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Summary

The fate of lethal alleles in populations is of interest in evolutionary and conservation biology for
several reasons. For instance, lethals may contribute substantially to inbreeding depression. The
frequency of lethal alleles depends on population size, but it is not clear how it is affected by
population structure. By analysing the case of the infinite island model by numerical approaches and
analytical approximations it is shown that, like population size, population structure affects the fate
of lethal alleles if dominance levels are low. Inbreeding depression caused by such alleles is also
affected by the population structure, whereas the mutation load is only weakly affected. Heterosis
also depends on population structure, but it always remains low, of the order of the mutation rate
or less. These patterns are compared with those caused by mildly deleterious mutations to give
a general picture of the effect of population structure on inbreeding depression, heterosis, and the
mutation load.

1. Introduction

The genetic basis of inbreeding depression is of
major importance for evolutionary and conservation
biology. It is widely accepted that partially recessive
deleterious alleles contribute the major portion of
inbreeding depression (Charlesworth &Charlesworth,
1987, 1999). These mutations can be divided into two
classes (Simmons & Crow, 1977; Crow, 1993) : mildly
deleterious partially recessive mutations, and highly
recessive lethal ones. Although less abundant, the
latter class probably causes as much inbreeding
depression as detrimentals (Simmons & Crow, 1977;
Charlesworth & Charlesworth, 1987).

The pattern of inbreeding depression in natural
populations must depend strongly on the kind of
deleterious mutations involved. For instance, popu-
lation structure differentially affects the fate of these
two types of alleles. Weakly deleterious and moder-
ately recessive alleles may be fixed in small popu-
lations (Kimura et al., 1963) or in strongly subdivided
populations (Whitlock et al., 2000). However, if they
are highly recessive they can be purged by drift in

small populations, provided that drift does not over-
whelm selection (Glémin, 2003). In moderately sub-
divided populations they can also be partially purged
if they are highly recessive (Whitlock, 2002; Roze &
Rousset, 2004). Nei (1968) showed that the frequency
of lethal alleles is virtually insensitive to population
size, except if they are fully recessive, in which case
their frequency is much lower in small than in large
populations (see also Wright, 1937). He also argued
that in infinite subdivided populations the deter-
ministic equilibrium should be reached, regardless
of how recessive the alleles are, provided that the
product of the local population size by the migration
rate, Nm, i.e. the number of migrants, is large.
However, Hedrick (2002) recently showed numeri-
cally that the frequency of lethal alleles with low
but non-zero dominance coefficients, compatible with
experimental estimates (h=1–3%; Simmons & Crow,
1977), does depend on the population size. This
suggests that subdivision should also affect the fate
of highly recessive lethal alleles, but it is not clear
how fast the deterministic equilibrium is reached as
Nm increases.

Recently, several theoretical approaches have been
used to investigate inbreeding depression, heterosis
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and the mutation load in subdivided populations
(Whitlock et al., 2000; Theodorou & Couvet, 2002;
Glémin et al., 2003; Roze & Rousset, 2004). How-
ever, none of these studies explicitly focused on
highly recessive lethals alleles, mainly because they
violate the assumptions of the methods used (except
the one by Theodorou & Couvet, 2002). For instance,
the moment method developed by Glémin et al.
(2003) is inappropriate for highly recessive alleles
as it assumes that selection mainly occurs against
heterozygotes. Roze & Rousset (2003) developed a
general method for deriving diffusion approximations
in subdivided populations and applied it to deleteri-
ous alleles causing inbreeding depression (Roze &
Rousset, 2004). However, they assumed weak selec-
tion to ensure that coalescence occurs within demes
before selection modifies the allele frequencies. This
method is thus also inappropriate for lethal alleles.

Here, we analyse the infinite island model for lethal
alleles. Some analytical approximations are given and
checked against accurate numerical computations.
We investigate how population structure can affect
the fate of lethal alleles for various dominance levels,
and the magnitude of the resulting inbreeding de-
pression, heterosis and mutation load.

2. Mean and variance of lethal allele frequency

(i) General background

Consider a single locus with two alleles : a wild-type
and a mutant deleterious allele. The fitness of
the genotypes with 0, 1 or 2 deleterious alleles are
1, 1xhs, and 1xs, respectively. As this study focuses
on lethal alleles, it is assumed that s is close to 1 and
h close to 0. Mutation occurs from the wild-type to
the lethal allele at rate u, and at rate v in the reverse
direction. Consider an infinite island model with
symmetricmigration occurring at ratem. All the demes
have the same size N. At equilibrium, the probability
density function of the frequency of the deleterious
allele within a deme is given by Wright’s formula
(Wright, 1937) :

W(x)=C(1xx)4N(v+m (1xx̄))x1x4N(u+mx̄)x1

r(1x2hsxxs(1x2h)x2)2N,
(1a)

