TIME REVERSIONS OF MARKOV PROCESSES

MASAO NAGASAWA

§ 0. Introduction

A time reversion of a Markov process was discussed by Kolmogoroff for
Markov chains in 1936 [6] and for a diffusion in 1937 [7]. He described it as
a process having an adjoint transition probability. Although his treatment is
purely analytical, in his case if the process % has an invariant distribution,
the reversed process z:=x_; is the process with the adjoint transition pro-
bability. In this discussion, however, it is very restrictive that the initial
distribution of the process must be an invariant measure.

On the other hand, the adjoint (or dual) process of a Markov process can
be defined with respect to any sub-invariant (or excessive) measure, and this
was done by Nelson [15] and Hunt [3]. Ever since the notion of the adjoint
processes has an important rdle in the theory of Markov processes (cf. e.g.
[3], [10], [12], [14], [151). The relation between the adjoints and the time
reversions of a Markov process was, however, not fairly clear. For example,
an adjoint of a temporally homogeneous Markov process is always temporally
homogeneous by the definition, but the time reversion z:=2x-¢ or z:=xr-:
(where T is a positive constant) is, in general, temporally inhomogeneous.

Recently Hunt [2] proved for Markov chains that if the time reversion is
performed from the last exit time from a subset, then the reversed process
has temporally homogeneous Markov property. Ikeda, Nagasawa and Sato [5]
also proved that for Markov processes obtained by killing, the reversed pro-
cesses from the killing times have temporal homogeneity.

The purpose of this paper is to prove that the reversed processes from
appropriate random times (L-times cf. § 2) preserve temporally homogeneous
Markov property (cf. §3). Time reversions of approximate Markov processes
introduced by Hunt in [2] will be treated in §4.

The works of this paper grew up from the joint works with Ikeda and
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Sato [5]. In the course of the study K. Sato took verious discussions with
me and details of some proofs were improved by his suggestions, and N. Ikeda

and M. Motoo gave me several advices. I wish to express my hearty thanks
to them.

§ 1. Notations and definitions

In this section we shall recall some of definitions and notations on Markov
processes, which follow mostly Dynkin’s book [1].

Let E be a locally compact Housdorff space with a countable base and
% denote the topological Borel field of E. Let {9} be adjoined to E as an
extra point and denote E* = E U {9}.

W is the space of mappings w from [0, =] to E* satisfying the followings;
(w;) There exists the killing time ((w) of w with values in [0, ~] such as
w(t) € E for t<¢(w) and w(t) =0 for + =C¢(w); (w:) w(¢) is right-continuous
and with left hand limits in [0, {(w)). Let x: denote the coordinate mapping
ie. x(w)=w(t). Shifted path w:(t=0) of w is defined by %s(w:) = %¢+s(w)
for any s=0. Let _# be the o-field of W generated by {xs€ A} (s=0, and
Ac B). Put We={w:weW, ¢((w)>t} and let _#: be the os-field of W;
generated by {xs€ A, (>t} (s=[0, t] and A€ .B).

Let {Ps; a< E} be a system of probability measures on (W, .#) satisfying ;
(p1) For every +=0 and A€ .8, Pdx:c Al is .Z-measurable in ac E; (p,)
PJxy=al=1foreachaec E; and (ps) Pdlx:is€ Al Al = Pylxs€ A, Pa—ae.
on Wi (i, s20, acFE and A . Z). A system X=(x, &, _#:, Pg) is said to
be a (temporally homogeneous) Markov process.

For a measure » on (E, .%), we put

(1.1) P.[B]=(v(da)PLBl,  (Be.p).

Let 7 = N (Py) and 7= NAFu(P,), where 7 (P,) (resp. #«(P.)) is
the completion of .# (resp. . #:) by P, (v, here, varies over all probability
measures on (E, .Z)).

A random time o(w) is a Markov time if 0<o(w)<+ o (we W) and
{e<t<Cle _#4, (t=0). Given a Markov time o, we denote Wo={w : o(w)
<¢(w)} and _7 , the o-field of W, consisted of all BC W, such as BN {s<t
<Cre. g (tz0).
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A Markov process X is said to have the stromg Markov property if for
each Markov time o, PdxsisE Al _f ol =Prlxss AL, Poae on W, (s=0,
acE and A .#), and is said to have the quasi-left continuity, if for every
sequence of Markov times {s.}, lim %o, = %iim on» Paa.e. on {g, 1, lirg an<Cl}.
A Markov process X is called a s:;;dard process if it has the stror;g Markov
property and quasi-left continuity.

A mapping b(¢, w) from [0, oJx W to [0, ] is called a (non-negative
continuous) additive functional of X, if; (ay) (¢, w) is _# -measurable and
{w :bt, w)<r, Cw)>tre _F+ for all =0, (1=0); (a)) 0=5(0, w)=b(t, w)
<o (0=t<w); (as) b(t+s, w) =b(t, w) +b(s, we), (we W); (a) b(t, w) =
b(¢, w) for t=¢(w); and (as) b(f, w) is continuous in ¢, (w= W) (cf. eg.
(173, 1.

Let ¢'(w) be an .7 -measurable function on W with values in [0, «], and
2 (w) be defined for we Wo,C W(W,= _7 ) and t < [0, ¢(w)) (resp. (0, ¢'(w)))
with values in E, and put Wi={¢'>¢} N W, for t=0 (resp. ¢>0). Let _#: be
the s-field of W, generated by {zsc A, {'>t}, (A Z,s<=[0, t] (resp. (0,1])),
and .# be a o-field on W, containing all .#: (t=0).

Let P be a measure on (W,, .#), which is o-finite on (W}, #+) for every
=0 (resp. t>0). A system (z:, ¢/, #:, P) (for brevity, (z, P)) is said to
have (temporally homogeneous) Markov property with a transition probability

P(t, a, A), if, for every compact set A,

(1.2) Plze Al A= Plzis Alzs]
=P(t—s, 25, A), P-ae. on W}, (0(<s<t).°’
=)

Further, if z, is defined and
(1.3) Plz e Al=u(A),

then (z:, P) is said to have the initial measure u.

Let X= (%, ¢, #:, Pa) be a Markov process and » be a s-finite measure
on (E, .#) satisfying that

(1.4) Px:e A1< o, for every =0 and every compact 4,

) Because of g-finiteness of P on W;, we may define P[zz€A| %s], etc. by the same
way as defining conditional probabilities using Radon-Nikodym theorem.
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then (%, ¢, #:, Pv) (for brevity, (x:;, P,)) has temporally homogeneous
Markov property with a transition prebability P(¢, a, A) = Py Al
§ 2. Random times of type L

In this section we shall investigate a new class of random times (L-time),

which is a generalization of the last exit time from a subset of E.

