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Abstract. Let � be a bounded domain with smooth boundary in �2, q ∈ [1, 2)
and x1, x2, . . . , xm ∈ �. In this paper we are concerned with the following type of
problem:

−�u − λ|∇u|q = ρ2eu,

with u = 0 on ∂�. We use some nonlinear domain decomposition method to construct
a positive weak solution vρ,λ in � , which tends to a singular function at each xi as the
parameters ρ and λ tend to 0 independently.

2000 Mathematics Subject Classification. 35J60, 53C21, 58J05.

1. Introduction and statement of the results. In this paper, we study the following
problem: {−�u − λ|∇u|q = ρ2eu in �

u = 0 on ∂�
, (1)

where ∇ is the gradient symbol and � is an open smooth bounded subset of �2. In the
following, we denote by ε the smallest positive parameter satisfying

ρ2 = 8 ε2

(1 + ε2)2
· (2)

Remark that ρ ∼ ε as ε −→ 0. We will ask the following question: Does there exist
vε,λ a sequence of solutions of (1) which converges to some nontrivial function as the
parameters ε and λ tend to 0? A positive answer to this question has been given by
Baraket et al. in [2] for problem (1)|q=2, under the assumption

(A) : If 0 < ε < λ, then λ1+δ/2ε−δ −→ 0 as λ −→ 0, for any δ ∈ (0, 1).
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In particular, if we take λ = O(ε2/3), then condition (A) is satisfied. With assumption
(A), problem (1)|q=2, can be treated as a perturbation of the Liouville equation

−�u = ρ2eu in � ⊂ �2.

The problem (1)|q=2, can be transformed to another one studied by Ren and Wei
(see [17]). Indeed, if u is a solution of (1)|q=2, then the function

w = (λρ2eu)λ,

satisfies ⎧⎨
⎩

−�w = w
λ+1
λ in �

w = (λρ2)λ on ∂�
. (3)

Remark that the exponent p = λ+1
λ

tends to infinity as λ tends to 0, see also [7]. We
shall therefore mainly consider the case where q ∈ [1, 2) is a real number. We look for a
sequence of solutions vε,λ of (1) which converges to some nontrivial singular function on
some set as the parameters ε and λ tend to 0 without considering any condition like (A),
and to see how the presence of the convection term (gradient) can have significant
influence on the existence of a solution, as well as on its asymptotic behaviour.

Note that Ghergu and Radulescu in [8] have studied more general problem on a
domain 	 ⊂ �n, n ≥ 2{−�u − λ|∇u|a = g(u) + μf (x, u) in 	

u = 0 on ∂	
, (4)

with 0 < a ≤ 2, λ,μ > 0 and some assumptions on f and g. Problems of the type (4)
arise in the study of non-Newtonian fluids, boundary layer phenomena for viscous
fluids, chemical heterogeneous catalysts, as well as in the theory of heat conduction in
electrically conducting materials. It also includes some simple prototype models from
boundary-layer theory of viscous fluids [23]. Problem (1) with the condition u|∂� =
0 replaced by u|∂� = +∞ arises from many branches of mathematics and applied
mathematics, and has been discussed by many authors in many contexts, see, e.g. [1, 6,
9–12, 14, 15, 19, 24].

Many papers have been devoted to the case λ = 0, where problem (1) becomes{−�u = ρ2eu in � ∈ �2

u = 0 on ∂�
. (5)

The study of this equation goes back to 1853 when Liouville [13] derived a
representation formula for all solutions of (5) which are defined in �2. It turns
out that, besides the applications in geometry, elliptic equations with exponential
nonlinearity also arise in modelling many physical phenomena such as thermionic
emission, isothermal gas sphere, gas combustion and gauge theory (see [20]). . . .

When ρ tends to 0, the asymptotic behaviour of nontrivial branches of solutions
of (5) is well understood, thanks to the work of Suzuki [18], which characterizes the
possible limit of nontrivial branches of solutions of (5). The existence of nontrivial
branches of solutions was first proved by Weston [22], and then a general positive
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result for problem (5) has been obtained by Baraket and Pacard [4]. These results were
extended, applying to the Chern–Simons vortex theory in mind, by Esposito et al. [6]
and Del Pino et al. [5] to handle equations of the form

−�u = ρ2 V eu,

where V is a non-constant (positive) function.

