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NORMAL-PRESERVING LINEAR MAPPINGS 

MATEJ BRES AR AND PETER SEMRL 

ABSTRACT. Let H be a Hilbert space, dim// > 3, and (B(H) the algebra of all 
bounded linear operators on H. We characterize bijective linear mappings on %H) that 
preserve normal operators. 

The problem of characterizing linear mappings on matrix and operator algebras that 
leave invariant certain functions, subsets or relations has attracted the attention of many 
mathematicians in the last few decades [6]. The present work is motivated by the follow­
ing two results of this kind. Kunicki and Hill [5] proved that if Mn is the algebra of all 
n x n complex matrices with n > 3, and if <j> is a normal-preserving linear mapping on 
Mn, then either range of <f> consists of normal operators, or there exists a unitary matrix 
U, a scalar c, and a linear functional/ such that <j> has one of the following forms: 

(i) <j>(A) = cU*AU +f(A)I for all A E M„, 
(ii) <j)(A) = cU*AtTU +/(A)7 for all A E Mn. 
In the infinite-dimensional case we have the following result of Choi, Jafarian and 

Radjavi [3]: Let H be an infinite-dimensional Hilbert space and *B(H) the algebra of 
all linear bounded operators on //. If <j> is a bijective adjoint-preserving and normal-
preserving linear mapping on 15(H) then <j> has one of the forms (i) or (ii), where U E 
11(H) is a unitary operator, / is a linear functional on $(//), and Ati denotes the transpose 
of A relative to any basis of//, fixed in advance. 

The mapping <j>: <B(H) —• ®(/ /0/ / ) given by <f>(A) = A®A shows that in the infinite-
dimensional case we have a normal-preserving linear mapping which is not of the form 
(i) or (ii). Moreover, its range does not consist entirely of normal operators, and therefore, 
the result of Kunicki and Hill can not be extended to the infinite-dimensional case. 

It is the aim of this note to show that the assumption that <j> is adjoint-preserving is 
superfluous in the result of Choi, Jafarian, and Radjavi, thus showing that the description 
of all bijective linear normal-preservers in the infinite-dimensional case is the same as in 
the finite-dimensional case. 

Our approach is different from the one used in the finite-dimensional case [5]. It is 
based on the following result which was proved in [1]. 

THEOREM 1. Let A and SV be centrally closed prime algebras over a field F, such 
that the characteristic of F is different from 2 and 3. Let <j>:A—> !A1be a bijective linear 
mapping satisfying [(j>(x2), (j>(x)] = 0 for all x E $L Here, [w, v] denotes the commutator 
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uv — vu. If neither A nor A! satisfies S4, the standard polynomial identity of degree 4, 
then 

<t>(x) = ap(x) + p(x) 

for allx E A, where c E F, c ^ 0, </? is an isomorphism or an antiisomorphism of A 
onto SV, andp is a linear mapping from A into the center of ft!. 

Let H be a complex Hilbert space with dim H > 3. It is easy to see that $(//) is a prime 
algebra, that is, A #(//)£ = 0, where A, B E #(//), implies A = 0 or B = 0. Moreover, 
(8(H) is centrally closed over the field of complex numbers [7]. By standard PI theory 
[4], a prime ring R satisfies S4 if and only if R is commutative or R embeds in M2(K) 
for some field K. Thus, if dim H > 3, then the algebra ft = ft! = <B(H) satisfies all the 
assumptions of Theorem 1. Obviously, a linear mapping p from $(//) into the center of 
$(//) is of the form p(A) = f(A)I for some linear functional/ defined on *B(H). Here, / 
denotes the identity operator on H. It is well-known [2] that every automorphism ip of 
(8(H) is inner, that is, tp(A) = V~lAV, A E $(//), for some invertible operator V E $(//). 
It follows that every antiautomorphism ip of 13(H) is of the form (p(A) = V~lAtTV, where 
V E 15(H) is invertible and AtT denotes the transpose of V relative to a fixed but arbitrary 
orthonormal basis. 

Now we are ready to prove our result. 