DerFiniTIN 2.1. A function w(w) from W to { — o} U[0, «] is called a
random time of type L (briefly, L-time) if it has the properties;

(L) t(w) is _# -measurable and «(w) < ¢(w), and
(L,) {s<t(w)—t< o} ={s<c(wr) <o}, (¢ s=0).

Also, t is said to be an almost L-time if it satisfies (L,) and, instead of (L),
(L} {s<r(w)—t<ow}={s<c{w) < oo}, Pa—a.e. (t s=0).

An (almost) L-time is an appropriate time at which the time scale is
reversed as to preserve the temporally homogeneous Markov property of the
reversed process 2: = %.-t-o. This fact will be proved in the next section. In
the following, we shall prove some properties of (almost) L-times and give
several examples of them.

Lemma 2.2. Let v be an L-time, then
(2.1) {0<r—t<w}{c(w) =t+v(w:)}, for any t=0.
If v is an almost L-time, we have, for any t =0,
(2.1) PJlr(w)=t+t(w)|0<r—t< x]=1, (a€ E).
Proof. Let v be an L-time, then
{c(w)>r(w) +¢, 0<r(w) —t< o}

=U{c(w)>r>c(w) +¢ 0<c(w) —t< o}

where 7 varies over the rationals larger than ¢. Hence, by making use of (L),
we have

=U{o>t(w)>r—t>c(ws)} = ¢.
We have also

{t(w) <t(we) +t, 0<t(w) —t< o} = ¢.
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Consequently, we have verified that
{0<c(w) —t< o} ={r(w) =r(w) +1, 0<r(w) —t< =},
proving (2.1). The proof for almost L-times is similar.
Lemma 2.3. Let v be an almost L-time, then

(2-2) La(d) =Ma[e-¢r; 0<T], (a>0),1’
==Pa[0<f(w) < OOJ’ (a =0))

is an a-excessive function.’
Proof. Let >0, then we have, by Lemma 2.2,

ML, (%)e 1= MLe %0 ; 0<r(we)]
=MJLe™ ™ t<c(w)] t MLe > ; 0<(w)], (£{0).

The proof for a =0 is similar.

ProrosiTiON 2.4. The Eilling time ((w) is an L-time.

Proof 1s obvious.

DerinITION 2.5. For a subset DC E, the last exit time from D is defined by
(2.3) ép(w) =sup {¢+=0; x(w) <€ D}, (sup ¢ = — ).

ProrosiTiON 2.6. Let D be an open set, then the last exit time &p is an L-

tinme”
Proof. Since paths are right continuous,
{¢p>t} = {3 rational r>t, x,(w)ED}E 7.
Let we{s<&p-t< o}, then

Ep(w) =sup {t+7; Ar=0, %+ (w) €D}
=sup {t+7; Ar=0, % (w:) €D}
=t 4 &p(we).

Therefore, we {s<&p(w:) < »}. Converse is obvious.

O Ma[f(w); B]=fﬂf<w)Pa[dw].
u is a-excessive if Ma[u(x;)e™ %] 4 u(a) =0, (¢}0).

D If X is standard, £p is an L-time for nearly analytic set D. For, {{p=<t}=
N {op(we+m)) =} _#, which is communicated from K, Sato.
n
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Remark. Let &g denote the last exit time from E, then
(2.4) ¢r(w) =C¢(w), for we {¢(w)>0).
Consequently, ¢z and ¢ can be identified Pgs-a.e.

We shall prove that there are many kinds of L-times connected with a
given L-time. For the purpose, we need to define the reversed path w* of w
and reversed Markov times from an L-time. We fix an L-time ¢ in the
following.

Put

(2.5) Wo=4w : 0<v(w) < = }.
DerINiTION 2.7. For we W, we define a new path w* by
(2.6) w*(t) = w(c(w) =t —0), for 0<t<r(w),

(#f w(r(w) —0) exists, we add t=0 in (2.6)) and call w* the reversed path of

w from v(w).
Put
(2.7) W*={w"* : we W},

and let _#* be a os-field of W* induced by the mapping w- w* ie. B*e _#*
if and only if {w : w*e B*)e 7.

DeriniTiON 2.8. A function o*(w™) from W™ to [0, ] is said to be a
reversed Markov time (corresponding to the fixed L-time ), if it has the pro-
perties:

(my)  o™(w™) és A -measnrable; and
(my) For any s=0, take any we W, such as wse Wo. If o*((ws)™) <t(ws),

then we have o ((ws)*) = (™) ¥
LEMMA 2.9.
(2.8) (ws)*(2) = w*(t) for any 0 <t <t(ws).

Proof. For 0<t<r(ws), we have, making use of Lemma 2.2, (ws)*(t)
=ws(r(ws) — 1t~ 0) =wlc(ws) +s—t—0) = w(r(w) —t —0) = w*(2).

%) This was suggested by K. Sato. Our terminology is reasonable, if we note Lemma
2.9 and refer to Galmarino’s test (cf. eg. [9]).
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LemMma 2.10. For any random time s(w) =0, we have
(2.9) {6<r—s<0}={c<v(ws) <oo}.
Proof.

{g<r—s< o) =U{o<r<r—s<o)=U{o<r<r(ws) < oo}
= {0'<T(ws)<0°}.

DeriniTiON 2.11. Taking the fixed L-time r, and a reversed Markov time

a* (corresponding to ), we define ©' by

(2.10) (w) = c(w) — M (w*), (we W),
=c(w), (we W\ W,).

Then we obtain the following
Prorposition 2.12.Y o' (w) defined in (2.10) is an L-time.
Proof. For any s, t =0, it follows from (m.) and Lemma 2.10 that

{t< o' (ws) < oo} =t <rlws) — o™ ((ws)*) < oo}
= {t<r(ws) — ¥ (™) < oo} = {t<v(w) —s — ™ (w*) < oo}
={t<t(w) ~-s< o},

completing the proof.

Remark. If v is an almost L-time, then ¢/ defined in (2.10) is an almost

L-time.
We denote the coordinate mapping of w™* also by #, ie. % (w*) =w*().
DeriniTION 2.13. Put, for a subset DCE,

(2.11) op(w™) =inf{t>0; x:(w™) € D}, for w*e W*,
(inf ¢ = o),

and o3 (w*) is said to be the reversed first passage time to D.

