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Abstract

A classical theorem states that any open set on the real line is a countable union of disjoint open
intervals. Here the numerical content of this theorem is investigated with the methods of constructive
topology.

1980 Mathematics subject classification (Amer. Math. Soc.): 26 A 03, 54 A 99.

1. Introduction

A complete structural characterization of an open set on the real line is given by
its resolution into a countable union of disjoint open intervals. The resolution is
also useful in understanding the structure of closed sets: a closed set is formed by
removing from the line a sequence of disjoint open intervals. The construction of
the Cantor set by the removal of the middle thirds is a well-known example.

However, the usual proofs of this theorem are unsatisfactory on several
grounds. In the first place, they provide no explicit procedure for finding the
component of a given point, that is, for calculating the endpoints of the open
interval. Secondly, the usual proofs fail to give an explicit procedure for listing
the countably many components in a simple sequence.

Furthermore, examples below will show that the theorem in question is in fact
not true for an arbitrary open set, when interpreted in the strong sense of the
existence of such explicit procedures.

In the case of bounded sets, the first deficiency in the older proofs has been
removed in [5], which gives a procedure for calculating the endpoints of the
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components. This procedure applies not to all open sets, but to the most
important of them, the colocated sets (which are defined below).

In this paper, the second deficiency is removed; the components of a bounded
colocated set are explicitly arranged in a simple sequence. Applications are given
to problems in connectivity and convexity. A characterization of colocated sets is
given which shows their special position among the open sets. Counterexamples
are given which show the need for the special hypotheses used in the various
results and applications.

Only constructive properties of the real line, such as are found in the work of
Bishop [1], will be admitted. For example, in lieu of the classical trichotomy,
which is nonconstructive, we frequently use the constructively valid property that
if a < b, then for any point x, either x < b or x > a.

2. Components of a bounded colocated set

The concept of a located set is due to Brouwer: a set G in a metric space X is
located if the distance p(x, G) for any point x in X can be calculated in a
constructive manner. The metric complement — G of a located set G consists of all
points at a positive distance from G. A set is colocated if it is the metric
complement of some located set. A family of sets is said to be disjoint if any two
which have a common point are equal.

In Theorem 4 of [5], a bounded colocated set U on the line was shown to be a
union of disjoint open intervals, of the form U — U a e 6 , / a , where the index set is
U itself, and the component of any point a in U is the interval Ia with
constructively defined endpoints.

THEOREM 1. Any bounded colocated set on the line is a countable union of disjoint
open intervals.

PROOF. Let U — U a e £ / / a be the resolution of the bounded colocated set [/into
components as obtained in [5], and let G be a located set with U — -G.
Enumerate the set {(q, k): q G Q, k E Z + } as a simple sequence {(qn, kn)}™=].
Construct a sequence {an} of 0's and l's such that p(qn, G) < \/kn when on = 0,
and p(qn, G) > 0 when an — 1. For each n, define Jn = 0 if an = 0, and Jn = / ^
when an = 1, where Iq is the component of qn in the above resolution. This
defines a countable family of disjoint open intervals whose union U" = 1 / n is
contained in U. Now let x E U. Construct q in Ix, choose k so that \/k < p(q, G),
and choose n so that (qn, kn) — (q, k). It follows that an = 1. Since q E Ix, then
x E / , = /„. Hence U= U? = 1 / B .
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The following l emma shows tha t the c o m p o n e n t s of a b o u n d e d colocated set
satisfy a stronger disjointness condi t ion .

LEMMA \. If a bounded open set on the line has any resolution into disjoint open
intervals, then any two nonvoid components are either equal or disjoint.

PROOF. Let Ia and Ip be nonvoid components in a resolution U a S / l Ia, and let
Ia = (a - r, a + r) and Ip — (b — s, b + s), where r > 0 and s > 0. In the case
| a - b | < r, then b G Ia and it follows that Ia — Ip. Now consider the case
| a — b | > 0, and suppose Ia and Ip have a common point. Then these components
are equal, and a = b, which is a contradiction. Hence in this case the components
are disjoint.

