iota$, where ι generates $\pi_n S^n \cong H_n S^n$), rather than from the original product structure.

- (3) Note that the theorem is not true if F is not finite. For example, consider the fibration $\mathbb{C}P(\infty) \xrightarrow{i} E \to S^3$ obtained by pulling back the path fibration of $K(\mathbf{Z}, 3)$ via the degree 1 map $S^3 \to K(\mathbf{Z}, 3)$. The pullback gives $\ker i_\# = \pi_2 \mathbb{C}P(\infty) \cong H_2 \mathbb{C}P(\infty) \cong \mathbf{Z}$, but clearly $\mathbb{C}P(\infty) \neq_p \mathscr{F} \times S^2$ for any p. To see this, compare homotopy groups or note that the cohomology algebra of $\mathbb{C}P(\infty)$ is a polynomial algebra on a degree 2 generator for any coefficients, while the degree 2 generator of the cohomology of $\mathscr{F} \times S^2$ is the "spherical" generator and so has square zero.
- (4) Theorem 4 may be extended to the non-simply connected situation (see [12]). Let X be a space with $H_1(X; \mathbb{Z})$ finitely generated and let $X \xrightarrow{i} E \to B$ be a fibration. If there exists $\alpha \in \text{Ker } i_\# \text{ with } h(\alpha)$ of infinite order, then there is a finite cyclic cover \widetilde{X} of X with $\widetilde{X} \simeq Y \times S^1$.

2. Some consequences.

An $\alpha \in \text{Ker } i_{\#}$ (as in Theorem 4) belongs to the *n*th Gottlieb group of F, denoted $G_n(F)$. (See [4] for the definition.) Gottlieb was the first to study this subgroup of $\pi_n F$ and use it to investigate spatial structure. In particular, he proved (see [5] or [6]) that if $\alpha \in G_n(F)$ and $h_p(\alpha) \neq 0$, then $H^*(F; \mathbb{Z}/p) \cong M \otimes H^*(S^n; \mathbb{Z}/p)$ as \mathbb{Z}/p -modules. (Here, h_p denotes the composition $\pi_n F \to H_n(F; \mathbb{Z}/p)$.) The hypothesis of Theorem 4 is stronger than Gottlieb's condition, but the equivalence $F \simeq_p \mathscr{F} \times S^n$ produces the stronger conclusion:

COROLLARY 5. For $p \notin Q$, there is a \mathbb{Z}/p -algebra isomorphism

$$H^*(F; \mathbb{Z}/p) \cong H^*(\mathscr{F}, \mathbb{Z}/p) \otimes H^*(S^n; \mathbb{Z}/p).$$

QUESTION. For $p \in Q$, can Gottlieb's \mathbb{Z}/p -module decomposition of $H^*(F; \mathbb{Z}/p)$ be strengthened to a \mathbb{Z}/p -algebra decomposition?

Of course, Corollary 5 has the following immediate consequence obtained from the product formula for Euler characteristic and the easily proven equality $\chi(F) = \chi(H_*(F; \mathbf{Z}/p))$.

COROLLARY 6. The Euler characteristic of F vanishes.

Finally, we present a corollary very much in the spirit of Theorem 5-2, Corollary 5-3 and Corollary 5-5 of [4].

COROLLARY 7. If dim F = n, then (i) $F[Q_1^{-1}] \simeq S^n[Q_1^{-1}]$, (ii) $F[Q_1^{-1}]$ is an H-space, (iii) n = 1, 3 or 7 when $2 \notin Q_1$ and (iv) $F \simeq S^1$, S^3 or S^7 when $h(\alpha)$ is a generator.

PROOF. (i) First, note that we may take Q_2 to be empty since $S^n[Q_1^{-1}]$ and $K(\mathbf{Z}[Q_1^{-1}], n)$ are already $n = \dim F$ equivalent. From Theorem 4 we obtain, $F[Q_1^{-1}] \simeq \mathscr{F} \times S^n[Q_1^{-1}]$. However, this can only occur when \mathscr{F} is trivial, for the "product" of a non-trivial class in $H_*(\mathscr{F})$ with a class in $H_n(S^n[Q_1^{-1}])$ would produce homology in $H_*(F[Q_1^{-1}])$ of degree greater than n.