ProrosiTioN 2.14. If D is an open set, then the reversed first passage time
o3 (w*) is a reversed Markov time.

4) This proposition combined with Theorems in §3 shows that the reversed pro-

cesses of a process from L-times have a common transition probability independent of
L-times.
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Proof. (my) is verified by
{3 (w*) <s} = {3 rational 7, 0<r<s; % (w*) e D).
If wse W, and o} ((ws)*) <t(ws), then we have evidently

ap((ws)*) = af (w*),

by Lemma 2.9.
CoroLLARY 2.15. Let D be an open set, then

(2.12) (w) = t(w) — ap(w™), (we W),
=t(w), (we W\ W),

is an L-time.

The following property of the last exit time &p is used in the next section

to verify the conditions for a time reversion.

ProrosiTiON 2.16. If a Markav process X is standard and D is an open
set with regular boundary? then there exists an additive functional b(t, w)
satisfying

(2. 13) Lo(d) EPa[0<En<OO]=Ma[(b(OO, W)]

Proof. Let o, t ¢ be any sequence of Markov times, then it suffices to
prove, according to Meyer [10] and Sur [16],

(2.14) lim M [Ly(%,,)] = M L«(x,)], (a€E).
Now, we have
lim Ma[Lo(xo")] =1lim Ma[ng”[() <é&p < 00]]

n—»0 n-o

=lim Pa[0< &p(ws,) < o]

n->x

= lim Pa[33>0, xan+s S D, sD(wcn) < OO]
= Pa[n<35> 0, xo,‘+se D, SD(WG”) < OO}]
=P NAu 6> &1+ Pl NA, 6<Ep]+ P NApn o=£5]
=1+ T1[+11I, say,
where An = <3$> O, Xao,+s € D, 5[)(?/00”) < 00>.

I=Pa[nAn, U>$D]=Pa[nAn, 0230n,> $D]=0,

5) An open set D is said to have regular boundary, if P«[ep=0]=1 for each a=D,
where op=inf {{>0; x,&D}, (inf g=00).
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since An, and {gn,>&p} are disjoint.
II= Pa[nAn, o< 51)] = Pa[38> 0, Xo+s € D, ED(WG) < 00]

I.II::Pa[nAn, lf:SD, onE]-I-Pa[nAn, a=E&p, xna-:—ﬁj
= III[""‘IIIz, say.

Because of {0 =25} ={6p(ws) =0 or — o, ¢=£p}, we have

Il £ Plo=¢p, o€ DI1< Pal%,€D, ér(ws) =0 or — o]
=Ma[an[£D=O or —o]; xGEE]:'-O-

For, Py [&p=00r —ow]=0, P,—ae on {xsD), since any point of D is

regular for D by the assumption. Because of
Pa[QAn, g=£&p, Jon=0]=0,
putting
B={N\As o=¢5, %D, N{oa<én}h
we have

Il = PJ[B1.

Put on(w) = (on(w) + 0p(ws,) ) Ao, then o) is a Markov time with the pro-
perty os<on<&p=0<¢ on B, from which it follows that on(w) to(w) <¢(w),

and %, (w) € D for we B. The quasi-left continuity, therefore, implies that

Pa[B:I = Pa[lim bxan’ = X5 B:I = Pa[xo =lim X, € 5 3 B] =0.

n->x n->o

Hence, we have

lim MaI:Lo(xa")] = Pa[33>0, xa-f-s e D, Ep(wa) < OO]

= Md[P+[35>0, xs€ D, &§,< 1]
= Ma[Lo(xo)]’

completing the proof.

Remark 1. Since E is open and closed, and PJor=0]1=1 for a<E by
definition, Proposition 2.16 is valid for &z (or ¢).

Remark 2. Let X be a (not necessarily standard) Markov process and ¢:
be an additive functional of X. Denote X the process with killing by ¢, and
¢ the killing time of X. There exists an additive functional b(¢, @) satisfying

https://doi.org/10.1017/5S0027763000011405 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000011405

186 MASAO NAGASAWA
PJLo<é < ol =MlIb(oo, )], if
_ © —al
v(a) = M“[So e d‘Pt]

is uniformly a-excessive for some a =0. In particular, this is applied for e .

subprocess X*®.
Proof® Put u(a) = PJL0<¢< ], then
u(a) — MLu(i)] = Pl[é <01— PJ¢>1]
=1 Ma[e_w] = Ma[sat]
at ! —as
<M Soe dps |
= e {v(a) — MLe *v(x:)]} >0, uniformly (¢V 0),

Therefore, there exists an additive functional b't, w) satisfying u(ae) =
M[b(, w)]. (cf. [4], [17D).

§ 3. Time reversions of Markov processes from almost L-times

DerinitioN 3.1. Let v be an almost L-time and Wy={w; 0<r(w) < o},
Put, for we W,

(3.1) 2t(w) = Xeqwy—t-o(w), (0<t<c(w)),
=9, (t=r(w)),

(if there exists x.-o, we permit t=0 in (3.1)). The process (2, P,) defined
on the space (W, # |w,) s said to be the reversed process of (x:, Pv) from

an almost L-time t, where v is a o-finite measure on (E, .B).

In this section we shall prove the temporally homogenous Markov pro-

perty of the reversed process (z:, Pv). For this purpose, it suffices to prove

for any n=0, 0=t <t <:-+ <ty and fo, f1, f2, - .., fu<Co(E)" that
(3.2) M TLfa); ta<e<o |
o0 -

n-1
= M T1 7521 [ Pt =ty 2teyy dB) Fa(B)5 <z < o0 |-
3=0 -

§) This was given by K. Sato.

) B(E), C(E) and Co(E) are the spaces of bounded Z3-measurable functions, bounded
continuous functions, and continuous functions with compacts upports, respectively.
Cx(E) is uniform closure of Co(E).
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where P(2, a, db) is a (temporally homogeneous) transition probability, (=0
may be omitted when 2, is not consulted with).

In the present paper we proceed as follows: At first we prove (3.2) under
the form of the Laplace transforms, in the second place we check the condi-
tions under which the Laplace transform can be stripped off.

The coming lemmas are fundamental in the first stage, further they show
the temporally homogeneous Markov property of the reversed process in

essence.