We introduce the Green’s function G(x, x′) defined on � × �, to be the solution
of {−�G(x, x′) = 8πδx=x′ in �

G(x, x′) = 0 on ∂�

and let its regular part

H(x, x′) = G(x, x′) + 4 log |x − x′|.

Let m ∈ �, we set

F(x1, · · · , xm) =
m∑

j=1

H(xj, xj) +
∑
i �=j

G(xi, xj), (6)

which is well defined in �m for xi �= xj if i �= j.
Following is our main result:

THEOREM 1. Given α ∈ (0, 1) and q ∈ [1, 2) is a real number. Let � be an open
smooth bounded set of �2 and S = {x1, . . . , xm} ⊂ � be a non-empty set. Assume that
(x1, . . . , xm) is a non-degenerate critical point of the function

F(x1, . . . , xm) =
m∑

j=1

H(xj, xj) +
∑
i �=j

G(xi, xj) in (�)m,

then there exist ρ0 > 0, λ0 > 0, and {vρ,λ}0<ρ<ρ0
0<λ<λ0

a family of solutions of

{−�v − λ|∇v|q = ρ2ev in �

v = 0 on ∂�

such that

lim
ρ−→0
λ−→0

vρ,λ =
m∑

j=1

G(xj, ·)

in C2,α
loc (� − {x1, . . . , xm} ).

Our result reduces the study of nontrivial branches of solutions of (1) to the search
for critical points of the function F defined in (6). Observe that the assumption on the
non-degeneracy of the critical point is a rather mild assumption since it is certainly
fulfilled for generic choice of the open domain �.
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2. Construction of the approximate solution. Let q ∈ [1, 2). We first describe the
rotationally symmetric approximate solutions of

−�u − λ|∇u|q = ρ2eu (7)

in �2 which will play a central role in our analysis. Given ε > 0, we define

uε(x) := 2 log(1 + ε2) − 2 log(ε2 + |x|2), (8)

which is clearly a solution of

−�u = ρ2eu (9)

in �2.
Let us note that (9) is invariant under dilation in the following sense : If v is

a solution of (9) and τ > 0, then v(τ ·) + 2 log τ is also a solution of (9). With this
observation in mind, we define for all τ > 0

uε,τ (x) := 2 log(1 + ε2) + 2 log τ − 2 log(ε2 + |τx|2). (10)

2.1. A linearized operator on �2. For all ε, τ > 0, we define

Rε,λ := τ rε,λ /ε,

where

rε,λ := max(
√

ε,
√

λ). (11)

We define the linear second-order elliptic operator

� := −� − 8
(1 + |x|2)2

, (12)

which corresponds to the linearization of (9) about the solution u1(= uε=τ=1) which
has been defined in the previous section.

We are interested in the classification of bounded solutions of � w = 0 in �2. Some
solutions are easy to find. For example, we can define

φ0(x) := r
2

∂ru1(x) + 1 = 2
1 − r2

1 + r2
,

where r = |x|. Clearly, � φ0 = 0 and this reflects the fact that (9) is invariant under the
group of dilations τ −→ u(τ ·) + 2 log τ . We also define, for i = 1, 2,

φi(x) := −∂xi u1(x) = 2 xi

1 + |x|2 ,

which are also solutions of � φi = 0, since these solutions correspond to the invariance
of the equation under the group of translations a −→ u(· + a).
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We recall the following result which classifies all bounded solutions of � w = 0
which are defined in �2.

LEMMA 1 [4]. Any bounded solution of � w = 0 defined in �2 is a linear combination
of φi for i = 0, 1, 2.

Let Br denotes the ball of radius r centred at the origin in �2.

DEFINITION 1. Given k ∈ �, α ∈ (0, 1) and μ ∈ �, we introduce the Hölder
weighted space Ck,α

μ (�2) as the space of functions w ∈ Ck,α
loc (�2) for which the following

norm

‖w‖Ck,α
μ (�2) := ‖w‖Ck,α (B̄1) + sup

r≥1

(
(1 + r2)−μ/2 ‖w(r ·)‖Ck,α (B̄1−B1/2)

)

is finite.

We also define

Ck,α
rad,μ(�2) = {f ∈ Ck,α

μ (�2); f (x) = f (|x|),∀ x ∈ �2}.

As a consequence of the result of Lemma 1, we recall the surjectivity result of �

given in [4].

