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DECOMPOSITIONS OF LOCALIZED FIBRES AND COFIBRES 

BY 

JOHN OPREA 

ABSTRACT. In this paper p-\ocal versions of the Rational Fibre 
and Cofibre Decomposition Theorems are given. In particular, if 
there exists an element in the nth Gottlieb group of a space F 
such that its image under the Hurewicz map has infinite order, then 
F c^ & X Sn for almost all primes p. A dual result is proved for 
cofibrations. 

Introduction. In topology it has become commonplace to study spaces in 
terms of the fibrations of which they are a part. The fact of a space's position 
in a given fibration often reveals a great deal about the structure of the space 
itself. This viewpoint is exemplified by Cartan's analysis [1] of the cohomologi-
cal structure of homogeneous spaces via consideration of the fibration 

G/K -» BK-> BG. 

As a further example of this approach we mention the following result indepen­
dently proved by several authors. (See the list in [10] and add to it I. Berstein, 
who, according to John Harper, knew the result in the early 1960's.) 

THEOREM 1. If F —> E —> B is a fibration of simply connected rational spaces 
of finite type and p# is infective, then F has the homotopy type of a product of 
K(Q, «)*s. 

This theorem and the result of Cartan form a starting point for an in­
vestigation into the structure of spaces which occur as fibres. The rational 
situation was considered in [10]: 

THEOREM 2. If F —> E —> B is a fibration of simply connected rational spaces 
of finite type, then there is a subproduct K c QB and a space ^ such that 
F ~ & X K and H*(K) = Im(d*:H*(F) -> H*(tiB) ). 

(Recall that if B is rational, then Q,B is a product of K(Q, n)'s.) If, for example, 
F is the rationalization of a finite complex, then H*(F) has finite dimension. 
This implies that no factor of K may have the form K(Q, In) since the 
cohomology algebra of such a space is a polynomial algebra of infinite 
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dimension. Each factor of K then looks like a rationalized sphere S Q + 1 ~ 
K(Q, In 4- 1) and we have, 

F ~ JFX ILS^+1. 

It is natural to ask if there are non-rational splittings of this form. In [9] 
McGibbon and Wilkerson showed that the decomposition of a rational loop 
space into K(Q, «)'s has a /7-local analogue for almost all primes p. Namely, 

THEOREM 3. IfXis a finite simply connected complex with dim(7r5|e(Jf) ® Q) < 
co, then for almost all p, 

ax~pns2n~l x nos2"1"1. 
This result indicates that a p-locsd version of Theorem 2 might also exist. The 
purpose of this note is to verify this belief in an elementary fashion using 
the argument for the rational situation as a model and amplifying it via the in­
troduction of an idea borrowed from the McGibbon-Wilkerson proof. 

CONVENTIONS. Throughout this note we freely use the techniques and funda­
mental results of homotopy theoretic localization. Standard references are [8] 
and [13] for example. For a set of primes g, we write Z[g _ 1 ] = { (a/b)\a, 
b G Z and b is a product of primes in Q}. Of course, X [ g _ 1 ] then denotes a 
corresponding homotopical localization of the space X. 

1. P-local fibre decomposition. 

In order to motivate the proof of /?-local fibre decomposition given below, we 
briefly review the rational situation. Let F —> E —» B be a fibration of simply 
connected rational spaces with finite Betti numbers. Denote the Hurewicz 
map of F by h and the connecting map of the fibration by 8. Because QB ~ 
UK(Q, /), there is a subproduct K such that the restriction hd#\ir^{K) —» 
H*(F) is an isomorphism onto hd#(7r*(2B) ). We may dualize via the 
bijections 

Hom(HnF, Q) = Hn(F; Q) = [F, K(Q, n) ] 

to obtain a map 0:F —> K with 03 ^ id^. If J^ denotes the homotopy fibre of 0, 
then we have a fibration with homotopy section, 

i 0 
J S " ^ F-+K 

which induces TT*(F) = ir^i^F) © 77*(X). NOW, the operation of QB on F derived 
from the original fibration allows the realization of this isomorphism by the 
composition, 

K X ^^SIB X F-> F. 
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Hence, F ~ & X K. 
These same ingredients, together with one very important addition, go into 

/?-local decomposition as well. Note, however, although the vector space 
structure inherent in working over Q allowed us to split K in one step, we 
cannot expect this in general. We therefore split off one sphere at a time. 