LemMmA 3.2. Let t be an almost L-time. For any n=1, 0=(L<H<hHL<

c oo Zty, and fo, f1, ..., n€B(E) (fo=1, when 2, does not exist), we have,
Jor a, B3>0,
(33) St,._l e—MndtnMa[e_utjllfj(ZQ) H tn<‘£' < 00]

- n—1
= (Gula, db)fuO) M VL £i(a) s taos<e< o0 |
i=0
where
(3.4) Gola, A) =M | e Llx)at ]
0

Further, if Gola, .) is o-finite, and fn< Bo(E), then (3.3) is valid for a =0.

Proof. 1t suffices to prove (3.3) for fo, f1, « .., fnEC(E).
St"_xe-ﬁtn dt"Ma[e—at]l‘:]ofj(ZtJ)X(t,.<t<oo)(W)]

=lim St e""” dtn Ma[e—arHofj(xr—tj—s)X(tn-l-s<t<w)(U))J
Ny J=

€40

T=€ n=1
=lim Ma[g e"ﬁtn dtn e—d".]]ofj(xt—lj—s)fn(x‘t—t"—e) X(T<oo) ]
j=

€40 In-1

T=lp—1—€ n-1
=lim M“[S e-n(t—s—e)—cﬂ dsfn(xs)n fj(xt-—tj—e) X(’t<oo)]
0 =0

€40

® n-1 -
=lim MaH e PO s (%) TT fj(xT—tJ—E)X(S<T—tn—1—E<oo)]'
Jo Jj=0

€40

further we have, by making use of (L}) and Lemma 2.2,

0 n=-1 -
: - ~-g)— +
= lim Ma[‘g e B(T(Wg)—€)—a(T(Wy) s)dsf,,(xg)nfj(x:(ws)_tj—e(M)s))X{t,,..1+s<t(ws)<oo)J

€40 0 §=0

® - n-1
= tim Mo § 7" £2(0e) M| €V TLfj(emtymd) et srecncon
-

€40
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= Ma[Sje—astfn(xs)st[e"'(a""ﬂ)":‘lfj(ztj) ; i<t <o ]]

=0

= the right member of (3.3),

where a >0, (this is verified for a =0, by making use of ¢-finiteness of Gy(a,.)
and f,€ Cy(E)).

LemMma 3.3. Let t be an almost L-time, and L2(a) = MJLf(z)e **].  For
any n=1, 0<ay, az, «-.,&n and fo, f1, « .-, fnEB(E) (fo=1, when 2
does not exist), we have, for a >0,

3.5 (emtanf et o[ e tad e T ) s ti<e <o |
= S e SGa(a; dan)fn(an)Ga,ﬁa(an, dan-—l)fn—l(an—l) e

. 'G¢z+aa+...+¢,,+a(az; daL)L’£§+a,+...+a,,+a(al).
If Gi(a,.) is o-finite and f, = By(E), then (3.5) is valid for « =0.

Proof. We shall prove (3.5) by induction. When n# =1, (3.5) is reduced
to (3.3) with #=1. Because of Lemma 3.2 and the assumption of induction,
we have

the left member of (3.5)

©

= (Gu(a, ab) f,,(b)fje-%dn- o § et

tn—z

n—1
Mb[e—(a+u")tn fi(ztj) ; tn—1<f< OO]
7=0
= S . ‘SGa(a, dan)fn(an)Gan+a(an, day-1) - - 'L£z+uz+...+u,,+u(al).

This concludes the proof.

Now we introduce several conditions under which we are able to derive

(3.2) from the above lemmas.

(Case 1)
A.3.1. We assume that Gi(a,.) is ¢-finite and for a ¢-finite measure », if we

put

(3.6) 2(A) =Sv(da)Go(a, A), for A .3,
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then, there exists a transition probabability (¢, a, A)® such as
(3.7) { 7.7 (a) g(a) 1(da) = [7(a) T1g(a) 1(da),

for each f, g€ Bo(E). Here

(3.8) Tif (@) = MLf (2],
and
(3.9) T4/ (@) = (P, a, db)f(b).

A.3.2. v is a o-finite measure on (E, %) satisfying

(i) P.lzs Kl< o, (:>0),
and
(ii) S:ge’“’dtP»[z’tEK]< 0, (a>0),

for each compact K. Here z -is defined by (3.1) for a given .
In the following we fix an almost L-time r, and consider the reversed pro-

cess z: defined in (3.1).

TuEOREM 3.4. Let v be a measure satisfying A.3.1 and A.3.2. Then, for
any n=2, 0<y<t<+ e+ <ty-s, and f1, f2, ..., fnECAE), we have (put
tn—-2=0, z'fn=2)

)

(8.10) f;_ze‘“n-l‘n-ldtn-lj

T

tp—z

et M 11 fi(ze) 5 ta<r <o |

n-=1

L)

n—1
e"""”dtnMv[ ;H;fj(th)T'u"’"-*f”(2"‘") :

tn=1

by <t< 0 ]
where an and a,-1 are positive.
Proof. It suffices to prove (3.10) for f;=0and fj€ Co(E), (j=1,2,...,
n). Putting

(3.11) Gof(a) = j:’e-“‘dtftf(a), (a>0),

8 ogﬁu, a, A)<L1, and for fixed ¢, a, Is(t, a, A) is a measure on (E, ¢8), and for
fixed A, it is measurable in (¢, @). Further it satisfies

B(t+s, a, A)=513(t, a db)P(s, a, A), (1, s=0).

https://doi.org/10.1017/5S0027763000011405 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000011405

190 MASAO NAGASAWA

we have, by (3.7),

(3.12) SGaf(a) g(a)y(da) = jf(a)éag(a)n(da).
Making use of Lemma 3.2 three times and (3.12), we have
the left member of (3.10)

=" emermteiat, \((o(da) G(a, ab) f,,(b)Mb[e‘“"’:ij: Faty) s taea<r< oo |

tn—2

n-2
= [§2(d8) £ a(0)Gun(b, d) frmre) ML &= L £5(21)) 5 tna<r <0 ]

n=-2
= Sﬂ(db)fn-l(b) éanfn(b)Mb[e_(a"+dn“1)1}}1fj(ztt) ; tpe<tr<< ® ]

Stn-z

= the right member of (3.10),

n-1
_(¢n+an_l)t”-ldtn-1Mv[Hfj(th)Gu,,fn(zt"_l) > tn—l <r< 00]
j=1

completing the proof.