PROPOSITION 1 [4].
(i) Assume that μ > 1 and μ �∈ �, then

Lμ : C2,α
μ (�2) −→ C0,α

μ−2(�2)

w �−→ � w

is surjective.
(ii) Assume that δ > 0 and δ �∈ �, then

Lδ : C2,α
rad,δ(�2) −→ C0,α

rad,δ−2(�2)

w �−→ � w

is surjective.

We set B̄∗
1 = B̄1 − {0}.

DEFINITION 2. Given k ∈ �, α ∈ (0, 1) and μ ∈ �, we introduce the Hölder
weighted space Ck,α

μ (B̄∗
1) as the space of functions in Ck,α

loc (B̄∗
1) for which the following

norm

‖u‖Ck,α
μ (B̄∗

1) = sup
r≤1/2

(
r−μ ‖u(r ·)‖Ck,α (B̄2−B1)

)
is finite.

Then we define the subspace of radial functions in Ck,α
rad,δ(B̄∗

1) by

Ck,α
rad,δ(B̄∗

1) = {f ∈ Ck,α
δ (B̄∗

1); f (x) = f (|x|),∀ x ∈ B̄∗
1}.
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We would like to find a solution u of

�u + λ|∇u|q + ρ2eu = 0 (13)

in B̄rε,λ
. Using the transformation

v(x) = u
( ε

τ
x
)

+ 4 log ε − 2 log(τ (1 + ε2)/2),

then equation (13) is equivalent to

�v + λ
( ε

τ

)2−q
|∇v|q + 2ev = 0 (14)

in B̄Rε,λ
. Now we look for a solution of (14) of the form

v(x) = u1(x) + h(x),

this amounts to solve

� h = 8
(1 + |x|2)2

(eh − h − 1) + λ
( ε

τ

)2−q
|∇(u1 + h)|q (15)

in B̄Rε,λ
. We will need the following definition.

DEFINITION 3. Given r̄ ≥ 1, k ∈ �, α ∈ (0, 1) and μ ∈ �, the weighted space
Ck,α

μ (Br̄) is defined to be the space of functions w ∈ Ck,α(Br̄) endowed with the norm

‖w‖Ck,α
μ (B̄r̄)

:= ‖w‖Ck,α (B1) + sup
1≤r≤r̄

(
r−μ ‖w(r ·)‖Ck,α (B̄1−B1/2)

)
.

For all σ ≥ 1, we denote by

Eσ : C0,α
μ (B̄σ ) −→ C0,α

μ (�2)

the extension operator defined by

Eσ (f )(x) =
⎧⎨
⎩

f (x) for |x| ≤ σ

χ
(

|x|
σ

)
f

(
σ x

|x|
)

for |x| ≥ σ
, (16)

where t �−→ χ (t) is a smooth non-negative cutoff function identically equal to 1 for
t ≤ 1 and identically equal to 0 for t ≥ 2. It is easy to check that there exists a constant
c = c(μ) > 0 independent of σ ≥ 1 such that

‖Eσ (w)‖C0,α
μ (�2) ≤ c ‖w‖C0,α

μ (B̄σ ). (17)

We fix

δ ∈ (0, 2 − q)

and denote by Gδ to be a right inverse of �δ provided by Proposition 1. To find a
solution of (15) it is enough to find a fixed point h, in a small ball of C2,α

rad,δ(�2),
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solution of

h = ℵ(h), (18)

where

ℵ(h) := Gδ ◦ ERε,λ
◦ R(h)

with

R(h) = 8
(1 + |x|2)2

(eh − h − 1) + λ
( ε

τ

)2−q
|∇(u1 + h)|q.

We have

|R(0)| = λ
( ε

τ

)2−q
|∇u1|q.

This implies that given κ > 1, there exists cκ > 0 (which can depend only on κ) such
that for |x| = r, we have

sup
r≤Rε,λ

r2−δ |R(0)| ≤ sup
r≤Rε,λ

r2−δλ
( ε

τ

)2−q
|∇u1|q,

≤ cκλε2−qR2−q−δ

ε,λ ≤ cκλεδr2−q−δ

ε,λ .

Making use of Proposition 1 together with (17), we conclude that

‖ℵ(0)‖C2,α
rad,δ

≤ cκε
δr2

ε,λ. (19)

Now, we recall an important result that plays a centre role in our estimates. See for
example [16] and some references therein.