W(x) �C(1xx)4N(v+m (1xx̄))x1x4N(u+mx̄)x1

rex4Nhsxx2N(1x2h)sx2

,
(1b)

where C is a constant such that
R 1
0 W(x)dx=1, and x̄ is

the equilibrium mean frequency of the deleterious
frequency and is implicitly given by:

x̄=
Z 1

0
xW(x)dx: (2)

It is worth noting that in Wright’s equation infini-
tesimal changes in allele frequencies due to selection,
migration and mutation are assumed to be small
enough to neglect the interaction among them. When
m tends towards 1 the use of Wright’s equation can
be problematic (see below). In general, equation (2)
has no analytical solution. It can be solved numeri-
cally by iteration: starting from an arbitrary x̄
introduced in W, a new x̄ is computed from (2), which
is itself introduced in W at the next step. This pro-
cedure is iterated until convergence (see for example
Whitlock et al., 2000). The frequency of a lethal allele
in the infinite island model was thus investigated
numerically using the function NIntegrate of the
Mathematica software (Wolfram, 1996). For low
values of Nu and Nm,W diverges in x=0 (and in x=1
for weak selection). In this case, integration tech-
niques given by Kimura et al. (1963) were used.
Knowing x̄, second and higher moments can then
be easily computed. In what follows, some approx-
imations for the mean and variance of the allele
frequency are also given.

(ii) Low migration approximation

Several approximations can be made. First, the fre-
quency of the lethal allele will remain small over most
conditions, such that x51 and x̄51. The first part
of equation (1b), (1xx)4N(v+m(1xx̄))x1, can thus be
approximated by 1 as in Nei (1968). However, this
will be valid only for Nm51 which is much more
restrictive than the condition Nv51 for a single
population. A better approximation is given by:

(1xx)4N(v+m(1xx̄))x1 � ex(4Nmx1)x � ex4Nmx:

Thus we can write :

W(x)=CxAx1exBxxSx2

where A=4N(u+mx̄), B=4N(hs+m) and S=
2N(1x2h)s.

The mean frequency can be computed according
to equation (2). However, as W(x) vanishes very
quickly as x tends to infinity, one can integrateW over
0 to infinity instead of 1 (see Nei, 1968). This leads
to the implicit formula to the mean frequency of the
lethal allele :

E[x]=x̄=ffiffiffi
S

p
C 1+A

2

� �
F 1+A

2
, 1
2
, B

2

4S

� �
xBC 1+A½ �F 1+A

2
, 3
2
, B

2

4S

� �
SC A

2

� �
F A

2
, 1
2
, B

2

4S

� �
xB

ffiffiffi
S

p
C 1+A

2

� �
F 1+A

2
, 3
2
, B

2

4S

� � (3)

where C is the Gamma function and F is Kummer’s
confluent hypergeometric function (Abramowitz &
Stegun, 1970). Equation (3) cannot be solved
analytically. For A51, however, Taylor expansion of
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equation (3) in A leads to a tractable linear equation
in x̄:

E[x]=
A

2
ffiffiffi
S

p e
B2
4SErfc

B

2
ffiffiffi
S

p
� �

(4)

where Erfc denotes the complementary error function
(Abramowitz & Stegun, 1970).

The solution of equation (4) is :

E[x]=U
2ex

B2
4S

ffiffiffi
S

p

ffiffiffi
p

p
Erfc B

2
ffiffi
S

p
h ixM

0
@

1
A

x1

(5)

with U=4Nu and M=4Nm.
For h=0, equation (5) is a good approximation

only for Nm less than about 30. However for h>0,
equation (5) is very accurate even for higher migration
rates and population sizes. We can give a simpler
expression: recalling that Z= B

2
ffiffi
S

p =2
ffiffiffi
N
s

q
(hs+m) will

be small for low migration rates and very recessive
alleles, and using exZ2 �1 and Erfc[Z] �1x 2Zffiffi

p
p for

Z close to 0, we get :

E[x]=
2pNuffiffiffiffiffiffiffiffiffiffiffi

2pNs
p

+4Nhsx2Nm(px2)
: (6)

For low migration, the Taylor expansion of (6) in
m also gives accurate results and does not diverge
when the denominator approaches 0:

E[x]=
2pNuffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pN(1x2h)s
p

+4Nhs

+4Nm
p(px2)Nuffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pN(1x2h)s
p

+4Nhs
� �2 :

(7)

For h=0 this takes the following simple form:

E[x]=u

ffiffiffiffiffiffiffiffiffiffi
2Np

s

r
+m

2N(px2)u

s
: (8)

For m=0, this corresponds to the classic approxi-
mation for single populations (Wright, 1937; Nei,
1968). Then the second moment can easily be com-
puted, using the Taylor expansion in A and the value
of x̄ given by equation (5) :

E[x2]=
U 1xe

B2
4S

ffiffiffi
p

p
B

2
ffiffi
S

p Erfc B
2
ffiffi
S

p
h i� 	

2Sxe
B2
4S

ffiffiffi
p

p ffiffiffi
S

p
Erfc B

2
ffiffi
S

p
h i : (9)

Equation (9) gives good results even for high
migration but simpler accurate formulae were not
found. For h=0, equation (9) becomes simply:

EW[x
2]=

m

s
: (10)

The second moment is thus independent of m and N.
This result was also found by Nei (1968) for a single
population, but it also holds in the infinite island
model.