A.3.3. For any f < C(E),
(i) T:f(a) is right continuous in ¢, and

(ii) G.f(z) is right continuous in ¢, Ps— a.e. (a>0).

Remark. (A.3.1) and (A.3.3) follow from the condition (F) of Hunt [3].

THEOREM 3.5. If @ Markov process X and a measure v satisfy A.1.1,
A.3.2, and A.3.3, then the reversed process (z:, P.), (t>0), of (x:, P.) from

an almost L-time t© has temporally homogeneous Markov property and its
transition probability is P(t, a, A), ie.

(3.13) PlzncAlz, 0<r<s]l=P,Jz= Alzs]
=P(t~s, 25, A), Py—ae on {s<r< o}, (0<s<t).”

It must be noticed that the transition probability of the reversed process
does depend only on the transition probability and the initial measure » of the

process x:, and does not depend on the almost L-time «.

% It was remarked by K. Sato that if the process (x;, Py) satisfies; (i) Pv[0<r< 00

and x<-o does not exist] =0, (ii) Prlzs&K] <o for every compact set K, and (iii) ’ﬁf(a)e
C(E) for each f=Cu(E), then in Theorem 3.5, we can replace (z, Pv»), (£>0) by (2, Pv),
(t=0), and (0<s<?) in (3.13) by (0<s <¢#).
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We prepare a lemma.

LemMa 3.6. If fo, f1, ..., fn<E Co(E), then

.14 wltad)={ e[ ) ta<c<w |, (n22),
n—1 1=
and
(3.15) o(ty) = Mv[ﬁof,-(z,j) S ta<e< |, (n21),
I :

are right continuous th t,-, and t,, respectively.
Proof. For any ¢>(, we have
(3.16) lu(tn-1+€) — ultn_y)|

§§ e"""t"dtnﬂ[v{ T |]f1'(3t'j>a'llfn—1<3f,,-,+s> ~ /-1 <Zt,,-1)}}
tp—y+€ i¥n-1

+ Stn:uee'“"’"dtnM [;Ho] sl

n=1

(3.17) lo(tn+e) — v(ta)]
= M TL 751 | alatar) = Fulzn) |5 tate<e<s |
+M»[£Iolf,-(z¢,)l; tn<‘r§tn+5J°
Both terms in (3.16) and (3.17) converges to zero with e by A4.3.2 and the
bounded convergence theorem.

Proof of Theorm 3.5. Making use of the previous lemma and A.3.3, we
can strip off the integrations by f,-1 and ¢, in (3.10), because of one to one
property of the Laplace transform. Thus we have (3.2), from which the
statements of the theorem immediately follow.

(Case 2)

B.3.1. (i) There exist a o finite measure » on (E, .%) and a function
p(t, a, b) (t>0, a, be E) satisfying;

(3.18) b(t, a, b) is non-negative, .% x .%4-measurable as a function of (a, b),
(3.19)  Tif@ = {p(t, a, b) 7 (5) map).

Moreover, either

(ii) (¢, a, b) satisfies
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(3.20) p(2, a, b) is right continuous function of # in (0, ) and bounded
in (a, b) for any fixed t>0;

or
(ii') T maps By(E) into C(E).

B.3.2. There exists a ¢-finite measure g such that

(3.21) MJLe ™ ; 0<c<o]= Sga(a, b) u(db), (=0, ac E),
where
(3.22) 2.(a, b) =jop(t, a, b)e~*dt, (« =0).

B.3.2". (i) Palx.-, does mot exist in E]1=0, and (ii) there exists a

o-finite measure g, satisfying
(3.21) MLf (xe-0)e™ : 0<c< 0= (gula, ) 7(5) u(ab),

for =0, ac E, and f € B(E).

Remark 1. B.3.2 is weaker than B.3.2' (ii).

Remark 2. Let X be an A-diffusion, i.e. the diffusion process with the
generator which is a closed extension of a second order elliptic differential
operator A satisfying some regularity conditions (cf. [4], [12]). Then X
satisfies the conditions B.3.1 and B.3.2 (or B.3.2').

TueoReEM 3.7. Let X be a Markov process satisfying B.3.1, and t be an
almost L-time satisfying B.3.2 or B.3.2'. Then, for any «a=0, n=1, 0=146<#
Lo o Zty, and fo, f1, . - - » fnECAE) (when B.3.2 is assumed, we put f,

=1), we have
(3.23) Ma[I'I filz)e™ " ta<c< oo]
i=0

= e-atnj. . ggq(a, an)m(dan) fn(an) P(tn"tn-l, Ay, dan-i)'

« fu-1(@n-1) P(tn-1 — tn-s, @n-1, A@n-2) fn-s(@n-2)* * *
'P(tz =&, a, a’a;)f,(al)p(tl, ai, ao) fo(ao)ﬂ(dao).

Proof. It suffices to prove (3.23) for non-negative fo, f1, . . . » fn € Co(E)
and « >0. We shall prove it by induction.
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We assume that (3.23) is valid for —1 (#=2). Then we shall at first
prove for >0 that

(3.24) " e™at M 11 fi(a)e™ s ta<e< o |
i=0 -

tn—-y

-

tpe—y

c e« P(ty—ti, @&, day) f1la) p(t1, a1, a) fola) u(dao).

e-(“’m‘"dtns AR SGa(a, dan)fn(an) P(ty—tp-1, an, das-1)

On account of Lemma 3.2 and making use of (3.23) for »—1, we have
the left member of (3.24)

~ n—1
= SG“(G’ dan)fn(a,.)Ma,,[e—(”““]H fize); taaa<t< oo]
=0

= SGa(a, dan) fn(an)e—(d+ﬁ)'n_lg ¢ SGaH&(an; dan—l)fn—l(an-—l)
« e P(ty—t1, @z, day) f1(a) p(t1, a1, &) folao) ulday)

©

e “‘””sdss <o SGa(a, day) fnan) P(s, an, dan-1)
<o o p(ty, @i, @) fola) p(day)

= e-—(cu-ﬂ)tn..,‘
)

= the right member of (3.24).

The right member of (3.23) is right continuous in ¢, according to B.3.1
(ii) or (ii"), since x and m are finite on compact sets. On the other hand, the
left member of (3.23) is also right continuous in ¢, by Lemma 3.6 (M, must
be replaced by M, in (3.15)). Consequently, (3.23) for » =2 is obtained from
(3.24) by the one-to-one property of the Laplace transform. Applying the
above discussions for #=1 and using (3.21) or (3.21'), we have (3.23) for

n=1. This completes the proof.

