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BOUNDED INDEX AND SUMMABILITY METHODS
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1. Introduction and preliminary results

An entire function /(z) is of bounded index if there exists a non-negative
integer N such that

( l f " ( z ) l ) \f(k>(z)\
max |J ., ; | = i . f o r a11 z and all k.

The least such integer N is called the index of / (see Lepson (1966)).
A sequence x = {xk }o of complex numbers is an entire sequence if

XT-o | JCfc | qk converges for every positive integer q. If we denote by <S the set of
entire sequences, then we see that % can be identified with the class of entire
functions. An entire sequence x = {xk}Z is of bounded index if /(z) = JZ=oxkz

k

is an entire function of bounded index. We will denote the set of sequences of
bounded index by 38. Furthermore, let € be the set of all absolutely convergent
sequences, that is, ( = {x = {xk}Z: 2,Z=0\xk | < oo}.

An infinite matrix A = (an,k) of complex entries which transforms % into %
(38 into 38, ( into €) will be called an %-% method (38-38 method, (-( method).

In Fricke and Powell (1970), the authors have shown

THEOREM 1. A matrix A = (an,k) is an <£-<£ method if and only if for each
integer q > 0, there exist an integer p > 0 and a constant M > 0 such that

\ a n , k \ q n ^ M p k f o r all n , k = 0 , 1 , • • • .

The Taylor matrix, T(r) = (ank), defined by

I ( n ) ( 1 ~ r ) " + V " if *-"an,k = J
* 0 otherwise,

where r is a complex number, is an %-% method for any complex number r (by
Theorem 1). We now show:
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THEOREM 2. The Taylor matrix, T(r) = (ank), is a 38-3! method for any
complex number r.

PROOF. Let x = {xk}Z £ S3, that is, /(z) = Lt-aXkz
k is a function of bounded

index. Thus, for y ={yn}l = Ax (where yn = 2Z-0an.kxk),

g(z)= E y»2" = 2 X an.kxkz"
n-0 n-0 fc-0

From Fricke (to appear) we have that the class of functions of bounded index is
closed under translation. Hence, g(z) is of bounded index, that is,

Ax =y = { y , } ; e t

It is readily seen that mere growth conditions on the entries of a matrix
A = (an,k.) are not sufficient for A to be a 38-38 method. In fact, given any
sequence x = {xk }Z of bounded index and any sequence {dn }S of positive
numbers, there exists a matrix A = (an.k) with an,k = 0 for n^ k and \an,n \ S dn

for n = 0,1, • • •, such that Ax g <&.
We now prove a result on functions df bounded index which we will

require later on.

THEOREM 3. Let f be a function of bounded index. If

l i m / " " U . ) = 0 for k = 0 , 1 , - -,

where {an }l is a sequence of complex numbers, then, for all r > 0,

lim max {|/'k)(z)|} = 0 for all k = 0,1, • • •.
n-.» \z-an\-r

PROOF. Let / be of index N. It is sufficient to prove Theorem 3 for
r = 1/(2N + 2). Since / is of index N we have, for each an, that there exists an
integer ( = ({an) with OS € ^ N such that

max | J }.Z>1 a max | f >*'' for / = 0 , l , - - .

Hence,
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lax^ VJ ,̂, 'i g |rinaxr { (^ + n; Imax

! ( / • + ! ) !

Thus,

Therefore, for n = 0,1, • • • and / = 0,1, • • •,

max | ' , ' \ ^ 2 max | ' ," ' \.
k-o.l = r I. J ! J OSISN [ t ! J

Thus, using the hypothesis,

lim {|/

2. The matrix

For an entire function /(z) and a sequence {zJS of complex numbers define
the matrix transformation A (/, z,) = (an,k) by

/ ( z ) = 2 an.,(2-2n)k for n = 0 , 1 , - - .

For this matrix transformation we can express the Silvermann-Toeplitz condi-
tions for regularity as follows.

THEOREM 4. The matrix transformation A(/,z,) = (ant) is regular if and
only if

( i ) l i m / " ' ( z n ) = 0 for k = 0 , 1 , - - ,

and

(ii)

(iii)

lim
n—•-»

k = 0

/(2n + 1)= 1,

M for M > 0 and a/i n = 0,1, • • •.