(iii) Approximations using the moment method

Equations (5) and (9) are generally accurate even for
high migration rates, but we can try to find simpler
approximations. Glémin et al. (2003) developed a
method to compute the moments ofW in a subdivided
population, based on work of Ohta & Kimura (1969,
1971). The method is briefly summarized here (for
details see Glémin et al., 2003 and the Appendix). The
rationale is to obtain a set of linear equations as
functions of the moments of the distribution W. Let
Mdxi be the infinitesimal mean change of allele
frequency in deme i, Vdxi its variance and Wdxidxj

the covariance of the change between demes i and j.
For the K-island model, these terms are given by:

Mdxi � u(1xxi)xhsxixs(1x3h)x2
i+s(1x2h)x3

ixmxi

+
m

Kx1
g
jli

xj, (11a)

Vdxi=
xi(1xxi)

2N
, (11b)

Wdxidxj=0: (11c)

In equation (11a) back mutations (v) are neglected
and it is assumed that the mean fitness of the popu-
lation is close to 1. As in Wright’s equation, inter-
action terms between migration and selection are
neglected. Let W(x1, …, xn) be the probability density
function of the deleterious allele in the n demes of the
population.

For any function f(x1, …, xn), Ohta & Kimura
(1969, 1971) showed that :

dE[ f ]

dt
=E g

n

i=1
Mdxi

@f

@xi

+
1

2
g
n

i=1
Vdxi

@2f

@x2
i

�

+2 g
n

i=1
g
j>i

Wdxidxj

@2f

@xi@xj

#
: (12)

At equilibrium, dE[ f ]
dt

=0. By choosing appropriate f
functions, expressions can be obtained for each
moment. However, this method leads to an infinite
system of equations. To close the system, Glémin
et al. (2003) linearized the selection term in equation
(11a). Biologically, this means that selection acts
only against heterozygotes, which is obviously not
the case for highly recessive alleles. Another way to
close the system is to assume that, up to a given
order, moments vanish. Assuming an infinite number
of demes greatly simplifies the problem as all the
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moments of the form E[xi
n xj

p x k
q …] can be neglected,

and only moments of the form E[xn] must be com-
puted. Details of the computation are given in the
Appendix. Numerically, we found that the mean
frequency is a decreasing function of N and m (see
Fig. 1), the behaviour of which is well captured by
keeping an even number of moments. For mildly
deleterious alleles, x̄ depends non-monotonically on
N and m (see for example figure 1 in Roze & Rousset,
2004), which is better captured by keeping an odd
number of moments. However, we have no proof of
the general validity of these patterns.

By keeping the two first moments only, the follow-
ing approximation is obtained:

E[x]=
u(1+4Nm+4Nhs)

s(1+(4Nmx2)h+4Nh2s)
, (13a)

E[x2]=
u

s(1+(4Nmx2)h+4Nh2s)
: (13b)

For the first moment, the approximation is good
if Nm is not too small, except for h=0 when E[x]
increases linearly with m which is valid only for low
Nm. The second moment approximation is better
than the first one, even for h=0 for which we again
find E[x2]=u/s. Using the four first moments
improves the approximations, and even captures the
fact that E[x2] is not exactly constant for h=0. For
the first moment, this approximation is also poor for
h=0. The equations are quite long and are given in
Appendix 1.

(iv) Summary

Table 1 gives several numerical results to check
the accuracy of the approximations for the two first
moments. We can see that the case m=1 does not
match well the deterministic expectations, especially
for small N and h values. That can be explained
because interaction terms between migration and
selection are neglected in Wright’s equation. This
implies that local drift and selection interact before
migration occurs. This artefact allows local ‘purging
by drift ’ (Glémin, 2003), even with full migration.
This discrepancy is thus important for small popu-
lation sizes and low dominance coefficients (see
Table 1). This effect can be compared with the one
(which is not an artefact) obtained by Roze & Rousset
(2004) because they allow self-fertilization to occur
at rate 1/N.

For h=0, the different approximations are accurate
only for low Nm. However, for h>0 the range of
validity of the approximation is much wider. The
low migration approximations of equations (5) and
(9) are still valid for high migration rates. As
in Glémin et al. (2003), approximations using the
moment method are better for high Nm and when
alleles are not too recessive. However, the accuracy
is good for a much wider set of parameters than
previous approximations.