The following lemma is immediate.

LEMMA 2. The components of an open set U on the line, when they exist, are
unique. If U — U a 6 / 4 Ia and U — ^peBJp are two resolutions of U into unions of
disjoint open intervals, then for any nonvoid component Ia there exists a component
Jp such that Ia = Jp.

The following corollary shows that the components of a colocated set may be
constructed so as to satisfy a disjointness condition stronger yet than that of
Lemma 1.

COROLLARY 1. Any bounded colocated set on the line is a union U™=lIk of open
intervals such that

(1) Ij and Ik are disjoint whenever j ¥= k, and
(2) each interval Ik is either void or nonvoid.

PROOF. The construction given for Theorem 1 yields components each of which
is either void or nonvoid. Lemma 1 shows that a given component is either
disjoint from all preceding components or equal to one of them, in which case it
may be replaced by the void interval.

A set E is countable if there exists a surjection / : Z + -» E, that is, if the
elements of E can be arranged in a sequence with possible duplications (see page
15 in [1]). A subset T of a set S is a free subset if for any point x in S, either
x £ T, or x G T is contradictory (see page 65 in [1]). Although nonvoid free
subsets of a countable set are countable, in Section 8 it will be shown that not

https://doi.org/10.1017/S1446788700018383 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700018383


252 Mark Mandelkern [4]

every nonvoid subset of a countable set is countable. Thus a countable resolution
cannot be obtained from the resolution U= U a 6 £ / / a , by merely writing U =

A subset T of a set S will be called sequentially free if for any point A: in 5 there
exists a nondecreasing sequence {an} of O's and l's such that x is in T if and only
if some an = 1. Although not every colocated set in a metric space X is free, every
colocated set U = -G is sequentially free. (To see this, note that for any point x in
X, and any positive integer n, either p(;c, G) < \/n or p(x, G) > 0. Thus we may
define an = 0 or an = 1 accordingly.) Similarly, every closed located set F is
consequentially free, that is, for any point x in X there exists a nondecreasing
sequence {an} of O's and l's such that x is in F if and only if all an = 0.

The method used in the proof of Theorem 1 may be applied more generally as
follows.

PROPOSITION I. If T is a sequentially free subset of a set S, if E is a countable
subset of S, and if T meets E, then THE is countable. Hence every nonvoid
sequentially free subset of a countable set is also countable.

PROOF. Let E = {xv x2,- • •} be an enumeration of E; we may assume xx £ T.
For each i, construct a nondecreasing sequence (a^}n of O's and l's so that x, G T
if and only if a'n = 1 for some n. For all / and all n, define^ = xx if <s'n = 0, and
yi,=Xi if a'n= 1. It follows that THE= {^: /, n- 1,2,...}, which is a
countable set.

It follows that the rational points of any nonvoid colocated set on the line may
be enumerated.

3. Applications in connectivity

In Theorem 1 of [5] it was shown that two disjoint nonvoid open subsets of a
bounded interval cannot cover the interval, provided both subsets are located. In
[3] it is shown that it suffices to assume that one of the subsets is located; an
example in section 9 below shows that not all auxiliary conditions can be
removed. The result will now be obtained under the condition that one of the
subsets is colocated.

Let S be a set with an inequality relation. If x is an element of 5 and A is a
subset of S, write x & A if x ¥= y for all y in A. In addition, define A* = {x G 5:
x <$. A). In a metric space, x =£ y means p(x, y) > 0, and thus x £ A means
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p(x, y) > 0 for all y in A. An open set U in a metric space has a special property:
x $. U if and only if x G t/ is contradictory.

COROLLARY 2. Le/ {/ awd V be disjoint nonvoid open subsets of a bounded interval
I, one of which is colocated. Then there exists a point x in I with x <2 U U V.

PROOF. Let U be colocated, construct a nonvoid component (a — r, a + r) of
U, and construct an element b in V. We may assume a < b; it follows that
x = a + r is a point of / such that x & U and x £ F.