LEMMA 2. Given x and y two real numbers, x > 0, q ≥ 1 and for all small η > 0 there
exists a positive constant Cη such that∣∣∣|x + y|q − xq

∣∣∣ ≤ (1 + η)qxq−1|y| + Cη|y|q.

Now, let h1, h2 in B(0, 2cκε
δr2

ε,λ) of C2,α
rad,δ(�2), there exist c(i)

κ > 0, 1 ≤ i ≤ 4 (only
depend on κ) such that

sup
r≤Rε,λ

r2−δ |R(h2) − R(h1)|

≤ c(1)
κ sup

r≤Rε,λ

r2−δ(1 + |x|2)−2
∣∣eh2 − eh1 + h1 − h2

∣∣
+ c(2)

κ

( ε

τ

)2−q
sup

r≤Rε,λ

λr2−δ(|∇(u1 + h2)|q − |∇(u1 + h1)|q)

≤ c(3)
κ sup

r≤Rε,λ

r−2−δ
∣∣eh2 − eh1 + h1 − h2

∣∣
+ c(4)

κ λ
( ε

τ

)2−q
sup

r≤Rε,λ

r2−δ(|∇(u1 + h1) + ∇(h2 − h1)|q − |∇(u1 + h1)|q).
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Making use of Lemma 2, there exist c(i)
κ > 0, 5 ≤ i ≤ 10 and c̄κ > 0 (only depend on

κ) such that

sup
r≤Rε,λ

r2−δ |R(h2) − R(h1)|

≤ c(5)
κ sup

r≤Rε,λ

r−2−δ|h2 − h1||h2 + h1|

+ c(6)
κ λ

(
ε
τ

)2−q
sup

r≤Rε,λ

r2−δ
[
|∇(u1 + h1)|q−1 + |∇(h2 − h1)|q−1

]
|∇(h2 − h1)|

≤ c(7)
κ sup

r≤Rε,λ

r−2−δ|h2 − h1||h2 + h1|

+ c(8)
κ

( ε

τ

)2−q
sup

r≤Rε,λ

λr2−δ
[
|∇u1|q−1 + |∇h1|q−1 + |∇h2|q−1

]
|∇(h2 − h1)|

≤ 2c(9)
κ ‖hi‖C2,α

rad,δ (�2)‖h2 − h1‖C2,α
rad,δ (�2) + c(10)

κ λr2−q
ε,λ

(
1 + r(2+δ)(q−1)

ε,λ

)
‖h2 − h1‖C2,α

rad,δ(�2)

≤ cκr2
ε,λ‖h2 − h1‖C2,α

rad,δ (�2),

Similarly, making use of Proposition 1 together with (17), we conclude that given
κ > 1, there exist εκ > 0, λκ > 0 and c̄κ > 0 (only depend on κ) such that

‖ℵ(h2) − ℵ(h1)‖C2,α
rad,δ (�2) ≤ c̄κr2

ε,λ‖h2 − h1‖C2,α
rad,δ(�2). (20)

Reducing εκ > 0 and λκ > 0 if necessary, we can assume that,

c̄κ r2
ε,λ ≤ 1

2

for all ε ∈ (0, εκ ) and λ ∈ (0, λκ ). Then (19) and (20) are enough to show that

h �−→ ℵ(h)

is a contraction from the ball

{h ∈ C2,α
rad,δ(�2) : ‖h‖C2,α

rad,δ (�2) ≤ 2cκε
δr2

ε,λ}

into itself and hence has a unique fixed point h in this set. This fixed point is a solution
of (18) in B̄Rε,λ

. We summarize this in the following proposition.

PROPOSITION 2. Given κ > 1. There exist εκ > 0, λκ > 0 and cκ > 0 (which can
depend only on κ) such that for all ε ∈ (0, εκ ), for all λ ∈ (0, λκ ) and for any δ ∈ (0, 2 − q),
there exists a unique solution h ∈ C2,α

rad,δ(�2) of (18) such that

v(x) = u1(x) + h(x)

solves (14) in B̄Rε,λ
. In addition,

‖h‖C2,α
rad,δ(�2) ≤ 2cκε

δr2
ε,λ. (21)
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2.2. Analysis of Laplace operator in weighted spaces. In this section we study
the mapping properties of the Laplace operator in weighted Hölder spaces. Given
x1, . . . , xm ∈ �, we define x := (x1, . . . , xm) and

�̄∗(x) := �̄ − {x1, . . . xm},

and choose r0 > 0 so that the balls Br0 (xi) of centre xi and radius r0 are mutually
disjoint and included in �. For all r ∈ (0, r0), we define

�̄r(x) := �̄ − ∪m
i=1Br(xi).