THEOREM 4. Let F —> E —> B be a fibration of simply connected spaces of 
finite type and suppose F is a finite complex. If there exists a e Ker(z #:7TnF —» 
irnE) such that the Hurewicz image h(a) has infinite order in Hn(F; Z), then for 
almost all primes p, 

F c^p & X Sn. 

REMARKS. (1) Note that n must be odd because Ker i# = Im 9# and, for 
finite complexes, Im 92l- consists of torsion elements ( [2] ). Hence h(a) is torsion 
for all a e TT2-(F). 

(2) By our previous remarks, this decomposition is compatible with the 
rational decomposition of Theorem 2. 

(3) Theorem 2 includes the information that H*(K) = Im(d* :H*(F) -> 
H*(QB)). This fact has many applications (see [11]). A ^-local analogue is 
unknown. 

PROOF OF THEOREM 4. Let Hn(F) = A © T where A and T denote the free 
and torsion parts of Hn(F) respectively. Now h (a) has the form, 

h{a) = \xax + . . . + Xkak + t 

where {at} is a basis for A and / e T. Because h (a) has infinite order, some 
\t ¥= 0. Without loss of generality, assume A1 = X ¥= 0 and let Qx denote the set 
of primes occurring in the prime factorization of À. 

We can now define a map <j>:F —> K(Z[Q^1], n) by observing that the 
following inclusion and bijection, 

Hom(HnF, Z [S r '] ) -> H"(F; Z[<2f 'l ) = [*", K(Z[Q; ' ] , n)} 

allow the construction of <j> by specifying 3> <E Hom(HnF, Z[g ]f
1]) . Define 

O by: 

$( f l ]) = i / \ , $( a . ) = 0 for i â 2 and $(T) = 0. 

Let i:Sn -> ^ ( Z l g f 1 ] , w) represent 1 G Zlg,"1] and denote by g 2 the set of 
primes p which divide the order of some ^j(Sn) with n < i ^ dim F. Then, for 

Ô = Qx u ô2> 

n e - 1 ] -̂  ̂ (zier1], «)[e2
_1] = *(Z[Ô~1L *> 

is a (dim ^-equivalence. This implies that the groups Hs+l(F; TTS (fibre of /) ) 
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vanish for all s. Hence, by obstruction theory, we obtain a lifting 0 in the 
following diagram, 

^S"[Q-]] 

e ,' 
s 

s _ 

Sn — • F ' £—^K(Z[Q~\ n). 

(<j> denotes the composition of <J> with the localization of spaces corresponding to 
the inclusion Z[Q^~l] -> Z[Q~l] determined by 1 M> 1.) 

We intend to use the localized maps 8 and â as our fibre map and splitting 
respectively. To show that 6â ~ id^rg-h we first compute: 

z'*0*a*(l) = ^ « a ^ l ) 

= **Aa#(l) 

= $*h(a) 

= ®(\ax + .. . + \kak + 0 

= X(l/X) 

= 1 . 

Since /* = id in dimension n, we see 0*a*(l) = 1. Hence (0a)* is the 
localization homomorphism Z —» Z[Q~l] given by x I—» JC 0 1. This inclusion 
extends naturally to the identity Z[Q~l] —» Z [ g - 1 ] . Now, the universal co­
efficient theorem and the Hopf-Whitney classification provide bijections, 

[S\ Sn[Q~1]] = Hn(Sn; Z[Q~1]) = Hom(HnS\ Z[Q~1]) 

= Hom(Z, Z [ e - 1 ] ) , 

which reveal 8a to be the homotopical localization Sn —> Sn[Q~l] realizing 
(0a)*. Consequently, with respect to this localization, the induced map 
6a:Sn[Q~l] -> Sn[Q~l] realizes id:Z[g _ 1] -> Z[g _ 1 ] and is therefore homo-
topic to the identity on Sn[Q~1]. 

Now, let J*" denote the homotopy fibre of 0. We then have a fibration with 
homotopy section, 

a 

which induces TT*(F[Q~l] ) = ./#(**#") 0 â#(^S"[f i"*] ). . 
We now invoke the hypothesis a e Ker z# for the fibration F -> E ^> B. 