The frequencies of lethal alleles decrease with
both decreasing migration rate and decreased
population size. Even for moderately recessive
alleles (h=0.03x0.1) the deterministic frequency
is reached only for high Nm. For moderate h and
Nm value, the discrepancy can be very large. Like
population size in a single population (Hedrick,
2002), population structure does matter, and using
deterministic expectations without regard to popu-
lation structure would be misleading. The second
moment always increases with decreasing N and m,
but for h=0 it is almost insensitive to population
size and migration rate. For large Nm, the second
moment is simply given by E[x2] � u

hs(1+4Nm+4Nhs)
�

u
hs(4Nm+4Nhs)

as found by Nei (1968) for lethals
and by Glémin et al. (2003) for more general con-
ditions (Nhs41).

(a)

(b)

Fig. 1. Mean within-deme inbreeding depression relative
to the deterministic expectation as a function of the
migration rate, m. Dots correspond to numerical
integrations and lines to approximations using equation
(15a) with E[x] given by equation (5) and E[x2] given by
equation (9), respectively. Using (A4a) and (A4b) gives
similar but slightly less accurate results. For h=0,
equation (16a) is also very accurate, whereas for h>0
equation (17a) is less accurate, unless h, N and m are not
too small (see main text). Parameters used are: s=1;
u=10x5 ; v=10x7 ; N=30 (a) or N=300 (b) ; h=0 (open
diamonds and dotted line), h=0.01 (black diamonds and
short-dashed line), h=0.03 (open squares and long-dashed
line), h=0.05 (black squares and thin unbroken line) or
h=0.1 (open triangles and bold unbroken line).
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Table 1. Accuracy of the different approximations for the two first moments of W, E[x] (r103) and E[x2]
(r105), for (a) N=30 and (b) N=300; u=10x5

(a)

m

E[x] E[x2]

Num Eq (5) Eq (8) Eq (13a) Eq (A4a) Num Eq (9) Eq (13b) Eq (A4b)

h=0 0 0.149 0.137 0.137 0.010 0.010 1.135 1.000 1.000 1.017
0.0001 0.149 0.137 0.137 0.010 0.010 1.134 1.000 1.000 1.017
0.001 0.149 0.138 0.138 0.011 0.012 1.134 1.000 1.000 1.017
0.01 0.156 0.144 0.144 0.022 0.030 1.128 1.000 1.000 1.023
0.1 0.272 0.216 0.206 0.130 0.191 1.086 1.000 1.000 1.056
1 1.103 1.220 0.822 1.210 1.249 1.016 1.000 1.000 1.016
deterministic 3.162 1.000

h=0.03 0 0.118 0.110 0.111 0.044 0.062 0.800 0.712 0.954 0.929
0.0001 0.118 0.110 0.112 0.044 0.062 0.799 0.712 0.954 0.928
0.001 0.118 0.111 0.112 0.045 0.064 0.798 0.711 0.951 0.924
0.01 0.122 0.114 0.116 0.054 0.075 0.781 0.701 0.923 0.888
0.1 0.159 0.144 0.157 0.118 0.144 0.644 0.603 0.710 0.662
1 0.268 0.267 0.563 0.268 0.270 0.219 0.213 0.215 0.214
deterministic 0.330 0.011

h=0.1 0 0.076 0.072 0.078 0.065 0.073 0.389 0.354 0.500 0.422
0.0001 0.076 0.072 0.078 0.065 0.073 0.388 0.354 0.500 0.422
0.001 0.076 0.072 0.078 0.065 0.073 0.387 0.353 0.497 0.420
0.01 0.076 0.073 0.080 0.067 0.074 0.374 0.343 0.472 0.400
0.1 0.082 0.079 0.100 0.078 0.082 0.277 0.264 0.313 0.280
1 0.095 0.094 0.297 0.095 0.095 0.072 0.071 0.071 0.071
deterministic 0.100 0.001

(b)

m

E[x] E[x2]

Num Eq (5) Eq (8) Eq (13a) Eq (A4a) Num Eq (9) Eq (13b) Eq (A4b)

h=0 0 0.441 0.434 0.434 0.010 0.010 1.038 1.000 1.000 1.002
0.0001 0.441 0.435 0.435 0.011 0.012 1.038 1.000 1.000 1.002
0.001 0.448 0.441 0.441 0.022 0.030 1.037 1.000 1.000 1.002
0.01 0.517 0.506 0.503 0.130 0.207 1.051 1.000 1.000 1.008
0.1 1.385 1.367 1.119 1.210 1.383 1.014 1.000 1.000 1.013
1 2.779 12.020 7.284 12.010 12.050 1.001 1.000 1.000 1.002
deterministic 3.162 1.000

h=0.03 0 0.228 0.226 0.241 0.183 0.214 0.355 0.343 0.495 0.400
0.0001 0.229 0.226 0.242 0.183 0.214 0.355 0.343 0.494 0.399
0.001 0.229 0.227 0.243 0.186 0.216 0.352 0.340 0.486 0.393
0.01 0.237 0.235 0.263 0.206 0.231 0.324 0.314 0.420 0.345
0.1 0.279 0.281 0.453 0.279 0.283 0.178 0.166 0.178 0.168
1 0.322 0.325 2.358 0.325 0.325 0.036 0.026 0.026 0.026
deterministic 0.330 0.011

h=0.1 0 0.095 0.094 0.119 0.095 0.095 0.072 0.071 0.078 0.072
0.0001 0.095 0.094 0.119 0.095 0.095 0.072 0.071 0.078 0.072
0.001 0.095 0.094 0.119 0.095 0.095 0.072 0.070 0.077 0.071
0.01 0.095 0.095 0.124 0.095 0.095 0.067 0.065 0.071 0.066
0.1 0.097 0.097 0.170 0.097 0.097 0.040 0.039 0.040 0.039
1 0.099 0.099 0.630 0.099 0.099 0.009 0.008 0.008 0.008
deterministic 0.100 0.001