DEFINITION 4. Given k ∈ �, α ∈ (0, 1) and ν ∈ �, we introduce the Hölder
weighted space Ck,α

ν (�̄∗(x)) as the space of functions w ∈ Ck,α
loc (�̄∗(x)) for which the

following norm

‖w‖Ck,α
ν (�̄∗(x)) := ‖w‖Ck,α (�̄r0/2 ) +

m∑
i=1

sup
0<r≤r0/2

(
r−ν ‖w(xi + r ·)‖Ck,α (B̄2−B1)

)

is finite.

When k ≥ 2, we denote by [Ck,α
ν (�̄∗(x))]0 to be the subspace of functions w ∈

Ck,α
ν (�̄∗(x)) satisfying w = 0 on ∂�. We recall the following result.

PROPOSITION 3 [3]. Assume that ν < 0 and ν �∈ �, then

Lν : [C2,α
ν (�̄∗ (x))]0 −→ C0,α

ν−2(�̄∗ (x))

w �−→ �w

is surjective. Denote by G̃ν the right inverse of Lν .

REMARK 1. Observe that when ν < 0, ν /∈ �, a right inverse is not unique and
depends smoothly on the points x1, . . . , xm, at least locally. Once a right inverse is
fixed for one choice of the points x1, . . . , xm, a right inverse for another choice of
points x̃1, . . . , x̃m close to x1, . . . , xm can be obtained by using a simple perturbation
argument.

2.3. Harmonic extensions. We study the properties of interior and exterior
harmonic extensions. Given ϕ ∈ C2,α(S1), define Hi(= Hi(ϕ ; ·)) to be the solution
of {

� Hi = 0 in B1

Hi = ϕ on ∂B1

. (22)

We denote by e1 and e2 the coordinate functions on S1.

LEMMA 3 [3]. If we assume that∫
S1

ϕ dvS1 = 0 and
∫

S1
ϕ e� dvS1 = 0 for � = 1, 2 (23)
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then there exists c > 0 such that

‖Hi(ϕ; ·)‖C2,α
2 (B̄∗

1) ≤ c ‖ϕ‖C2,α (S1).

REMARK 2. Observe that, under the first hypothesis of (23), the coefficients of r0

vanish, hence at least formally, the expansion of Hi involving powers of r which are
greater or equal to 1 and under the second hypothesis of (23), the coefficients of r0 and r1

vanish, hence the expansion of Hi involving powers of r which are greater or equal
to 2. Roughly speaking, when the hypothesis (23) is fulfilled, then Hi ∈ C2,α

2 (B̄1) (since
Hi(0) = ∂1Hi(0) = ∂2Hi(0) = 0) and then the inequality of Lemma 3 holds.

Given ϕ̃ ∈ C2,α(S1), we define He(= He(ϕ̃; ·)) to be the solution of

{
� He = 0 in �2 − B1

He = ϕ̃ on ∂B1
, (24)

which decays at infinity.

DEFINITION 5. Given k ∈ �, α ∈ (0, 1) and ν ∈ �, we define the space Ck,α
ν (�2 − B1)

as the space of functions w ∈ Ck,α
loc (�2 − B1) for which the following norm

‖w‖Ck,α
ν (�2−B1) = sup

r≥1

(
r−ν ‖w(r ·)‖Ck,α

ν (B̄2−B1)

)

is finite.

LEMMA 4 [3]. If we assume that∫
S1

ϕ̃ dvS1 = 0, (25)

then there exists c > 0 such that

‖He(ϕ̃, ; ·)‖C2,α
−1 (�2−B1) ≤ c ‖ϕ̃‖C2,α (S1).

REMARK 3. Observe that, under the first hypothesis of (25), the coefficients of r0

vanish and hence the expansion of He involves powers of r which are lower or equal
to −1. Roughly speaking, when the hypothesis (25) is fulfilled, then He ∈ C2,α

−1 (�2 − B1)
and then the inequality of Lemma 4 holds.