Because Ker i# = Im 3 # , there exists /} e ^(fii?) with 8#(/3) = a. It follows 
that 9#08) = â for the localized fibration F[Q~X] -> £ [ 8 - 1 ] "* ^ lÔ" 1 ] as well. 
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The operation of QB[Q ] on F[Q ] provides a composition, 

Sn[Q~l] X & ^ J QB[Q~l] X F[Q~l] -^ F[Q~l] 

where c# is given by c#(x, y) = 3#(x) + y (see [7] ). We then have 

c#(fi# X j#)(x, y) = d#P#(x) + j#(y) = â#(x) + 7#(>>). 

Since this is the form of the direct sum decomposition of IT#(F[Q~ ] ) derived 
above, we see that c#(/?# X j#) is an isomorphism. Hence, c(/? X j) is a homo-
topy equivalence. 

Finally, observe that Q is a finite set of primes and, for any p <£ Q, we have 
F~p^X Sn. 

EXAMPLES. (1) The Hopf fibration S3 —> S1 —> S4 is the first example which 
comes to mind. Here, Ker(/#)3 = 773S3 = Z (and, of course, h3 is an iso­
morphism), so J^ = pt. 

(2) In contrast with the Hopf fibration, it is usually too much to ask that a as 
in Theorem 4 generates a Z-summand. In fact, except for n = 1, 3, 7, the Stiefel 
fibration with n = odd, 

çtn v, I / ±\ çin + 1 

has Ker(i#)w = 2Z c Z = 7rnS
n. (Here, ^ denotes the Stiefel manifold of 

/c-planes in R" and we have identified S"*+1 = P^+2 l-) Also, if X is any finite 
1-connected complex, then the fibration 

* X T) 

X X Sn -> X X ^ + 2?2 ^ S"+ 1 

gives X ~p & for almost all p. In both of these examples, the splitting of 
the theorem results from inverting 2 (since h(li) = 2L, where 1 generates 
TTnS

n = HnS
n), rather than from the original product structure. 

(3) Note that the theorem is not true if F is not finite. For example, consider 

the fibration GP(oo) —> E —> S obtained by pulling back the path fibration of 
K(Z, 3) via the degree 1 map S3 —» K(Z, 3). The pullback gives Ker i# = 
772CP(oo) = H2CP(oo) = Z, but clearly CP(oo) ¥=p ^ X S2 for any p. To see 
this, compare homotopy groups or note that the cohomology algebra of CP(oo) 
is a polynomial algebra on a degree 2 generator for any coefficients, while the 
degree 2 generator of the cohomology of & X S2 is the "spherical" generator 
and so has square zero. 

(4) Theorem 4 may be extended to the non-simply connected situation (see 

[12] ). Let X be a space with HX{X\ Z) finitely generated and let X -» E -» B 
be a fibration. If there exists a e Ker i# with /z(a) of infinite order, then there is 
a finite cyclic cover l o f l with X ~ y X S1. 
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2. Some consequences. 

An a G Ker i# (as in Theorem 4) belongs to the nth Gottlieb group of F, 
denoted Gn(F). (See [4] for the definition.) Gottlieb was the first to study this 
subgroup of mnF and use it to investigate spatial structure. In particular, he 
proved (see [5] or [6] ) that if a e Gn(F) and hp(a) * 0, then H*(F; Zip) = 
M ® H*(Sn; Z/p) as Z//?-modules. (Here, h denotes the composition 

h 
TTnF —> HnF —> Hn(F; Z/p).) The hypothesis of Theorem 4 is stronger than 
Gottlieb's condition, but the equivalence F ~ & X Sn produces the stronger 
conclusion: 

COROLLARY 5. For p £ Q, there is a Z/p-algebra isomorphism 

H*(F; Z/p) S H*& Zip) ® H*(Sn; Z/p). 

QUESTION. For p e Q, can Gottlieb's Z//?-module decomposition of 
H*(F; Zip) be strengthened to a Z//?-algebra decomposition? 

Of course, Corollary 5 has the following immediate consequence obtained 
from the product formula for Euler characteristic and the easily proven equality 

X(F) =xJLHm(F;Z/p)). 

COROLLARY 6. The Euler characteristic of F vanishes. 

Finally, we present a corollary very much in the spirit of Theorem 5-2, 
Corollary 5-3 and Corollary 5-5 of [4]. 

COROLLARY 7. / / d i m F = n, then (i) F[QX
X] ^ Sn[Q^1], (ii) F[QX

X] is an 
H-space, (iii) n = 1, 3 or 1 when 2 £ Qx and (iv) F ~ S1, S3 or S7 when h(a) is a 
generator. 