DeriniTION 3.8. For a o-finite measure v, we put

(3.25) 7(6) = {(da)as(a, b),
and
(3.26) E,={a; a€E, 0<y(a) <o}, and Ey= E\ En.

B.3.3. A o¢-finite measure v satisfies
(3.27) Pz K]l< o, (t=0),

for any compact set K (when 2, does not exist, t =0 is omitted).
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LemMma 3.9. Under the condition B.3.1, B.3.2' (or B.3.2), and B.3.3,
we have P\ z:= E]=0 (¢>0), (when B.3.2' is assumed, t =0 may be added).

Proof. Choose a sequence of compact sets K, such as K, 1 E. Then, for
t>0,

(3 28) P\.[ZtEEo n Kn] = SSP(t, a, ao)Xp,,,,xn(al)-/)(al) m(dal) #(dao),
and, if B.3.2' is assumed,
(3.29) Plzne E,NK,] =jxrfr,nk,,(ao)‘0(ao)#(dao),

by Theorem 3.7 and (3.21’). Since the right members of (3.28) and (3.29)
are equal to zero or infinity, while the left members are finite, they must be
zero. Letting n 1 o, we complete the proof.

TueoreM 3.10. Let X, t, and v be a Markov process, an almost L-time and
a o-finite measure satisfying B.3.1, B.3.2 or B.3.2!, and B.3.3, respectively.
Then the reversed process (z:, P,) from the almost L-time v has temporally
homogeneous Markov property and its transition probability is

(3.30)  Plzecdblzs=al=pt—s, b, a) ZEZ)) Len(B)m(db), (0<s<t, ac En).

Moreover, if B.3.2' is assumed, s =0 is added in (3.30) and the initial measure

of the reversed process is given by
(3.31) P.[z < db]l=n(b) u(db),
where 1 and En are defined in (3.25) and (3.26).
Proof. (3.381) is obvious by (3.21'). For the proof of Markov property
of (z, P,), and (8.30), it suffices to verify an analogue of (3.2),

(3.2) MTLSiz) 5 ta<e<

n-1
= M T 75a0) Tanlt, ) \00tn = tas, @, 200) 2% 7r, () 70(a) ()
i=0 7(2¢,.,)

P tni << ocs],

(when B.3.2' is not assumed, put f,=1).

On account of Theorem 3.7 and Lemma 3.9,
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the left member of (3.2")

= M T /e ne2,) Tr2,) 5 ta <z <0 |

= g o Sﬂ(a)m(da) (@) Xe (@) p(tp—tu-1, a, an—l)wli)XEq(an—l)

'ﬂ(an—1)7’ﬂ(dan—1) .. ‘ﬁ(tz -1, as, a1)m(dal)f1(a1)17(t1, ai, ao)fo(ao)/l(dao)
= the right member of (3.2'),

completing the proof.

We shall give remarks about the conditions B.3.2 and B.3.2'.

Remark 1. Put, for g.(a, b) in (8.22) and for f € B(E),
(3.32) GI 7 (b) =jm(da)f(a)ga<a, B), (a<0).

B.3.4. X is standard, G¥ maps C.(E) into C.(E), and Gi[C.(E)] is
dense in Co(E);

If X satisfies B.3.4, then B.3.2 is valid for every almost L-times (cf. Pro-
position 5.1, pp. 115-117 in [4]).

Remark 2.

B.3.5. B.3.2 is satisfied and (i) g.(a, b) given in (3.22) is a-excessive
and a-harmonic in E\J as a function of @, and (ii) MJe *; 0<r< o] is

regularly a-excessive.

If X is standard and satisfyies B.3.5, then B.3.2' (ii) is valid. (cf. Theorem
4.1 in [141).

Remark 3. Let p(i, a, b) satisfy B.3.1 (i), and

1) jp(t, a, b)m(db)p(s, b, ¢) =plt+s, a, ¢), (¢, s>0),

(ii) GifeC(E), for any f € Cy(E),
(iii) for any f e C(E),

lingm(da)f(a)p(t, a, b)=f(), (beE).
t
Then g.(a, b) satisfies B.3.5 (i).
Proof. We shall prove, for any open set U containing b,

(3.33) g.(a, b) = Mile *"Vg.(%5,, 6)1=H?g.(a, b), (acE, b U)
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where ¢y is the first passage time to U.
We have easily (3.33) for fixed a= E and m-ae. b€ U. Take fe C(E)
such that 7(#) =1, f(a) =0 for a€ U, and 0=f=<1, and take any ke Cy(E),

then we have

\ k(@) m(da) g.(a, )

=lim Sh(a) m(da) g.(a, ¢)m(de) f(c)e *p(t, ¢, b)

tio

=lim j‘h(a)m(da)Hb‘ga(a, ¢)m(de) £(c) e~ *p(¢, ¢, )V

tio

= lim Sh(a)m(da) Hia, dc)S:oe”“sp(s, ¢, b)ds

tio

~ lim | f1(a) m(aa) Higa(a. o) (1= 7)) m(de) e p(t, ¢, b).
The first term

=Sh(a) m(da) Hig.(a, b), and

|the second term|

<K 1i§1;nj(1—f<c))m<dc)p(t, ¢, ) =0,

where K = K(h, a) such as

(@) m(da) Ezgua, )

= jl n(a)im(da)g.a, c)SK< .

Consequently, we have (3.33) for m-a.e. a< E and for any b € E, but since the
both sides of (3.33) are «a-excessive, therefore fine continuous, as functions of
a<E, (3.33) is valid for any @ € E, completing the proof.

We state here a corollary of Theorem 3.10.

CoroLLarY. Let X be a standard process satisfying B.3.1 and B.3.5 (i)
and B.3.2 (or B.3.4) for the last exit time &p where D is an open set with

regular boundary such as
P.lthere exists x:p e E|0<§p<o0]l=1 (aEE).

Let v be a o-finite measure satisfying B.3.3. Then the reversed process (z:, P,)

1 HY(a, A)=Ma[e-*90X4(%0y)] and Hgf(a)=ng(a, db)f(b).
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of (x:, P,) from the last exit time &, has temporal homogeneity and the tran-
sition probability

PoLar € dblz=al = plt = 5,5, @) L8 1 (5)m(ab), (0=5<t),
and the initial measure
Pz < db] =5(b) u(db),
where 7(b) is defined in (3.25).

