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The original publication of [AKM] contained several errors that the authors

wish to correct in the following.

Throughout, O will be a complete discrete valuation ring, and A will

be a symmetric O-order (refer to [CR, Definition 23.1] for the definition of

an O-order). We write latt-A for the category of A-lattices and the stable

Auslander–Reiten quiver of A means that for latt-A.

In [AKM], we introduced the stable Auslander–Reiten quiver of A and

determined stable components of A that contain Heller lattices for the case

A=O[X]/(Xn). The final result Theorem 3.1 is correct, but preparatory

results Lemma 1.23 and Theorem 1.27 need to be stated more precisely.

We correct those parts in this corrigendum. We also correct the careless

statement of Lemma 1.21(3) in the original paper.

§1.1. On [AKM, Definition 1.20 and Lemma 1.21].

Let (∆, v) be a valued quiver. We denote the map v : ∆1→ Z>0 × Z>0 by

v(x→ y) = (dxy, d
′
xy). In this paper, we assume that ∆ does not have loops,

two cycles and multiple arrows. Therefore, underlying undirected graph of

the quiver is a simple graph, and each edge is given an orientation. In other

words, if two vertices x and y are connected by an arrow then x 6= y and

either x→ y or y→ x holds exclusively. In this setting, the valued quiver

(∆, v) gives rise to the Cartan matrix C = (cxy)x,y∈∆0 on ∆0 below, since
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cxy 6= 0 if and only if cyx 6= 0 holds.

cxy :=


2 if x= y,
−dxy if x ∈ y−,
−d′yx if x ∈ y+,

0 otherwise,

where y+ = {x ∈∆0 | y→ x ∈∆1} and y− = {x ∈∆0 | x→ y ∈∆1}. The

following is a well-known statement about Cartan matrices, which we may

find in [B, Theorem 4.5.8].

Lemma 1.21. Let (∆, v) be a connected valued quiver as above and ∆

the underlying graph of ∆.

(1) Assume that (∆, v) admits a function f : ∆0→Q>0 which satisfies

2f(y) >
∑
x∈y−

f(x)dxy +
∑
x∈y+

f(x)d′yx, for all y ∈∆0

or, equivalently,
∑

x∈∆0
f(x)cxy > 0, for all y ∈∆0. Then the following

hold.

(i) If ∆ has a finite number of vertices, then ∆ is one of the finite or

affine Dynkin diagrams.

(ii) If ∆ has infinite number of vertices, then ∆ is one of the infinite

Dynkin diagrams A∞, B∞, C∞, D∞ or A∞∞.

(2) If the inequality is strict for a vertex of ∆, then ∆ is either a finite

Dynkin diagram or A∞.

(3) If f is unbounded, then ∆ is A∞.

§1.2. On [AKM, Lemma 1.23]

Lemma 1.23 states that there are no loops in periodic stable components

with infinitely many vertices of A. However, the statement is false in the

general setting assumed in Lemma 1.23. We correct the statement of [AKM,

Lemma 1.23] and give a proof by modifying the original proof.

Lemma 1.23. Let C be a component of the stable Auslander–Reiten

quiver of A. Assume that C satisfies the following conditions:

(i) There exists a τ -periodic indecomposable A-lattice in C.

(ii) C has infinitely many vertices.
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Then C \ {loops} is of the form ZA∞/〈τ〉 if C has a loop. In this case,

there exists exactly one loop and it appears at the endpoint of C such that

the valuation of the loop is trivial.

Proof. First, we show that if X ∈ C has a loop, then X ' τX. Suppose

that X ∈ C has a loop and X 6' τX. Then the almost split sequence ending

at X is of the form

0→ τX →X⊕l1 ⊕ EX ⊕ τX⊕l2 →X → 0,

where EX ∈ latt-A and l1, l2 > 1. Therefore,

rank(X) + rank(τX) = l1 rank(X) + l2 rank(τX) + rank(EX),

implies rank(EX) = 0 and l1 = l2 = 1. However, it follows from [M, Theorem

1] that the almost split sequence ending at X splits, a contradiction.

Therefore, if X has a loop, then X and τX are isomorphic.