PROOF. For the matrix A(J,zf) = (an,k), we have ank ={flk>(zn))lkl for n,
/c = 0,1, • • • ,and /(zn + 1) = 2r=o an,k- Hence, conditions (i), (ii) and (iii) are
identical to the Silvermann-Toeplitz conditions
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linj an,k = 0 for k = 0,1, • • •,

lim 2 «"k = 1.

and [.A . .1
UP 1 2J I fl»-* I f
n U - 0 J

[ A . .1S U P 1 2J I fl»-* I f < °°-
n U - 0 J

THEOREM 5. / / f(z) is an entire function of bounded index then
A(f,Zi) = (an,k) is not regular for any sequence fz,}?.

PROOF. By Theorem 3, limn^«, f""(zn) = 0 for Ic = 0,1, • • • implies
limn^« f{zn + 1) = 0 since / is of bounded index. Thus, conditions (i) and (ii) of
Theorem 4 cannot be satisfied simultaneously.

It is worth noting, however, that functions of bounded index can give rise
to conservative matrices. For example, let /(z) = e' (/ is of bounded index with
index 0) and choose zn = 27rin. Thus

fk\zn)=\ for all k, n = 0 , 1 , - - ,
f(zn + \) = e for all n = 0,1,- •-,

a n d £ \an,k\ = e f o r alJ n=0,l,--.
k-0

We now examine the matrix A'(f,z,) = (bn,k) which is denned by f(z) =
2^-o bn,k(z - zk)" for k = 0,1, • • •. The matrix A'(/, zf) = (bn,k) is the transpose
of A(f, Zt) - (an,t), that is, an,t = fcM for n, k = 0,1, • • •.

THEOREM 6. If f(z) is an entire function of bounded index then, for any
sequence {zf.}o, A'(/, z,,) = (fcB-t) JS an /"-^ method if and only if

PROOF. Knopp and Lorentz (1949) showed that a necessary and sufficient
condition for a matrix A - (an,k) to be an (-( method is

SUP
k

2 I On,k | i < °°-
»o J

Let A'(/, z,) = (fcnk) be an (-( method. Thus, there exists a constant M > 0
such that

2 \bn.k\SM for A: = 0 , 1 , - • •.
n=0

Hence ,

Therefore,

https://doi.org/10.1017/S1446788700016943 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700016943


[5] Bounded index and summability methods 83

s u p { \ f ' n \ z k ) \ } S n \ M < * > f o r k = 0 , 1 , • •• .

Now, let / be an entire function of bounded index and let {zJS be a
sequence such that

sup{\fikXzn)\}<°° for A: = 0,1, - -.

Since f(z) is of bounded index we have that f(2z) is of bounded index (see
Fricke (to appear)). Let N be the index of f(2z). Thus,

m a x (
osysN [ ]}

Hence,

max y- .,—4 = 2" N-^—;—^ for all z and all n.
osysN [ ] ] I n !

Therefore,

g y . 2"~" max V* -f 4
n=o os;aN (̂  j } )

OSjsN "

Now, since supk {max<,S;sN (|/"'(zk)|)}<oc, we have supk {1%0 }bn,k |}< *,
which shows that A'(f,Zi) is an €-€ method.

THEOREM 7. / / /(z) is an entire function of bounded index, then for any
sequence {z,}S, A'(j,z{) = (fenk) is an %-% method if and only if for each integer
n >0 there exist an integer p >0 and a constant M > 0 such that

PROOF. If A'(f,zt) = (bnjc) is an %-% method then, by Theorem 1, for each
integer q >0, there exist an integer t > 0 and a constant T > 0 such that

| fen.* | q" =tkT for n, /c = 0,1, • • •.

Thus, for q = 1 there exist an integer t and a constant T such that

for n, k = 0 , 1 , - - .

Hence, for each integer n there exist an integer p = t and a constant
= n ! r such that

\f""(zk)\stkn\T = p"M for A: = 0 , 1 , - - - .
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Now, let f(z) be an entire function of bounded index and let {zJS be a
sequence such that for each integer n > 0 there exist an integer p > 0 and a
constant M > 0 such that

\r\zk)\^pkM for fc=0,l,--

Let N be the index of f(z). Thus, there exist an integer r > 0 and a constant T
such that, for n S= N,

\ f n \ z k ) \ ^ r k T f o r k = 0 , 1 , - - .

For an integer q > 0 we have, by Fricke (to appear), h(z) = /(<jfz) is of bounded
index. Thus, for q > 0, let N, be the index of h(z) = f(qz), that is, for any z G (£
and / = 0 , 1 , - - ,

i ' qi '• 11

S max
OSiSN,

= max
OSiSN,

Hence, for / = 0,1, •

g q V T for fc =0 , l , - - - .