Proof is immediately obtained by making use of Proposition 2.16.

(Case 3)

C.3.1. There exist a ¢-finite measure m and .% X .%-measurable function
g (a, b) =0, (« =0) with the properties that
W) Guf(a) = [gu(a. b) f(BYm(ab),

and

(ii)  Guf(b) = jm( da) f(a) g.(a, b) gives the resolvent operator of some Markov

process X, in the sense of §1.

C.3.2. v is a o-finite measure satisfying

(3.34) S e dtP.lz e K1< ©, (a>0),
0

and

(3.35) Plae K<,

for any compact set K, where z is the reversed process of x; from an almost
L-time ¢ satisfying B.3.2'.

Given an excessive function e(a), the super-harmonic transform X° of a

Markov process X by e is the Markov process with the transition probability

(3.36) Pt a, A) = -;(}T)Mam(x,) e(x)], (ac E),

where E.={a; 0<e(a)< «} is the state space of X°.

Kunita and Watanabe [8] proved that the process X° preserves main pro-
perties of X. For example, if X has right continuous paths (this is always

asuumed in this paper), then X° does, and moreover if X is standard, X° is
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also standard. This fact is essential in the proof of the following

TreoreM 3.11. Under the assumptions C.3.1 and C.3.2, the reversed pro-
cess (zz, P.) of (%, Py) is a version of (iF, P,), which is the super-harmonic
transform X" of X by 7 with an initial measure yu. Here 7(a) is defined in
(3.25).

We omit the proof, and give a brief sketch in foot note.'

Remark. If X and X are standard and satisfy C€.3.1, and if g.(a, b) is a-
excessive for X in a< E and for X in & € E, then the last exit time &, satisfies

(3.21") for open set D with regular boundary.

§ 4. Time reversion of approximate Markov processes

Following Hunt [2] we first mention some notations and definitions on
approximate Markov processes.

Let (2, .#) be a measurable space, and P be a measure on (2, - #)
(possibly with infinite total mass), and a(w) and B(w) be .#-measurable
functions such that — ® Za(w)< o, — o <B(w)= o, and a(w) < B(w).

Let y;(w) be a function on (a(w), B(w))x 2 taking values in a locally
compact Hausdorff space E with countable base. A system (y: a, B, P) is
said to be a random process if (i) {y:€ A, a<t<Ble A, (tE(— o, x),
Ae %) and (ii) Ply;€ A, a<t<Bl1< o, for every compact set A.

Put 2, ={a <t<p}, and let _#; be the o-field of 2; generated by {ys € A,
a<t<B} for every s<t and A .%. Then (y; «, B, P) is said to have
Markov property if for every .#:measurable and locally P-integrable func-
tion f£,”®

(4.1) MCf ()| A ]=M[f(w)]y:], P-ae. on 2,

1) A proof was given by H. Kunita in the case of z={. For the proof it suffices to
verify an analogue of (3.2),

n ~ n ~
(3.2") M»[ ‘Hnmz,j); tn<r<ooJ =M7:.,,[ ,Hof:‘(x?,)J’
j= ij=

which can be obtained from its multiple Laplace transforms by making use of Lemma
3.3, a lemma similar to Lemma 3.9, and the right continuity of x"

™ Mf(0); B]={ f(0)Pldo].

f is said to be locally P-integrable if M[|f(w)|; B]<oco, where B={a<t<B}n {y,€A)
for every compact set A and tE(—o0, ).
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and said to have temporally homogeneous Markov property with a transition
probability P(t, a, A), if it has Markov property and

(4.2) Ply;e Alys1=P(t—s, ys, A), P-a.e. on 2s,

for every s=t¢ and every compact A.

o(w) on @ is said to be reducing time for (y:, «, B, P) if (i) o is -
measurable and a<s<p, and (ii) (5}, 0, v, P) on (£, 4 |o) has temporally
homogeneous Markov property, where ' ={— © <g< 0}, r(0) = B(w) — s(w),
and y}(®) = Yo(+t{w) for o€ 2, t=0. We shall call (y}, 0, v, P) the reduced
process by .

A random process (¥, a, B, P) is said to be an approximate (temporally
homogeneous) Markov process, if there exists a sequence of reducing times
{ai} such that (i) — o <a@i(w)< + © and a;! a(i> ©)P-a.e., and (ii) each
reduced process by a; has temporally homogeneous Markov property with a
transition probability P(¢, a, A) independent of ;.

In order to apply the results in the previous sections, we add some

assumptions.

A.4.1. (e;) The sample paths of y; are right continuous. (e;) there exists
Yo E, P-a.e” and each reduced process by «; is equivalent to a standard
process, i.e. the reduced process (%, 0, 7, P) and (x; P.,) are equivalent for
any i=0, where X = (x4, &, .#:, Po) is a standard process and »i(A) = Py}
€ A], and (e3) 7(A) = M[Sih(yt)dt]< o, for any compact set A.

Define the last exit times from DCE of y: and yﬁ by

(4.3) &p(w) =supit; yi(w) €D}, (supgp= — ),
and

(4.4) g(w) =sup{t=0; yi(w) D}, (supg= — =),
respectively.

Then we have, by the right continuity of paths,
LemMma 4.1. If D is open, &» and &5 are _M -measurable.

LemMA 4.2, There exists i(w) < © such that

1) yf,(w):lim o).
t4o
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(4.5) ailow) + &5 (w) = &p (w), for any i=ilo).

Proof. Put 2,={w; there exist i(w) < and 0<#< =, such as y*(w)
eD) and 2 ={w; for any i=0 and 0<t<oo, yi(w) ED). If we D, £r(w)
= —o and &5(w)= — o for any i=0. If we @, &r(w)=ailw) for every

i>14(w). Therefore &)(w) =sup {t+ai; Yo+t € D} = ailw) + ¢5(w), completing

the proof.
Put
(4.6) 2(A) = M[jixé,( ye)dt ).
and
(4.7) 7(A) = M[fo(yi)dt].

Then, we have

LemMA 4.3. 5 and o' for any i are excessive relative to P(i, a, A), and
7(4) 19(A), (i> ) for each Ac .B.