If F ⊂ L2(S1) is a space of functions defined on S1, then we define the space F⊥ to
be the subspace of functions of F, which are L2(S1)-orthogonal to the functions 1, e1

and e2. Then we have the following:

LEMMA 5 [3]. The mapping

P : C2,α(S1)⊥ −→ C1,α(S1)⊥

ψ �−→ ∂rHi − ∂rHe ,

where Hi = Hi(ψ ; ·) and He = He(ψ ; ·), is an isomorphism.
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3. The nonlinear interior problem. We are interested in the study of equation

�w + λ
( ε

τ

)2−q
|∇w|q + 2ew = 0 (26)

in B̄Rε,λ
.

Given ϕ ∈ C2,α(S1) satisfying (23), recall that u1(= uε=1,τ=1) and the solution h of (18)
satisfies (21). Define

v := u1 + Hi(ϕ, ·/Rε,λ) + h.

Now we look for a solution of (26) of the form w = v + v. Using the fact that Hi is
harmonic, we see that this amounts to solve the equation

� v = 8
(1 + r2)2

eh
(

eHi(ϕ,·/Rε,λ)+v − v − 1
)

+ 8
(1 + r2)2

(
eh − 1

)
v

+ λ
( ε

τ

)2−q ∣∣∇[u1 + Hi(ϕ, ·/Rε,λ) + h + v]
∣∣q − λ

( ε

τ

)2−q |∇(u1 + h)|q . (27)

We fix

μ ∈ (1, 2)

and denote by Gμ to be the right inverse of �μ provided by Proposition 1. To find a
solution of (27) it is sufficient to find v ∈ C2,α

μ (�2) solution of

v = Gμ ◦ ERε,λ
◦ S(v), (28)

where

S(v) := 8
(1 + r2)2

eh
(

eHi(ϕ,·/Rε,λ)+v − v − 1
)

+ 8
(1 + r2)2

(eh − 1)v

+ λ
( ε

τ

)2−q ∣∣∇ [
u1 + Hi(ϕ, ·/Rε,λ) + h + v

]∣∣q − λ
( ε

τ

)2−q |∇(u1 + h)|q .

We denote by N (:= Nε,λ,τ,ϕ) the nonlinear operator appearing on the right-hand side
of equation (28).

Given κ > 1 (whose value will be fixed later on), we further assume that the
functions ϕ satisfy

‖ϕ‖C2,α ≤ κ r2
ε,λ . (29)

Then we have the following result.

LEMMA 6. Given κ > 1, μ ∈ (1, 2). There exist εκ > 0, λκ > 0, cκ > 0 and c̄κ > 0
(which can depend only on κ) such that for all ε ∈ (0, εκ ) and λ ∈ (0, λκ ) such that

‖N (0)‖C2,α
μ (�2) ≤ cκr2

ε,λ

and

‖N (v2) − N (v1)‖C2,α
μ (�2) ≤ c̄κ r2

ε,λ ‖v2 − v1‖C2,α
μ (�2),

provided that v1, v2 ∈ C2,α
μ (�2) satisfy ‖vi‖C2,α

μ (�2) ≤ 2 cκr2
ε,λ for i = 1, 2.
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Proof. The proof of the first estimate follows from the asymptotic behaviour of Hi

together with the assumption on the norm of boundary data ϕ given by (29). Indeed,
let cκ be a constant depending only on κ (provided ε and λ are chosen small enough),
it follows from the estimate of Hi, given by Lemma 3, that

‖Hi( ·/Rε,λ)‖C2,α
2 (B̄Rε,λ

) ≤ cκ R−2
ε,λ ||ϕ||C2,α(S1) ≤ cκ ε2.

Since for each x ∈ B̄Rε,λ
, we have

|h(x)| ≤ cκ r2+δ
ε,λ ,

we prove that |h(x)| −→ 0 as ε and λ tend to 0. Given κ > 0, there exists cκ > 0 such
that ∥∥∥(1 + | · |2)−2eh

(
eHi(ϕ; ·/Rε,λ) − 1

)∥∥∥
C0,α

μ−2(B̄Rε,λ
)
≤ cκ ε2.