PROOF, (i) First, note that we may take Q2 to be empty since Sn[Q^~l] and 
K(Z[Q^~l], n) are already n = dim F equivalent. From Theorem 4 we obtain, 
F[QX

X] ~^X Sn[Q^1]. However, this can only occur when & is trivial, for the 
"product" of a non-trivial class in i / * ^ ) with a class in Hn(S

n[Q^1] ) would 
produce homology in H*(F[Q^1] ) of degree greater than n. 

(ii) From the proof of Theorem 4, 6a ~ id while â = 8/? is a homotopy 
equivalence by (i). Hence, dfiO o^ â0 ~ id as well, so F[Q^~ ] is a weak retract 
of QUfgj-1] and therefore is an //-space. 

(iii) If 2 <£ Qh then it is well known that Sn[Q^~l] is an i/-space only when 
n = 1, 3 or 7. 

(iv) If h (a) is a generator of infinite order, then we may take X = 1. Hence, Qx 

is empty and, by (i) and (iii), F ~ S\ S3 or S7. 

3. Cofibrations. 

If Jf—> Y —> C is a cofibration of simply connected rational spaces, then there 
is a decomposition of the cofibre C which is Eckmann-Hilton dual to the 
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fibre decomposition of Theorem 2. Briefly, the decomposition is obtained as 
follows (see [10]). Extend the cofibration to the next term in the Puppe se-

quence, X -> Y -> C -» 2 X and note that 2X ~ VSQ (i.e., the dual to SIB ~ 
UK(Q, n) ). Now consider lm(%Ji:ir*C -» fl*C -> i/*(2X) ) and observe that, 
since H&X) = H*(VSn

Q) = ©Q, Im 8*/z is realized by a subwedge S c 2 X 
We may choose a subspace V in 7r*C represented by KS"7/ —» C such that the 
restriction 9*/z: F—> H*(S) is an isomorphism. An inverse of this isomorphism is 
realized by S —» FS"7/ and the composition gives 5 —> C. Now, there is a projec­
tion 2 X —> S and the composition 

S -> C -» SX -> S 

is then homotopic to the identity on S. If # denotes the cofibre of 5* —» C, we 
have obtained a cofibration with homotopy retraction 

S->C-> ^ 

which gives #*(C) = H*(S) © #*(#) . The cooperation of 2 X on C (see [7] ), 
C -> C F 2 X then gives, 

C -» CF2X -> «VS, 

which realizes the isomorphism on homology. Hence C ~ tfVS. 
Using this approach as a model, we can now prove an Eckmann-Hilton dual 

to Theorem 4. Because the proof is dual (with a minor adaptation) to that of 
Theorem 4, we omit some details. 

THEOREM 8. Let X —> Y —» C be a cofibration of simply connected, finite CW 
complexes. If a e mnC and d*h(a) is of infinite order in i / w (2J ; Z), then for 
almost all primes p, 

C c~p VVS". 

PROOF. Let Hn(2X) = A © Tand suppose 9*/z(a) = Xax + . . . + \kak + /, 
X T̂  0. Let Qx denote the primes in X and obtain <£:2X —> K(Z[Q^l]9 n) by 
defining O e Hom(H„2X9 Z l g f 1 ] ): 

$ («0 = 1/A, *(f l.) = 0, i ^ 2 and 0 (7 ) = 0. 

Let Q2 denote the primes required to make 

S"[Q-l]-^K(Z[Q-l],n) 

a dim(2X)-equivalence, where Q = Q} U Q2. As before, obstruction theory 
provides a map O.^X —» S"[g _ 1] with z"0 ~ <(>. The same computation as before 
shows that the composition 

S " 7 ^ C->2X-> Sn[Q~l] 
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induces the localization x H-> X ® 1 in homology. Hence, the localized map 6 8 i 
is homotopic to the identity. 

The cofibration 

then splits H*(C[Q~l] ) as H*{<ë) 0 HJJSn[Q~x] ). The cooperation map of the 

original cofibration provides (after localization), 

C[Q~l] -> C[Q~l]V2X[Q-1] -> VVSTIQ-1] 

which induces an isomorphism on homology and so is a homotopy equivalence. 
Hence, for p <£ Q, C czp <£VSn. 

REMARK. The results of Felix-Lemaire [3] indicate that the techniques 
presented here have implications for decompositions in the tame homotopy 
category as well. 
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