- (ii) From the proof of Theorem 4, $\overline{\theta}\overline{\alpha} \simeq \operatorname{id}$ while $\overline{\alpha} = \overline{\partial}\overline{\beta}$ is a homotopy equivalence by (i). Hence, $\overline{\partial}\overline{\beta}\overline{\theta} \simeq \overline{\alpha}\overline{\theta} \simeq \operatorname{id}$ as well, so $F[Q_1^{-1}]$ is a weak retract of $\Omega B[Q_1^{-1}]$ and therefore is an H-space.
- (iii) If $2 \notin Q_1$, then it is well known that $S^n[Q_1^{-1}]$ is an *H*-space only when n = 1, 3 or 7.
- (iv) If $h(\alpha)$ is a generator of infinite order, then we may take $\lambda = 1$. Hence, Q_1 is empty and, by (i) and (iii), $F \simeq S^1$, S^3 or S^7 .

3. Cofibrations.

If $X \to Y \to C$ is a cofibration of simply connected rational spaces, then there is a decomposition of the cofibre C which is Eckmann-Hilton dual to the

fibre decomposition of Theorem 2. Briefly, the decomposition is obtained as follows (see [10]). Extend the cofibration to the next term in the Puppe sequence, $X \to Y \to C \xrightarrow{\partial} \Sigma X$ and note that $\Sigma X \simeq VS_{\mathbb{Q}}^n$ (i.e., the dual to $\Omega B \simeq \Pi K(\mathbb{Q}, n)$). Now consider $\mathrm{Im}(\partial_* h: \pi_* C \to H_* C \to H_*(\Sigma X))$ and observe that, since $H_*(\Sigma X) \cong H_*(VS_{\mathbb{Q}}^n) \cong \oplus \mathbb{Q}$, $\mathrm{Im}\ \partial_* h$ is realized by a subwedge $S \subset \Sigma X$. We may choose a subspace V in $\pi_* C$ represented by $VS^{n_j} \to C$ such that the restriction $\partial_* h: V \to H_*(S)$ is an isomorphism. An inverse of this isomorphism is realized by $S \to VS^{n_j}$ and the composition gives $S \to C$. Now, there is a projection $\Sigma X \to S$ and the composition

$$S \to C \to \Sigma X \to S$$

is then homotopic to the identity on S. If \mathscr{C} denotes the cofibre of $S \to C$, we have obtained a cofibration with homotopy retraction

$$S \to C \to \mathscr{C}$$

which gives $H_*(C) \cong H_*(S) \oplus H_*(\mathscr{C})$. The cooperation of ΣX on C (see [7]), $C \to CV\Sigma X$ then gives,

$$C \to CV \Sigma X \to \mathscr{C}VS$$
,

which realizes the isomorphism on homology. Hence $C \simeq \mathscr{CVS}$.

Using this approach as a model, we can now prove an Eckmann-Hilton dual to Theorem 4. Because the proof is dual (with a minor adaptation) to that of Theorem 4, we omit some details.

THEOREM 8. Let $X \to Y \to C$ be a cofibration of simply connected, finite CW complexes. If $\alpha \in \pi_n C$ and $\partial_* h(\alpha)$ is of infinite order in $H_n(\Sigma X; \mathbb{Z})$, then for almost all primes p,

$$C \simeq_p \mathscr{C}VS^n$$
.