The next two results are related to results on connectivity in [2] and [4]; in lieu
of the located sets considered there, these concern colocated sets.

COROLLARY 3. Let U be a nonvoid colocated subset of the open unit interval
I = (0,1). / / U is closed in I, then U=I.

PROOF. Let (a, b) be a nonvoid component of U; then b & U. If b < 1 then b is
in the closure of U in / , a contradiction; hence b = 1. Similarly, a = 0.

COROLLARY 4. Let V be a nonvoid colocated subset of the open unit interval
I = (0,1). / / U is (in a strong sense) not all of I, then U is (in a strong sense) not
closed in I. That is, if there exists a point y in I with y £ U, then there exists a point
z which lies in the closure of U in I, and with z $. U.

PROOF. Let (a, b) be a nonvoid component of U. Since y $ U, it follows that
either y < a or y > b. We may assume y < a, and define z = a.

4. An application in convexity

COROLLARY 5. Every nonvoid bounded colocated convex set on the line is an open
interval.

PROOF. In the resolution given by Corollary 1, one component must be
nonvoid, and the others void. Alternatively, the lemma in [5] may be applied
directly.

Examples 6 and 7 in Section 10 will show that the conditions "colocated" and
"nonvoid" can not be removed.
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5. Characterization of colocated sets

Since the main results above are obtained only for colocated sets, in lieu of
arbitrary open sets, colocated sets will now be characterized among the open sets.
For a subset A of a metric space X, we utilize the set A* defined in Section 3; thus
A* — {x e X: p{x, y) > 0 for all y G A}. It is easily seen that when U is open,
then U* is closed.

THEOREM 2. A subset Uofa metric space X is colocated if and only if
(1) U is open,
(2) U* is located, and
(3) for any x in X and any 8 > 0, either x lies in U, or some point of the open

sphere S(x, 8) lies in U*.
In this situation, U = -U*.

PROOF. First let U be colocated; thus there exists a located set G with U = -G.
It is easily seen that U* is located with p(x, U*) — p(x,G) for all x in X. Also,
condition (3) is immediate.

Now let U satisfy the three conditions. Since U is open, it follows that
U C -U*. Let x £ - I /* ; then 8 = p(x, U*) > 0. Any point of S(x, 8) also lies in
— [/*; thus it follows from condition (3) that x is in U. Hence U = -U* and thus
U is colocated.

An example will be given in Section 12 to show that condition (3) may not be
removed.

COROLLARY 6. A colocated set U is the metric complement of a unique closed
located set, namely U*. The family of located sets of which U is the metric
complement is the family of dense subsets of U*.

6. Counterexamples—introduction

The resolution of an open set on the line into a countable union of disjoint
open intervals is obtained above only for a bounded colocated set. The examples
below will show to what extent these restrictions, and the restrictions used in the
applications, are necessary.

Classically (that is, nonconstructively), every open set on the line is a union of
disjoint open intervals, but not constructively. The italicized word "not" used
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here has a special meaning in studies of constructivity. It means that a counterex-
ample exists in the sense of Brouwer. Such a counterexample consists of a proof
showing that the statement in question implies one of several principles which
seems constructively invalid. That is, no proofs of the principles are known, and it
seems unlikely that constructive proofs will ever be found. For example, the
statement "every bounded open set on the line is a union of disjoint open
intervals" implies the limited principle of omniscience (LPO). LPO states that there
is a general procedure which applies to any given sequence of integers and
determines, by a finite process, either that each term of the sequence is zero or
that some (specifically presented) term is nonzero. Further analysis of this
principle indicates that such a procedure is not likely to be discovered. Therefore,
because of the implication given in the counterexample, it is unlikely that a proof
of the above statement in quotes will ever be found. Further discussion of
Brouwerian counterexamples is found in Chapters 1 and 2 of [1].