On the other hand, making use of Lemma 2, there exists cκ > 0 such that

λ
( ε

τ

)2−q
sup

r≤Rε,λ

r2−μ
∣∣∣ ∣∣∇ [

u1 + h + Hi(ϕ, ·/Rε,λ)
]∣∣q − |∇ [u1 + h]|q

∣∣∣
≤ cκλ

( ε

τ

)2−q
sup

r≤Rε,λ

r2−μ
(
|∇u1|q−1 + |∇h|q−1 + |∇Hi(ϕ, ·/Rε,λ)|q−1

)
|∇Hi(ϕ, ·/Rε,λ)|

≤ cκr2
ε,λ.

Making use of Proposition 1 together with (17), we get

‖N (0)‖C2,α
μ (�2) ≤ cκr2

ε,λ. (30)

To derive the second estimate, we use the fact that, for v1, v2 ∈ C2,α
μ (�2) satisfying

‖vi‖C2,α
μ (�2) ≤ 2 cκr2

ε,λ for i = 1, 2, μ ∈ (1, 2) and making use of Lemma 2, there exists
cκ > 0 such that

sup
r≤Rε,λ

r2−μ |S(v2) − S(v1)| ≤ cκr2
ε,λ‖v2 − v1‖C2,α

μ (�2).

Similarly, making use of Proposition 1 together with (17), there exists c̄κ > 0 such that

‖N (v2) − N (v1)‖C2,α
μ (B̄Rε,λ

) ≤ c̄κ r2
ε,λ ‖v2 − v1‖C2,α

μ (�2). (31)

�
Reducing εκ > 0 and λκ > 0, if necessary, we can assume that

c̄κr2
ε,λ ≤ 1

2

for all ε ∈ (0, εκ ) and λ ∈ (0, λκ ). Then (30) and (31) are enough to show that

v �−→ N (v)

is a contraction from the ball{
v ∈ C2,α

μ (�2) : ‖v‖C2,α
μ (�2) ≤ 2cκr2

ε,λ

}
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into itself and hence has a unique fixed point v(= v̄ε,λ,τ,ϕ) in this set. This fixed point
is a solution of (28) in �2. We summarize this in the following proposition.

PROPOSITION 4. Given κ > 1, there exist εκ > 0, λκ > 0 and cκ > 0 such that for all
ε ∈ (0, εκ ), λ ∈ (0, λκ ) for all τ in some fixed compact subset of [τ−, τ+] ⊂ (0,∞) and
for a given ϕ satisfying (23)–(29), there exists a unique v(:= v̄ε,λ,τ,ϕ) solution of (28)
such that

w := u1 + Hi(ϕ, ·/Rε,λ) + h + v̄ε,λ,τ,ϕ

solves (26) in B̄Rε,λ
. In addition,

‖v‖C2,α
μ (�2) ≤ 2 cκ r2

ε,λ.

Observe that the function v(:= v̄ε,λ,τ,ϕ) obtained as a fixed point for contraction
mappings depends continuously on parameter τ .

4. The nonlinear exterior problem. Recall that G(·, x̃) denotes the unique solution
of

−�G(·, x̃) = 8 π δx̃

in �, with G(·, x̃) = 0 on ∂�. In addition, the following decomposition holds

G(x, x̃) = −4 log |x − x̃| + H(x, x̃),

where x �−→ H(x, x̃) is a smooth function. Here we will give an estimate of the gradient
of H(x, x̃) without proof (see [25] and more details in [21, Lemma 2.1). There exists a
constant c > 0 so that

|∇xH(x, x̃)| ≤ c log |x − x̃|.

Let x̃ := (x̃1, . . . , x̃m) be close enough to x := (x1, . . . , xm), η̃ := (η̃1, . . . , η̃m) ∈ �m

be close to 0 and ϕ̃ := (ϕ̃1, . . . , ϕ̃m) ∈ (C2,α(S1))m satisfying (25). We define

ṽ :=
m∑

i=1

(1 + η̃i)G(·, x̃i) +
m∑

i=1

χr0 (· − x̃i) He(ϕ̃i; (· − x̃i)/rε,λ), (32)

where χr0 is a cutoff function identically equal to 1 in Br0/2 and identically equal to 0
outside Br0 . We would like to find a solution of the equation

� u + λ|∇u|q + ρ2eu = 0, (33)

which is defined in �̄rε,λ
(x̃) := �̄ − ∪m

i=1Brε,λ
(x̃i) and is a perturbation of ṽ. Writing

v = ṽ + ṽ, this amounts to solve

−� ṽ = ρ2eṽ+ṽ + λ|∇(ṽ + ṽ)|q + � ṽ.