PROOF. Let $H_n(\Sigma X) = A \oplus T$ and suppose $\partial_* h(\alpha) = \lambda a_1 + \ldots + \lambda_k a_k + t$, $\lambda \neq 0$. Let Q_1 denote the primes in λ and obtain $\phi: \Sigma X \to K(\mathbf{Z}[Q_1^{-1}], n)$ by defining $\Phi \in \text{Hom}(H_n\Sigma X, \mathbf{Z}[Q_1^{-1}])$:

$$\Phi(a_1) = 1/\lambda, \, \Phi(a_i) = 0, \, i \ge 2 \text{ and } \Phi(T) = 0.$$

Let Q_2 denote the primes required to make

$$S^n[Q^{-1}] \xrightarrow{i} K(\mathbf{Z}[Q^{-1}], n)$$

a dim(ΣX)-equivalence, where $Q=Q_1\cup Q_2$. As before, obstruction theory provides a map $\theta:\Sigma X\to S^n[Q^{-1}]$ with $i\theta\simeq\phi$. The same computation as before shows that the composition

$$S^n \xrightarrow{\alpha} C \xrightarrow{\partial} \Sigma X \xrightarrow{\theta} S^n[Q^{-1}]$$

induces the localization $x \mapsto x \otimes 1$ in homology. Hence, the localized map $\overline{\theta \partial i}$ is homotopic to the identity.

The cofibration

$$S^n[Q^{-1}] \xrightarrow{} C[Q^{-1}] \xrightarrow{j} \mathscr{C}$$

then splits $H_*(C[Q^{-1}])$ as $H_*(\mathscr{C}) \oplus H_*(S^n[Q^{-1}])$. The cooperation map of the original cofibration provides (after localization),

$$C[Q^{-1}] \rightarrow C[Q^{-1}]V\Sigma X[Q^{-1}] \rightarrow \mathscr{C}VS^n[Q^{-1}]$$

which induces an isomorphism on homology and so is a homotopy equivalence. Hence, for $p \notin Q$, $C \simeq_p \mathscr{C}VS^n$.

REMARK. The results of Felix-Lemaire [3] indicate that the techniques presented here have implications for decompositions in the tame homotopy category as well.

ACKNOWLEDGEMENT. I would like to thank the referee for his helpful comments and suggestions, all of which led to improvements in this work.

REFERENCES

- 1. H. Cartan, La transgression dans un groupe de Lie et dans un espace fibré principal, Colloque de Topologie, Bruxelles 1950, pp. 57-71.
- 2. Y. Felix and S. Halperin, Rational L.S. category and its applications, TAMS, 273 no. 1 (1982), pp. 1-36.
- 3. Y. Felix and J. M. Lemaire, On the mapping theorem for Lusternik-Schnirelman category, Topology 24 no. 1 (1985), pp. 41-43.
- 4. D. Gottlieb, Evaluation subgroups of homotopy groups, Amer. J. Math. 91 (1969), pp. 729-756
 - 5. ——, The evaluation map and homology, Mich. Math. J. 19 (1972), pp. 289-297.
- 6. ——, Witnesses, transgressions and the evaluation map, Ind. Math. J. 24 no. 9 (1975), pp. 825-836.
 - 7. P. Hilton, Homotopy theory and duality, Gordon and Breach, New York, 1965.
- 8. P. Hilton, G. Mislin and J. Roitberg, Localization of nilpotent groups and spaces, North Holland, Amsterdam, 1975.
- 9. C. A. McGibbon and C. Wilkerson, Loop spaces of finite complexes at large primes, Proc. AMS 96 no. 4 (1986), pp. 698-702.
- 10. J. Oprea, Decomposition theorems in rational homotopy theory, Proc. AMS **96** no. 3 (1986), pp. 505-512.
 - 11. ——, The Samelson space of a fibration, Mich. Math. J. 34 (1987), pp. 127-141.
- 12. ——, A homotopical Conner-Raymond theorem, preprint, Cleveland State University, 1987.
- 13. D. Sullivan, Geometric topology, part I: Localization, periodicity and Galois symmetry, MIT 1970 (mimeographed notes).

CLEVELAND STATE UNIVERSITY CLEVELAND, OHIO 44115