Therefore, for an integer q > 0, there exist an integer « = r and a constant
w = q"qT such that

j = u"W for n, /c = 0,1, -

Thus, by Theorem 1, A'(J,Zi) is an %-% method.

We now show that the condition that /(z) is of bounded index cannot be
omitted in Theorem 7.

THEOREM 8. There exists an entire function f(z) of exponential type and of
unbounded index and there exists a sequence {z, }S such that for each integer n
there exist an integer p and a constant M with •
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\f\zk)\ Sp"M for fc=0,l,--,

but A'(f,Zj) = (bn.k) is not an <&-% method.

PROOF. Let {an}~, be a sequence of positive numbers such that a, = 1 and

ak+, s max{3(fc + l)ak, a^} for k = 1,2, • • •.

S. M. Shah (1970) showed that /(z) = IE=i (1 - z/aB)" is an entire function of
exponential type and of unbounded index. Shah also showed that

Therefore, there exists a sequence {nk}k,, such that

nk\

Choose the sequence {zk}k=0 by z0 = 1 and zk = ank for k = 1,2, • • •. Thus, for
/(z) = n*,, (1 - z\an)

n and the sequence {zk}Z we have f'"\zk) = 0 for k > n.
Hence, for each integer n there exist an integer p = 1 and a constant
M = maxksn {|/""Cz*)|} such that

\ f " " ( z k ) \ S p " M f o r k = 0 , 1 , • • • .

Now, for A'(/, z,) = (bn,k) and k = 1,2, • • •,

_ir
nk!

Therefore, for any integer r > 0 and any constant T > 0, there exists fe0 such
that

bnk,k\^k!>rkT f o r A: > fc0.

Thus, by Theorem 1, A'(f,Zi) = (bn.k) is not an %-% method.

THEOREM 9. Let f(z) be an entire function of bounded index and {zf }o be a
sequence of complex numbers. If either A (/, z,) = (â ,* )orA'(f,Zi) = (bn-k) is an
€-€ method then A'(f,z,) is an %-% method.

PROOF. If either A(f,z>) or A'(J,z,) is an (-£ method then either
2^,0 la-.* | = M, or

% \bn,k\^M for k = 0 , 1 , - •.
n=0

Thus, either
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TTan.u =

or

l S M for n, A: = 0 , 1 ,

Hence ,

^ £ M for n, A: = 0 , 1 , - - ,
n !

Therefore , for each n there exist p = 1 and T = n\M such that

| / " " U ) | =i n\M = p"T for fe = 0 , 1 , • • •.

Thus, by Theorem /, A'(f,Zi) is an <?-<? method.

3. Application to analytic continuation

A s s u m e n o w t h a t

l i m / ( " ( z , , ) = 0 fo r k = 0 , 1 , - -

a n d

lim/(zn + 1)= 1.

Thus, for the matrix A (/, z,) = (an.k), we have

lim fln.t = 0 for k = 0,1, • • • and lim ^ an.k = 1.

THEOREM 10. The A(f,Zi) transform continues the sequence of partial
sums of the geometric series, ST-o zk, analytically into {z: limn-^f(zn + z) = 0}.

PROOF. Let A(/,z,,) = (an,k) and {5t(z)}o be the sequence of Acth partial
sums of geometric series. So, the A(f,z,) transform of {Sk(z)}o is given by

30

fc-0

3,
— Z

7
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So limn^»<rn(z) = ——<J*limn_«/(2n + z) - 0.

As an example, for Theorem 10, let a be a complex number with Ima > 0,
/(z) = exp{i(z/a)2}, and zn = a^/lrrn - 1. Now, for fixed k,

lim |f 'U.)| = lim | Pk(zn)\ exp(Re{«(^2J) = 0

since limn-.» exp(Re{i(z,,/a)2}) = 0 and Pk is a polynomial of degree k. Also,
limn_/(zn + 1) = 1. Therefore,

{z: Hm f{zn + z) = o) = Iz: Im (~^) > o},

that is, the open half plane containing the origin whose boundary is {z: z - 1 =
ax, x real}. In particular, if a = i then f(z) = exp ( - iz2) and zn = V2TT«I - 1.
Thus,

{z: lim/(zn +z) = 0} = {z: Rez < 1}

and, since {z: |z | < 1} C {z: limn-.<, /(zn + z) = 0}, a minimal region into which
the A (/, z,) transform provides the analytic continuation of an arbitrary Taylor
series may be determined by use of the Okada theorem (Powell and Shah (1972;
pages 155-162)).
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