‘Num’ indicates numerical results by integration of W. Deterministic corresponds to an infinite single population.
Approximations are labelled by their equation numbers.
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These results are based on the infinite island model.
How robust are they when the number of demes, n,
is finite? Roze & Rousset (2004) showed that for
largeN and smallm the frequency ofmildly deleterious
alleles is roughly independent of the number of demes.
Glémin et al. (2003) gave expressions for deleterious
alleles not too recessive, which depend on n. However,
the effect is weak unless a few demes are considered,
say less than 10. The frequency of fully recessive lethals
is very sensitive to the population size. If the total
population size is small, nN, we expect that the fre-
quency will be lower than in an infinite population
even with complete migration. Generally, we also
expect lower frequencies than predicted by previous
equations. For partially recessive alleles, purging is less
efficient such that the total population size and the
number of demes should be less important.

3. Inbreeding depression, heterosis and the load

(i) Expressions and approximations

One can now turn to the consequences of these results
for inbreeding depression, heterosis and the genetic
load. Following Whitlock (2002), Glémin et al. (2003)
and Roze & Rousset (2004), we can compute the
load (L), the within-deme inbreeding depression (d),
heterosis between demes (H) and the between-deme
inbreeding depression (c). Given W, one can compute
the mean inbreeding depression, load and heterosis
by integrating over W :

d̄=
Z1

0

d(x)W(x)dx, (14a)

L̄=
Z1

0

L(x)W(x)dx, (14b)

H̄=
Z1

0

Z1

0

H(x, y)W(x)W(y)dxdy, (14c)

c̄=
Z1

0

Z1

0

c(x, y)W(x)W(y)dxdy (14d)

where x and y are the frequencies of the lethal alleles
in two different demes and:

d(x)=
s(1x2h)x(1xx)

2(1x2hsx(1xx)xsx2)
� s(1x2h)

2h
(xxx2),

L(x)=2hsx+(1x2h)sx2,

H(x, y)=
s(1x2h)(xxy)2

2(1xhs(x(1xy)+y(1xx))xsxy

� s(1x2h)(xxy)2,

c(x, y)=
s(1x2h)(x+y+x2+y2x4xy)

4(1xhs(x(1xy)+y(1xx))xsxy

� s(1x2h)

4
(x+y+x2+y2x4xy):

The approximations for d(x),H(x, y) and c(x, y) hold
for weak selection and for x51 or y51 which applies
under strong selection. Using these approximate
terms, the mean inbreeding depression as the mean
load can be expressed in terms of the two first
moments of W (see for example Bataillon &
Kirkpatrick, 2000; Glémin et al., 2003) :

d̄ � s(1x2h)

2
(E[x]xE[x2]), (15a)

L̄=2hsE[x]+(1x2h)sE[x2], (15b)

H̄� s(1x2h)(E[x2]xE[x]2), (15c)

c̄ � s(1x2h)

2
(E[x]+E[x2]x2E[x]2): (15d)

Equations (15c) and (15d) come from the fact that
E[x]=E[y] and E[xy]=E[x]E[y]=E[x]2 in the infinite
island model. Numerical integration of equations
(14c) and (14d) is somewhat problematic because of
the double integral sum, such that equations (15c) and
(15d) will be preferred.

Approximate analytical expressions can then be
given using the expressions for the first and second
moments. For h=0, using expressions (8) and (10) in
equations (15), and neglecting the terms in u2, we get :

d̄=
u

2
(

ffiffiffiffiffiffiffiffiffiffiffi
2pNs

p
+2(px2)Nmx1), (16a)

L̄=u, (16b)

H̄=u, (16c)

c̄=
u

2
(

ffiffiffiffiffiffiffiffiffiffiffi
2pNs

p
+2(px2)Nm+1): (16d)

For h>0, using equations (13a) and (13b) leads to:

d̄=
2Nu(1x2h)(m+hs)

1+(4Nmx2)h+4Nh2s
, (17a)

L̄=
u(1+8Nhm+8Nh2s)

1+(4Nmx2)h+4Nh2s
, (17b)

H̄=
u(1x2h)

1+(4Nmx2)h+4Nh2s
, (17c)

c̄=
u(1x2h)(1+2N(m+hs))

1+(4Nmx2)h+4Nh2s
: (17d)
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Equations (16) can be used for m<0.1 and equations
(17) are quite good for population sizes not too small,
about N>50, and mutations not too recessive, about
h>0.05. More accurate expressions can be obtained
using equations (5) and (9) or (A4a) and (A4b) given
in the Appendix, but the expressions are quite long
and not given here.