Consider the following succession of four conditions concerning a bounded set
{/on the line:

(1) Uis colocated.
(2) U is a countable union of disjoint open intervals.
(3) U is a union of disjoint open intervals.
(4) U is open; that is, U is a union of open intervals.
Each condition implies the next; examples will show that each converse is not

true.
We will also construct an example of an unbounded colocated set that is not a

union of disjoint open intervals, and examples concerning connectivity, convexity,
and countability. The principle of finite possibility will be introduced and will be
used in giving counterexamples in the same way that various versions of the
principle of omniscience are used.

7. Examples with LPO

The omniscience principles used in the counterexamples are most easily ex-
pressed in terms of nondecreasing sequences {an}™=] of O's and l's; such
sequences will be called decision sequences.

The limited principle of omniscience (LPO) will be used in the following
equivalent form: If {an} is any decision sequence, then either an = 0 for all n, or
there exists n (through an explicit construction) such that an — 1.

We first construct a bounded open set that is not a union of disjoint open
intervals.
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EXAMPLE 1. "Every bounded open set on the line is a union of disjoint open
intervals" implies LPO.

PROOF. Let {an} be a decision sequence and define U = U"=1 (0, an + 1). By
hypothesis, U has a resolution U = Ua6y< /„ into disjoint open intervals. Con-
struct the component Ia = (a, £) of the point 1/2 in {/. In the case b < 2, it
follows that all an = 0. In the case b > 1, the point 1 lies in U, and thus an = 1
for some n.

Although the set U of Example 1 is not in general an interval, in specific
instances it may happen that U = (0,1), or it could happen that U = (0,2). Even
for a specific decision sequence for which neither alternative is known at the
present time, more information obtained in future might result in one of these
alternatives. It is this varied possibility, and the lack of any general finite process
for determining such definite alternatives, that prevents us from giving a general
finite process for determining the component of the point 1/2.

Another interesting set which could have been used in Example 1 is U =
(— 1, a) U (0,1), where a > 0 but it is not known whether a > 0 or a = 0; for
example, a = 2 an/2", where {an} is an arbitrary decision sequence.

We now construct a countable union of disjoint open intervals that is not
colocated.

EXAMPLE 2. "Every bounded countable union of disjoint open intervals is
colocated" implies LPO.

PROOF. Let {an} be a decision sequence and define U = U"=I (an, an + 1). By
hypothesis there exists a located set G with U = -G. In the case in which
p(3/2, G) < 1/2, construct x in G so that 1 < x < 2. It then follows that all
an = 0. In the case in which p(3/2, G) > 0, then the point 3/2 lies in U, and thus
some a „= 1.

8. The principle of finite possibility

From the succession of four conditions listed above in Section 6, it remains
only to construct a union of disjoint open intervals that is not a countable union
of disjoint open intervals. Now if U is any union of disjoint open intervals, each
point a in U has a component Ia, and thus U= U a e { / / a . Since each nonvoid
component contains a rational, then also U = UqeunQ Iq, where the index set is
a subset of the countable set Q. Hence we are led to consider subsets of countable
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sets generally, and to construct such a set that is itself not countable. A

Brouwerian counterexample will proceed from the hypothesis that a certain set is

countable, that is, from the existence of a certain sequence. It is improbable that

the existence of such a sequence will imply LPO or one of its weaker versions;

thus a new principle, also constructively unlikely, is needed.

To find the appropriate principle, we examine the canonical subset of a

countable set that cannot be proved countable. Let {an} be a decision sequence,

and let The the subset of Z + that contains 0, and also contains 1 in the event that

all an — 0. The set T may also be defined in (seemingly) more conventional terms

by defining a = l an/2
n+i and T = (0 ,1 + a} n Z + . Alternatively, define T =

{0} U {m £ Z + : m — an + 1 for all n). Now if T were countable there would be

an enumeration T = {tx,t2,...}, and it would follow that all an = 0 if and only if

some fB = 1. It seems unlikely that we will ever find a general procedure for

constructing such a sequence {tn} corresponding to any decision sequence {an}.