As in the proof of [AKM, Lemma 1.23], which was taken from [HPR], we

choose nX > 1, for each X ∈ C, such that τnXX 'X, and define f : C0→
Q>0 by

f(X) =
1

nX

nX−1∑
i=0

rank(τ iX).

Note that f(X) = f(τX) holds, for all X ∈ C. Set C̃ := C \ {loops}. By the

Riedtmann structure theorem [B, Theorem 4.15.6], there exist a directed

tree T and an admissible group G such that C̃ = ZT/G. We denote the

G-orbit of (t, r), for a vertex t of T and r ∈ Z, by (t, r). Let Xt = (t, 0).

Then, we define a function f̃ : T0→Q>0 by f̃(t) = f(Xt). By considering

the almost split sequence

0→ τXt→

⊕
s∈t−

Xdst
s

⊕
⊕

s∈t+
τX

d′ts
s

⊕X l
t ⊕ τX l′

t →Xt→ 0,

where l, l′ > 0, we have

2f̃(t) >
∑
s∈t−

f̃(s)dst +
∑
s∈t+

f̃(s)d′ts.

Now, suppose that X = (t, r) ∈ C has a loop. It implies that the above

inequality is strict for t. Thus, by the assumption (ii) and Lemma 1.21(2),
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the underlying tree T is A∞ so that C̃ = ZA∞/〈τ〉. We may assume without

loss of generality that T has a linear orientation, that is, T does not have a

sink. Thus, we may take a path in C̃

X1→X2→ · · · →Xr→ · · · .

We assume that Xr has a loop. If r > 1 then the almost split sequence

starting at Xr is

0−→Xr −→X⊕lr ⊕Xr+1 ⊕Xr−1 ⊕ P −→Xr −→ 0

where l > 1 and P is a projective A-lattice. Since f(Xt) > 1 for all t> 1, we

have

f(Xr) > (2− l)f(Xr) > f(Xr+1) + f(Xr−1) > f(Xr+1) + 1.

We show that f(Xm) > f(Xm+1) + 1 for m> r. Suppose that f(Xm−1) >
f(Xm) + 1 holds. The same argument as above shows 2f(Xm) > f(Xm−1) +

f(Xm+1), and the induction hypothesis implies

2f(Xm) > f(Xm−1) + f(Xm+1) > f(Xm) + f(Xm+1) + 1,

so that f(Xm) > f(Xm+1) + 1 follows. Thus, there exists a positive integer

t such that f(Xt)< 0, which contradicts with f(Xt) > 1. We conclude that

r = 1. Then, l = 1 by 2 rankX1 > l rankX1. We have proved that the loop

is unique and it appears at the endpoint of the homogeneous tube such that

the valuation is (1, 1).

§1.3. On [AKM, Theorem 1.27]

In the proof of Theorem 1.27, we used Lemma 1.23 to ensure that τ -

periodic stable components of A with infinitely many vertices do not admit

a loop. However, there is a possibility that a loop appears at the endpoint

of a homogeneous tube in the general setting of Theorem 1.27. Hence we

correct the statement of [AKM, Theorem 1.27] as follows.

Theorem 1.27. Let A be a symmetric O-order over a complete discrete

valuation ring O, and let C be a component of the stable Auslander–Reiten

quiver of A. Suppose that:

(i) there exists a τ -periodic indecomposable A-lattice in C;

(ii) the stable Auslander–Reiten quiver of A has infinitely many vertices.
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Then, the number of vertices of C is infinite, and either:

(a) C is a valued stable translation quiver; or

(b) a loop with trivial valuation appears at the endpoint of C and if we

delete the loop, then C becomes a homogeneous tube ZA∞/〈τ〉.

§1.4. The case of A=O[X]/(Xn)

Now we apply Theorem 1.27 to a component of the stable Auslander–
Reiten quiver of A=O[X]/(Xn) that contains a Heller lattice. If there exists
a loop in the component, Proposition 2.4 implies that the endpoint must be
a Heller lattice. However, Heller lattices have no loops. Thus any component
of the stable Auslander–Reiten quiver of A that contains a Heller lattice is
a valued stable translation quiver, so that the proof of [AKM, Theorem 3.1]
works without change.
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