The within-deme inbreeding depression depends
on N and m, even for moderately recessive alleles
(h=0.05x0.1) and can be much smaller than in an
infinite single population (Fig. 1). The load, however,
is almost insensitive to the population structure. For
h=0, equation (17b) collapses to (16b), such that the
load is independent of both the population size
and the migration rate. For low h>0, the load takes
value between u/(1x2h) and 2u. Heterosis is always
low, H<u, but depends on the population size and
the population structure (Fig. 2). When h=0, H does
depends on m and N, contrary to what equation

(16c) predicts, which thus gives the upper limit.
Finally, because heterosis is low, between-deme
inbreeding depression is very close to within-deme
inbreeding depression.

(ii) Comparison with mildly deleterious alleles

Consideration of the present results and those
from previous studies (Theodorou & Couvet, 2002;
Whitlock, 2002; Glémin et al., 2003; Roze & Rousset,
2004) gives a general picture of the effect of popu-
lation structure on inbreeding depression, heterosis
and the load caused by the whole range of deleterious
mutations. Some examples are given in Fig. 3, in
which results for mildly deleterious and lethal alleles
are compared.

In large and moderately subdivided populations,
the mutation load is weakly sensitive to the kind of
mutations involved. In small and strongly subdivided
populations, slightly deleterious mutations create a
large drift load while strongly deleterious alleles, like
lethals, still cause a low mutation load, of the order of
the mutation rate. The mutation load is also weakly
sensitive to the level of dominance (but see Whitlock,
2002; Roze & Rousset, 2004). By contrast, inbreeding
depression depends on the dominance levels and the
magnitude of the deleterious effects of mutations
for a wider range of population structure. The more
deleterious and the more recessive the mutations are,
the higher the inbreeding depression is. In addition,
the dependence on the selection coefficient is stronger
for more recessive mutations (compare h=0.01 and
h=0.3 in Fig. 3, and see also table 1 in Roze &
Rousset, 2004). Finally, like inbreeding depression,
heterosis depends both on h and on s. In small and
isolated populations, weakly deleterious mutations
of intermediate effect contribute the most to heterosis
(see Whitlock et al., 2000). Lethals cause the highest
heterosis in large and moderately subdivided popu-
lations. However, in such conditions the effect is
small, of the order of the mutation rate.

4. Discussion

(i) Distribution of lethal alleles in subdivided
populations

It has long been recognized that fully recessive lethals
alleles have much lower equilibrium frequencies in
small than in large populations (Wright, 1937; Nei,
1968). Recently, Hedrick (2002) showed that popu-
lation size also affects alleles with low dominance
levels, typically within the range of available esti-
mates: h=0.01 to 0.03 (Simmons & Crow, 1977;
Charlesworth & Charlesworth, 1999). The present
results show that, for the same set of parameters,
population structure may also strongly affect lethal

(a)

(b)

×

×

Fig. 2. Mean heterosis between populations (absolute
value) as a function of the migration rate, m. Dots
correspond to numerical integrations and lines to
approximations using equation (15c) with E[x] given by
equation (A4a) and E[x2] given by equation (A4b),
respectively. Terms in u2 are neglected, except for h=0,
which improves the approximation. Equations (16c) and
(17c) are less accurate for N=30, but give good results for
N=300. Using equations (5) and (9) gives similar but
slightly less accurate results. Parameters used are: s=1;
u=10x5 ; v=10x7 ; N=30 (a) or N=300 (b) ; h=0 (open
diamonds and dotted line), h=0.01 (black diamonds and
short-dashed line), h=0.03 (open squares and long-dashed
line), h=0.05 (black squares and thin unbroken line) or
h=0.1 (open triangles and bold unbroken line).

Lethals in subdivided populations 47

https://doi.org/10.1017/S0016672305007676 Published online by Cambridge University Press

https://doi.org/10.1017/S0016672305007676


allele frequencies. For example, for N =100, m=0.01
and h=0.03, the frequency is half that expected
in a single large population; for h=0.01, it would
be one-quarter. For a given Nm value, the fre-
quency of lethal alleles also decreases with deme
size. Populations subdivided into numerous small
subpopulations should have low standing variation
for lethals. Population structure ceases to affect lethal
frequencies for dominance levels higher than about
h=0.1, much higher than the available estimates.
High numbers of lethals are thus expected in very
large andweakly subdividedpopulations, aswas found
in some coniferous trees (Remington & O’Malley,
2000) or in bivalve species (Launey & Hedgecock,
2001). However, high mutation rates towards lethal
alleles may also explain such results, at least in
coniferous trees (Remington & O’Malley, 2000).

For partially selfing species, population structure
should have much less impact. Indeed, partial selfing
helps purge highly recessive alleles with large fitness
effect, such that the expected frequency of lethals
should be low irrespective of the population structure.