PRINCIPLE OF F I N I T E POSSIBILITY (PFP). For any decision sequence {an}, there

exists a corresponding decision sequence {tn} such that all an = 0 if and only if some

'„=!•

The terminology reflects the fact that whereas it is impossible, by merely
calculating values of the terms an in succession, to conclude after only finitely
many calculations that all an = 0, it is conceivable that this determination might
be possible after the calculation of only finitely many of the terms tn. An
equivalent form of PFP is: For every real number a s* 0 there exists a real
number /? > 0 such that a = 0 if and only if /? > 0.

EXAMPLE 3. "Every nonvoid subset of a countable set is also countable" implies
PFP.

PROOF. Given a decision sequence {an}, the set T above provides the sequence

Thus we have constructed a nonvoid subset of a countable set that is not
countable, where "not" is now also used to refer to counterexamples with PFP.
For example, a counterexample with PFP shows that Q is not sequentially free; let
{an} be a decision sequence, defined a = 2 an/2", and consider the point x = a/2.

An equivalent form of PFP is given by the following.

PROPOSITION 2. " / / F is a closed located set on the line, and E is a countable set

on the line that meets F, then F Pi E is countable " is equivalent to PFP.
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PROOF. TO show that the given statement implies PFP, let {an} be a decision
sequence, define a = 2 a n / 2 " + 1 , define F= {0,1 + a}, and let E be the set of
integers. Then F n E is the set T constructed above. Thus PFP obtains.

Conversely, under PFP, a closed located set is sequentially free, and Proposi-
tion 1 applies.

We now construct a set that is a union of disjoint open intervals, but not a
countable union of disjoint open intervals.

EXAMPLE 4. "Every bounded union of disjoint open intervals is a countable
union of disjoint open intervals" implies PFP.

PROOF. Let {«„} be a decision sequence and define T as above. Define
U = U, e r ( f , t + 1); thus U is a union of disjoint open intervals. By hypothesis,
U has a countable resolution U = U^ = 1 / n into disjoint open intervals. Consider
any component /„ = (a, b) and apply Lemma 2. In the case that b — a < 1 it
follows that /„ is void. In the case that b — a > 0, then either /„ = (0,1) or
/„ = (1,2). Construct a decision sequence {/„} so that when tn = 0, then ln = 0
or In = (0,1), and when tn — 1, then lk = (1,2) for some k < n. It follows that all
an — 0 if and only if some /„ = 1.

To relate PFP to other omniscience principles, let {an} be a decision sequence,
assume PFP, and construct the corresponding decision sequence {/„}. Following a
suggestion of Errett Bishop, we construct a decision sequence {sn} by defining
sn = an V tn. Now assume the limited principle of existence (LPE): If {bn} is a
decision sequence such that it is contradictory that all bn = 0, then some bn — 1.
(An equivalent form of LPE is: If x is a real number and it is contradictory that
x < 0, then x > 0.) Now suppose all sn = 0; then all an — 0, and it follows that
some tn — 1, which is a contradiction. By LPE, we construct an integer k so that
sk = 1. Thus either tk — 1 or ak — 1, and LPO follows.

Hence LPO is equivalent to PFP and LPE combined. Since it is very unlikely
that LPE will ever be shown equivalent to LPO, this contributes to the unlikeli-
hood of PFP.

9. An example in connectivity

Here we construct disjoint nonvoid open subsets U and V of a bounded
interval for which there does not exist a point x in the interval such that
x £ U U V (see Corollary 2). The example uses the weak limited principle of
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omniscience (WLPO): If {an} is any decision sequence, then either all an = 0 or it
is contradictory that all an = 0.

EXAMPLE 5. "Whenever two nonvoid open subsets U and V of a bounded
interval are disjoint, there exists a point x in the interval such that x £ U U V"
implies WLPO.

PROOF. Let {an} be a decision sequence and define A — {an: n e Z + }. Let T
be the set of Section 8, so that 0 e T, and 1 G T if and only if all an - 0. Define
U= UoS/4(0,1 + a) and F = U,67.(2 - /,3). If U and V meet, there exist
points a in A and ? in T such that 2 — t < I + a, and it follows that a — t — 1,
which is contradictory. Hence U and V are disjoint. By hypothesis, there exists a
point x in (0,3) with x £ £/ U V. In the case x < 2, it follows that all an = 0. In
the case x > 1, then it is contradictory that all an — 0.