THEOREM 2. Let H be a Hilbert space such that dim H > 3, and let <j>: *B(H) —• 
$(//) be a bijective linear mapping. Assume that <j>(N) is a normal operator whenever 
N E *B(H) is normal. Then there exist a unitary operator U E (B(H), a linear functional 
f on *B(H), and a scalar c such that <j> has one of the forms 

(i) (j>(A) = cU*AU+f(A)IforallA E ®(#), 
(ii) <j)(A) = cU*A*U +f(A)Ifor all A E <B(H). Here, A* denotes the transpose of A 

relative to a fixed basis. 

PROOF. Pick an arbitrary Hermitian operator S E $(//). Then S2 + XS is normal 
for every complex number À. Consequently, (j>(S2) + A</>(5) is normal which further im­
plies [(j>(S2),(j>(S)*] = 0. By the assumption, (j>(S) is normal. This yields together with 
Fuglede's theorem [8, Corollary 1.18] that 

(I) tt(S2),#S)]=0 

for all Hermitian operators S E *B(H). 
Let S and T be arbitrary Hermitian operators from *B(H). Replacing S in (l) by S + T 

we get 

(W(ST + rs), <KS)] + [$(S2i <KT)]) + {[cj>(T2\ <f>(S)} + MST+TS\ <KT)]) = o. 

Putting — T instead of T in the above equation we obtain 

-([$(ST + TSl <KS)] + M(S2l $(T)]) + {[<j>(T2\ <j>(S)} + [<j>(ST + TS\ <j>(T)}) = 0. 
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Comparing these two relations we see that 

(2) [ct>(ST + TSl <KS)] + [<j>(S2\ <KT)] = 0 

for all Hermitian S,T e #(//). 
Let us decompose an arbitrary operator A from $(//) as A = S + iT where S and T are 

Hermitian operators. We have 

[<j>{A2\cj>{A)\ = 

i(W(S2l <KT)] + [<KST + TS), <KS)]) - ([<KST + TS), <KT)] + [(f>iT2\ <f>(S)}). 

Applying (2) we get that 
[<j>{A2\<j>{A)] = 0 

is valid for every operator A E *B(H). 
Using Theorem 1 we see that there exist an invertible operator V E S(//), a nonzero 

complex number c, and a linear functional/ on (8(H) such that <j> is either of the form 

(3) </>(A) = cV~lAV +/(A)/, A E #(//), 

or 

(4) 0(A) = cV~lAtTV +/(A)7, A E S(#), 

where the transposition is taken in any basis fixed in advance. 
In order to complete the proof we have to show that V is a scalar multiple of a unitary 

operator. First, we shall fix some notation. For any x,y E H we shall denote the scalar 
product of these two vectors by y*x, while xy* will denote the rank one operator defined 
by (xy*)z = (y*z)x for z E H. Note that every operator of rank one can be written in this 
form. It is easy to see that a nonzero operator xy* is normal if and only if y is a scalar 
multiple of x. 

Let us first consider the case that <j> is of the form (3). Then for every nonzero vector x 
the operator V~lxx*V = (V~lx)(V*x)* must be normal, or equivalently, for every nonzero 
vector x there exists a complex number A* such that V*x = \xV~lx. If x and y are linearly 
independent vectors from H then 

XxV~lx + XyV-ly = V*(x + y) = Xx+yV~lx + Xx+yV-ly 

implies that Xx = Xx+y = Xy. So, Xx does not depend on the choice of x, and consequently, 
there exists a positive real number À such that V*V = W* — XL It follows that X~XI2V 
is a unitary operator. 

In the case that <j> is of the form (4) we consider the mapping ip(A) = </>(Atr) which 
preserves normality. Using the same approach as above we prove that also in this case V 
is a scalar multiple of a unitary operator. 

REMARKS. Note that whatever discontinuity the mapping </> may have is inherited 
by the linear functional/, and the "essential" part of 0, that is, cU*(-)U or cU*(-)tTUy 
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is automatically continuous. It is worth observing that besides some computations we 
needed only two nontrivial statements for characterizing normal-preserving linear map­
pings on (B(H): Theorem 1 and Fuglede's theorem, which holds true in every C*-algebra. 
Thus, the same method can be applied in order to characterize normal-preserving linear 
mappings on a much larger class of C*-algebras. 
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