Noting that partial selfing increases the effective
dominance coefficient according to he=h+FISx
hFIS � FIS (Caballero & Hill, 1992), an FIS of about
0.1 would be sufficient to remove the effect of the
population structure. For a recessive lethal, FIS � s

2+s

where s is the selfing rate (Lande & Schemske, 1985;
Glémin, 2003) ; so above a selfing rate of about 20%
population structure should not affect the fate of
lethal alleles.

(ii) Consequences of lethals in subdivided populations

The effect of population structure on inbreeding
depression, heterosis and the mutation load are quite
different. Despite purging, the load is weakly affected
by the population structure. For fully recessive alleles,
the load equals u and is independent of the population
structure. For h>0, it lies between u/(1x2h) and 2u.
This relative independence of population structure
can be explained because variance in allele frequency
increases the load and compensates for the decreas-
ing effect of the mean. On the contrary, within-deme

(a)

(c)

(e) ( f )

(d)

(b)× ×

×

××

×

Fig. 3. Mean mutation load (a, b), within-deme inbreeding depression (c, d ), and heterosis (e, f ) caused by lethal and
mildly deleterious alleles, as a function of the migration rate. Results have been obtained by numerical integration
of equation (2). Parameters used are: u=10x5 ; v=10x7 ; N=30 (a, c, e) or N=300 (b, d, f ). Plain unbroken line: h=0.01
and s=1. Dashed bold line: h=0.01 and s=0.1. Dotted bold line: h=0.01 and s=0.01. Thin dashed line: h=0.3 and
s=0.1. Thin dotted line: h=0.3 and s=0.01.
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inbreeding depression is greatly affected by the popu-
lation structure (see Fig. 2). Both decreasing mean
and increasing variance contribute to the decline
of inbreeding depression in small and isolated popu-
lations. Depending on the population parameters
and dominance coefficients, inbreeding depression
can be reduced by up to fivefold relative to a single
large population. As expected, heterosis is also affec-
ted by population structure because it depends on the
variance of alleles frequencies between populations,
which increases with increasing subdivision.

Lethals and detrimentals can contribute to inbreed-
ing depression. This will depend on the magnitude
of the genomic mutation rates towards these two
gene categories. Mutation rates toward lethals may
be one order of magnitude lower than mutation rates
towards detrimentals (Drake et al., 1998), but other
recent estimates in Drosophila suggest that it could
be only one-half lower (Fry et al., 1999; Charlesworth
et al., 2004). Despite these lower mutation rates,
they could cause a substantial part of the within-
deme inbreeding depression, mainly because they
are believed to be more recessive (Charlesworth &
Charlesworth, 1987). Table 2 shows the part of
inbreeding depression and heterosis due to detri-
mentals and lethals respectively, assuming a simple
model of multiplicative effect of mutations. Genomic
mutation rate towards detrimentals is assumed to be
0.1 or 0.5, in the range of estimate found inDrosophila
(Simmons & Crow, 1977; Charlesworth et al., 2004),
the lower estimate being more probable. Genomics
mutation rate towards lethals is assumed to be
0.05, giving one-tenth or one-half of the detrimental
mutation rate. Dominance coefficients are h=0.03
for lethals (Simmons & Crow, 1977) and h=0.3 for
detrimentals (for example Deng & Lynch, 1997;
Dudash & Carr, 1998), and the selection coefficient
for detrimentals is s=0.1 (see review in Bataillon,
2000). Population structure may affect the genetic

basis of inbreeding depression because mildly del-
eterious and partially recessive alleles are less affected
by subdivision than almost fully recessive lethals. The
part of inbreeding depression due to lethals greatly
differs among species, from a minor (for instance in
the monkey flower Mimulus guttatus : Willis, 1999) to
a large contribution (for instance in some coniferous
trees : Remington & O’Malley, 2000). Lethals and
detrimentals can affect different life stages (Husband
& Schemske, 1996), but, among other factors, popu-
lation size and population structure could also explain
such different patterns: high inbreeding depression
mainly due to lethals in single large populations
versus lower inbreeding depression contributed by
both detrimentals and lethals in more subdivided
populations.

The genetic basis of heterosis may also be sensitive
to population structure (Table 2). In populations
strongly subdivided in small demes, heterosis will be
due mainly to weakly deleterious alleles (see Table 2
U=0.5, Fig. 3e and Whitlock et al., 2000) because
they individually cause higher heterosis and are more
numerous. However, if detrimental mutation rates
are not much higher than lethal mutation rates
(U=0.1 in Table 2), both can contribute equally. In
large and weakly subdivided populations, mutations
with large effect, including lethals, will contribute
a substantial part of heterosis (Table 2, Fig. 3f).
However, in such cases, the effect of lethal alleles on
heterosis is one or two orders of magnitude lower
than the effect on inbreeding depression (compare
Fig. 3d and 3f). In those cases, the overall heterosis
will be low and not easily detected in natural popu-
lations, unless mutation rates are very high.