10. Examples in convexity

Here the counterexamples relating to Corollary 5 will be constructed. The set
already constructed in Example 1 is a nonvoid bounded open convex set that is
not an interval, and thus provides the following counterexample.

EXAMPLE 6. "Every nonvoid bounded open convex set on the line is an open
interval" implies LPO.

We now construct a bounded colocated convex set that is not an interval. The
example uses the lesser limited principle of omniscience (LLPO): If {an} is any
decision sequence, then either "if some an = 1 then the least such integer n is
even", or "if some an = 1 then the least such integer n is odd".

EXAMPLE 7. "Every bounded colocated convex set on the line is an open
interval" implies LLPO.

PROOF. Let {an} be a decision sequence. In the event that some an = 1, define
k to be the first such integer n. For any n, if an = 0, define Gn = [l/n, 1 - l /«] ,
while if an = 1, define Gn = [0,1 - \/k] when k is even, and Gn = [\/k, 1] when
k is odd. Define G = (~oo,0] U U^=1Gn U [1, +oo). Given any point x on the
line, one may calculate an for any n, and thus one may calculate p(x, G) to within
l/n. Hence G is located. Define U = ~G. If any point x of [/is given, choose n so
that l /n < p(x, G)\ it follows that an = 1. This shows that U is convex. By
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hypothesis, there exist real numbers a and b such that U = (a , b). Either a > 0,

and then k would be even, or a < 1/2, and then k would be odd.

11. Unbounded colocated sets

Now consider a colocated set without the restriction that it be bounded. If this
set has a resolution into disjoint open intervals, then since a component may be
infinite, extended real numbers may be required to specify the endpoints. An
extended real number is either a real number or +00 or -00 (see page 33 in [1]).
Thus an open interval is either bounded or unbounded. For this reason a
colocated set need not be a union of disjoint open intervals.

EXAMPLE 8. "Every colocated set on the line is a union of disjoint open
intervals" implies LPO.

PROOF. Let {an} be a decision sequence; we may assume a, = 0. Define
G = {0, k), where k is the least integer n such that an = 1, if any such integers
exist. That is, G = {0} U {n G Z + : an_, < an). Given a point x on the line,
choose n > 2 | x | and calculate an. If an — 0, then p(x, G) = | x | ; while if an — 1,
t h e n p(x, G)=\x\ A\x — k\, w h e r e ak_ x<-ak. H e n c e G is l o c a t e d , a n d U = -G
is colocated. By hypothesis, U has a resolution U = Ua 6 / < Ia into disjoint open
intervals. Construct the component Ia = (a, b) of the point 1 in U. In the case in
which b is finite, it follows that b is a point of G with b > 0, and thus some
an — 1. In the case in which b — ± 00, it follows that all an = 0.

12. An example on the charcterization of colocated sets

Here we construct an open set U so that U* is located, but U is not colocated
(see Theorem 2).

EXAMPLE 9. "If U is a nonvoid open set on the line such that U* is located,
then U is colocated" implies LPO.

PROOF. Let A and T be as in Example 5. Define [/, = Ua 6 / 4 (0 , a), and
l/2 = U , g r ( 0 , 0 , and {/ = [/, U t/2 U (1/2,1). Suppose there is a point x in
(0,1) n U*. Then x £ {/, and hence all an = 0; it follows that 1 G T and thus
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x E U2, a contradiction. Thus (0,1) n U* is void. It follows that U* = ( — oo,0]
U [1, +oo); and thus U* is located. By hypothesis, U is colocated; it follows from
Theorem 2 that U = -£/* = (0,1). Thus the point 1/4 lies in U. It follows that
either 1/4 G I/,, and hence some an = 1, or 1/4 G U2, and hence all an = 0.
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