Proof. For any A€ .4, we have
. [l B
A =M [ Laarnat |= M| | 2a30at] 19(4), (i),
) . Jay .
and for compact set A
. - ort . - a1t . . .
[7taa) P(t, a, 4)= M| P, 58, A)as|= M| | MUZA(si0) 1505 |
0 0 -
- o1t . .
= M| { 2a5hs |<7(a) s a),
and, therefore,
{n(da) P(t, a, 2) =1im [ (da)Pt, a, A)=7(A), (A .B),

completing the proof.
We define now the reversed process (3, &, 3, P) of an approximate Markov
process (¥, a, 8, P) by

(4.8) a(w) = = B(0), flo) = —alw),
and
(4.9) It(w) =y-s-0(0).
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In the following we shall prove that the reversed process is also an
approximate Markov process.
A.4.2. The standard process in A.4.1 (e) satisfies; (7;) There exist
o-finite measure m and a transition density p(¢, a, b) such as

Pt a A) = SA;b(t, a, BYm(db) ;

(r) p(t, a, b) satisfies B.3.1 and g.(a, b) satisfies B.3.4 and B.3.5 (i), where
g:(a, b) is defined in (3.22), or

(7))  g.(a, b) satisfies C.3.1 and B.3.5 (i);

(rs) There exists a sequence of open sets {Di} with regular boundary and
with compact closure such as Dy C Dg+; and Dr 1 E;

(74) For any open set D with compact closure,

(4.10) there exists Yyp—o, P-ae. on {0<E&p <o}
A.4.3. For any &, t =0, and compact set K,

(4.11) Plyép,~t—-0)eK, &p,—t>al< oo,

where y(t) = yi(w).

Tueorem 4.4. Let (y:, a, B, P) be an approximate Markov process satis-
Jying A.4.1 and A.4.2, then for any 0=t,<t1 <+ - <t,, and Ao, A, ...,
A, B, we have

(4.12)  PLYy (&, -t -0 € 4), 0Sj<n; tn<&h < oo]

25 .. 'Sﬂpk(dao)xAn(ao)p(tl, a, ao)XAx(al)m(al) AR
Ptn—tu-1, Gn, an—l) XAn(an)ﬂi(dan),

where pp, is a mearure, given in B.3.2 for &, independent of i.
Proof. We have

Py (&, ~ti—=0)€ A, 0Sj<n; t,<&h <]
=Pv,[x($Dk_t]—0)EA]) Ogjgn; tn<$1)k<°°]

where x(¢) = x;.

Therrfore, if (s2) is assumed, we have (4.12), applying Theorem 3.7 and

Remark 1 after Theorem 3.10. If (r3) is assumed, we have
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(4.13) P [x(¢p,~1;—0)€ A, 0=j=n; t,<&p,< o]
—Mw[—H L, (1)) ], (v(a) =7'(a), 2= un),

by means of Theorem 3.11. Hence we have (4.12), because of

(4.14) P4 a, A) =S 2(t, b, a) ”E"; m(db),
completing the proof.
TueorReEM 4.5. Put
(4.15) Pt a0, 4) = ptt, b, a) 7 ”)) Le,(0)m(db), for a€ En,
=0, for ac E\ E,
where
(4.16) 7(b) = llimjw(da)go(a, )" and Ev={a; 0<5(a) < o}.

Let (y:, a, B, P) be an approximate Markov process satisfying A.4.1, A.4.2,
and A.4.3. Then the reversed process (9, &, B, P) is an approximate Markov
process with transition probability P (t, a, A), and its sequence of reducing times

is { —&p, )"

14 Since jw(da )go(a, b) is non-decreasing m-a.e. bEE, there exists ae. limit 7(b) and

2(db) =7(b)m(db).

15) Time reversion of an approximate Markov chain is an essential tool in Hunt’s
treatment of Martin boundaries of Markov chains [2]. This theorem, therefore, will
give a basis for theory of Martin boundaries analoguous to Hunt’s in the case of more
general Markov processes.

For this purpose we must construct an approximate Markov process {from a given
(standard) process X and a given excessive measure 7 such as the reduced processes
have the same transition probability as X and satisfy

M[jim(y»dt] =7(A).

But the author is able to prove weak facts that: Let X be a standard process satisfying
that GofeC»(E) for each f€Co(E) and Go[Co(E)] is dense in Cx(E). Then there exists
a system (y;, a, B, P) on (2, M) consisting of : (i) M is a field (not necessarily o-field)
on 2, and P is a finitely additive non-negative function on M; (ii) a(w) and B(w) are
functions on 2 such as —co<a(w)<B(w)<+oo; (iii) yi(w) is a function defined on [a, B)
x {2 taking values in a locally compact space E, and right continuous in #; (iv) there
exists a sequence of functions {a} on 2 such as <8 and aila (i>). If we put
7r'=8—a; and y:(w)=y0i+t(w) (0=t<ré), and let M be the o-field on 2 generated by {y};
t=0}, then (3%, 0, 7%, P) is a temporally homogeneous Markov process with the same
transition probability as X; and (v)

limMHih(yﬁdt]:’/(A), (Ac 7, A is compact).

(2

1>
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Proof. Putting

B={y(&p.—ti—0) € Aj, 0=j=<n, and &p,~tn>a},
and
B;={y'(¢h,—t; —0) € Aj, 0=j=<mn, and &5, >t.},

for 0=t <t1< +++ <tn, and Ao, A1 ..., Apne . B with compact closure, we

have, making use of Theorem 4.4 and Lemma 4.2,
(4-17) P[Bi] =§ e g,UDk(dao)XAo(ao) . 'P(tn—tnq, Qn, dn—l)xm.(an)ﬂi(dan)-
Because B; t B, we have, letting - «,

(4.18)  PLBI={ -+ {un(da)lu(an) + + -5(tn=tnes, an @n-1)Za,(@n)n(dan)

=S b 'S/«lnk(dao) ° 'XA,,_X(an—l)XEn(dan-l)ﬂ(dan—l)p (tn = tn-1, Gn-1, An)
= MLP (tn —tn-1, Yo —tu-1—0), An); y(Ep,—t;—0) € Aj, 0=j<n—1].

Noticing that y(&p, —t —0) =3(—&p, +#) and putting 5°(#) = H( — &ne + 1),
(4.18) is written as

(4.19) P[*(t) e Aj, 0<j=n]
= MLP(tn = tn-1, 3 (tn-1), An); () EAj, 0<j<n—1],

from which (4.1) is deduced.

Thus, we have shown that — ¢, reduces (3, &, §, P) to a process (5th , 0,
7%, P) with temporally homogenous Markov property and transition probability
P (t, a. A). On the other hand, —&,, decreases to —f=& and — o0 < — &y
< + oo, completing the proof.
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