(iii) Implications for conservation issues

These results also have implications for conser-
vation of endangered species. First, as Hedrick (2002)

Table 2. Total inbreeding depression and heterosis due to lethals and detrimentals as a function of the
migration rate

Migration rate

U=0.5 U=0.1

Detrimentals Lethals Detrimentals Lethals

m=0.001 0.237 0.231 0.053 0.231Inbreeding
m=0.01 0.245 0.237 0.055 0.237depression
m=0.1 0.267 0.293 0.060 0.293
deterministic 0.283 0.539 0.064 0.539

m=0.001 0.187 0.037 0.041 0.037Heterosis
m=0.01 0.116 0.036 0.024 0.036
m=0.1 0.039 0.030 0.008 0.030
deterministic 0.000 0.000 0.000 0.000

A multiplicative effect of mutations on fitness is assumed. U is the genomic detrimental mutation rate. For lethals, U=0.05.
h=0.03 for lethals and h=0.3 for detrimentals ; s=0.1 for detrimentals. N =30. Deterministic corresponds to an infinite
single population.
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pointed out for small populations, species with a past
history of strong population subdivision should have
purged most of the load due to lethals. In such species,
intentional inbreeding would be inefficient because
any variation that can easily be purged will already
have been removed. In addition, despite this purging
process, the mutation load due to lethals is quite
insensitive to population size and population struc-
ture, unlike the load due to slightly deleterious
mutations (Kimura et al., 1963; Whitlock et al.,
2000). Second, fragmentation of initially well con-
nected populations will have short-term negative
effects. The dynamics of purging after population
fragmentation was not explicitly studied here; how-
ever, some general ideas can be given. For purging
to occur, lethals must be expressed in homozygotes
more frequently than in large undivided populations.
During this phase a transient load will occur and may
affect the population dynamics. This has been shown
for a single bottlenecked population (Kirkpatrick &
Jarne, 2000). The same reasoning should be valid
for lethals in subdivided populations. Inferences on
the detailed genetic basis of inbreeding depression
should thus be helpful for characterizing the gen-
etic risk that may threaten small and fragmented
populations.

Appendix 1

The general moments equations for the infinite island
model are derived, extending the results of Glémin
et al. (2003). Using equation (12) at equilibrium with
the infinitesimal terms given by equations (11a,b,c)

and appropriate f functions, leads to linear equations
with respect to the moment of the distribution of
the deleterious allele frequency, W. In the infinite
island model, E[xm

i x
n
j x

p
k . . . ]=E[xi]

mE[xj]
nE[xk]

p . . . ,
so that all these moments are in o(um+n+p+ …) and
can be neglected. Because of the symmetry of the
model, all moments of the form E[xn

i ] are the same
for any i, and denoted E[xn].

Using f=xi, equation (12) becomes :

ux(u+hs)E[x]xs(1x3h)E[x2]+s(1x2h)E[x3]=0:

(A1)

Using f=xi
n, n>1, equation (12) becomes:

n u+
nx1

4N


 �
E[xnx1]xn u+hs+m+

nx1

4N


 �
E[xn]

xn(1x3h)sE[xn+1]+n(1x2h)sE[xn+2]=0: (A2)

This procedure leads to an infinite system of linear
equations that must be closed by neglecting the
moments up to a given order. For the n first moments,
using matrix notations, the vector of moments at
equilibrium, M={E[x], E[x2], …, E[xn]} is the sol-
ution of:

U=PM (A3)

where:

U={xu, 0, . . . , 0}

and

For example, keeping the four first moments gives the
following results :

These expressions can then be used in equations (15a)
and (15b) to compute the mean inbreeding depression
and the mean load, respectively.

I thank Deborah Charlesworth for discussions, suggestions
and comments about this work, and Thomas Bataillon and

P=

u+hs s(1x3h) s(1x2h) 0 : : : :
x2 u+ 1

4N

� �
2 u+hs+m+ 1

4N

� �
2(1x3h)s 2(1x2h)s 0 : : :

: : : : : : : :
: 0 xk u+ kx1

4N

� �
k u+hs+m+ kx1

4N

� �
k(1x3h)s k(1x2h)s 0 :

: : : : : : : :
: : : 0 xn u+ nx1

4N

� �
n u+hs+m+ nx1

4N

� �
n(1x3h)s n(1x2h)s

2
6666664

3
7777775

E[x]=u
3+N(22m+(6x8h)s)+8N2(6m+(5x9h)s)(m+hs)+32N3(m+hs)3

6Ns(m+(1x2h)2s)+8N2s(m+3hm+6(1x2h)hs)(m+hs)+32N3hs(m+hs)3
; (A4a)

E[x2]=u
3+N(10m+(6x8h)s)+8N2(m+hs)2

6Ns(m+(1x2h)2s)+8N2s(m+3hm+6(1x2h)hs)(m+hs)+32N3hs(m+hs)3
; (A4b)
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