A NOTE ON THE CARADUS CLASS § OF BOUNDED
LINEAR OPERATORS ON A COMPLEX BANACH SPACE

A. F. RUSTON

1. In a recent paper (1) on meromorphic operators, Caradus introduced the
class § of bounded linear operators on a complex Banach space X. A bounded
linear operator 7" is put in the class { if and only if its spectrum consists of a
finite number of poles of the resolvent of 7. Equivalently, T is in § if and only
if it has a rational resolvent (8, p. 314).

Some ten years ago (in May, 1957), I discovered a property of the class §
which may be of interest in connection with Caradus’ work, and is the subject
of the present note.

2. THEOREM. Let X be a complex Banach space. If T belongs to the class ,
and the linear operator S commutes with every bounded linear operator which
commutes with T, then there is a polynomial p such that S = p(T).

Suppose that 7 and S satisfy the hypothesis of the theorem. Let
M, Az, . .., N\, be the points of the spectrum of 7", which by hypothesis are
poles of the resolvent of T, and let vy, »s, . . . , », be the orders of those poles,
respectively. Let M, be the kernel (or ‘“null manifold”) of (" — \.I)*r
r=1,2,...,n). ThenX =M, ® M.® ... ® M, (8§ p.317, Theorem 5.9-E).
For typographical convenience we write 7, for T — \,I (r = 1,2,...,n).

Now let ¥ be any member of M, (where 7 is any integer with 1 £ r < n).
Choose a bounded linear functional f on X such that

(T*)f =0 but (T.*)Yf =0;

such an f exists since ), is also a pole of order », of the resolvent of the adjoint
T* of T (3, p. 568, Theorem VII.3.7). We now consider the bounded linear
operator

'V — Zl T,—s_l (x ®f)Trvr——s ,

where ¥ ® f denotes the operator y — f(y)x on X into itself; cf. (7, p. 110).
In view of our choice of x and f, we have:

ve—1

T, V=T «®NI
s=1
= VTrv
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so that V commutes with T, and thus with 7. Hence (by hypothesis), V
commutes with S.
Now

L T2 (T, (T

are clearly linearly independent (if X"/ a; (7*)*~f = 0, then
D vral(T*)rr=2f = 0,

and hence a; = 0, Y721 a,(T,*)*+=3f = 0, and therefore a; = 0, and so on),
and thus a point y of X can be found such that

[(T*)Yly) =1, [(TH) Y@ =0 (s=1,2,...,»,— 1),
that is,

f(Tr”‘-ly> = 1) f(Tr"'_sy) =0 (S = 2: 37 ce ey V,)
(cf. 2, p. 6, Theorem 1.2.2, Corollary 2). Then SVy = V.Sy, and therefore
3, ST O NT Ty = B T @ TSy,
that is,

Sx = > (T, ST, '«
s=1

= 3 FTTS) (T — A
s=1

However, the choice of f and y was quite independent of the choice of x € M,.
Hence,

Sx = ;D,(T)x

for every x € M,, where p, is the polynomial given by

P = 3 ST SO = A

Having chosen a polynomial p, as above for each r = 1, 2, ..., n, we now
choose a polynomial $ such that

p(S)(Af) = P’(S)(xr) (S = O) 1)2!""1}7 - l;r = 1,2,-..,”).
This can certainly be done; for example we can take

p=p1 o1+ Pr-d2t ...+ Du-y

where ¢, is given by

6:(0) = [I;I - w]cb,(x),
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https://doi.org/10.4153/CJM-1969-066-6 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1969-066-6

594 A. F. RUSTON

®,(\) being the sum of the first », terms in the expansion of

[ﬁ_ - m’-’}_
2

as a power series in A — A, (this generalizes, in effect, the Lagrange inter-
polation formula, which corresponds to the case vy =vo = ... =y, = 1;
that such a generalization is possible is, of course, well known; cf. (6; 5; 4);
the last two refer specifically to the Hermite interpolation formula, which
corresponds to the case vy = v» = ... = v, = 2). Then

p(T)x = p(T)x = Sx

for every x € M, (3, p. 571, Theorem VII.3.16; 8, p. 307, Theorem 5.8-B).
Hence,

p(T)x = Sx

forevery x E M1 ®@ Mo ® ... ® M, = X, and therefore S = p(T), as re-
quired. Incidentally, ¢,(7") is the spectral projection of X onto M,; cf.
(8, § 5.9, p. 319, Problem 3).

Note. Since V is of finite rank, and thus a member of §, we have in fact
proved the following, slightly stronger, result.

If T € §, and the linear operator S commutes with every member T which
commutes with T', then there is a polynomial p such that S = p(T).

REFERENCES

1. S. R. Caradus, On meromorphic operators. 1, Can. J. Math. 19 (1967), 723-736.

2. M. M. Day, Normed linear spaces (Springer-Verlag, Berlin, 1958).

3. N. Dunford and J. T. Schwartz, Linear operators. 1. General theory (Interscience, New York,
1958).

4. C.-E. Froberg, Introduction to numerical analysis, pp. 146-148 (Addison-Wesley, Reading,
Massachusetts, 1965).

5. R. W. Hamming, Numerical methods for scientists and engineers, pp. 96-97 (McGraw-Hill,
New York, 1962).

6. H. Jeffreys and B. S. Jeffreys, Methods of mathematical physics, p. 246 (Cambridge, at the
University Press, 1946).

7. A. F. Ruston, On the Fredholm theory of integral equations for operators belonging to the trace
class of a general Banach space, Proc. London Math. Soc. (2) 563 (1951), 109-124.

8. A. E. Taylor, Introduction to functional analysis (Wiley, New York, 1958).

University College of North Wales,
Bangor, Caernarvonshire

https://doi.org/10.4153/CJM-1969-066-6 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1969-066-6