We need to define an auxiliary weighted space.
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DEFINITION 6. Let r̄ ∈ (0, r0/2), k ∈ �, α ∈ (0, 1) and ν ∈ �, we define the Hölder
weighted space Ck,α

ν (�̄r̄ (x)) as the set of functions w ∈ Ck,α(�̄r̄ (x)) for which the
following norm

‖w‖Ck,α
ν (�̄r̄ (x)) := ‖w‖Ck,α (�̄r0/2 (x)) +

m∑
i=1

sup
r∈[r̄,r0/2)

(
r−ν ‖w(xi + r ·)‖Ck,α (B̄2−B1)

)
.

is finite

For all σ ∈ (0, r0/2) and all Y = (y1, . . . , ym) ∈ �m such that ‖X − Y‖ ≤ r0/2, where
X = (x1, . . . , xm), we denote by

Ẽσ,Y : C0,α
ν (�̄σ (Y )) −→ C0,α

ν (�̄∗ (Y ))

the extension operator defined by Ẽσ,Y (f ) = f in �̄σ (Y )

Ẽσ,Y (f ) (yi + x) = χ̃

( |x|
σ

)
f

(
yi + σ

x
|x|

)

in Bσ (yi) − Bσ/2(yi), for each i = 1, . . . , m and Ẽσ,Y (f ) = 0 in each Bσ/2(yi), where
t �−→ χ̃(t) is a cutoff function identically equal to 1 for t ≥ 1 and identically equal to 0
for t ≤ 1/2. It is easy to check that there exists a constant c = c(ν) > 0 only depending
on ν such that

‖Ẽσ,Y (w)‖C0,α
ν (�̄∗ (Y )) ≤ c ‖w‖C0,α

ν (�̄σ (Y )). (34)

We fix

ν ∈ (−1, 0),

and denote by G̃ν : C0,α
ν−2(�̄∗(x̃)) −→ C2,α

ν (�̄∗(x̃)) the right inverse of � provided
by Proposition 3 with �̄∗(x̃) = �̄ − {x̃1, . . . , x̃m}. Clearly, it is enough to find ṽ ∈
C2,α

ν (�̄∗(x̃)) solution of

ṽ = G̃ν ◦ Ẽrε,λ,x̃
(
ρ2eṽ+ṽ + λ|∇(ṽ + ṽ)|q + � ṽ

) = G̃ν ◦ Ẽrε,λ,x̃ ◦ R̃(ṽ), (35)

where

R̃(ṽ) = ρ2eṽ+ṽ + λ|∇(ṽ + ṽ)|q + � ṽ.

We denote by Ñ (:= Ñε,λ,η̃,x̃,ϕ̃) the nonlinear operator that appears on the right-hand
side of equation (35).

Given κ > 1, we assume that the point x̃ = (x̃1, . . . , x̃m), the function ϕ̃ =
(ϕ̃1, . . . , ϕ̃m) and the parameter η̃ = (η̃1, . . . , η̃m) satisfy

|x̃i − xi| ≤ κ rε,λ, (36)

‖ϕ̃i‖C2,α ≤ κ r2
ε,λ (37)
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and

|η̃i| ≤ κr2
ε,λ. (38)

Then the following result holds.

LEMMA 7. Given κ > 1, there exist εκ > 0, λκ > 0, cκ > 0 and c̄κ > 0 such that
for all ε ∈ (0, εκ ) and λ ∈ (0, λκ ) we have,

‖Ñ (0)‖C2,α
ν (�̄∗(x̃)) ≤ cκ r2

ε,λ

and

‖Ñ (ṽ2) − Ñ (ṽ1)‖C2,α
ν (�̄∗(x̃)) ≤ c̄κ r2

ε,λ ‖ṽ2 − ṽ1‖C2,α
ν (�̄∗(x̃)),

provided ṽ1, ṽ2 ∈ C2,α
ν (�̄∗(x̃)) and satisfying ‖ṽi‖C2,α

ν (�̄∗(x̃)) ≤ 2 cκ r2
ε,λ for i = 1, 2.

Proof. The proof of the first estimate follows from the asymptotic behaviour of He

together with the assumption on the norm of boundary data ϕ̃i given by (37). Indeed,
let cκ be a constant depending only on κ (provided ε and λ are chosen small enough),
it follows from the estimate of He, given by lemma 4, that

|He(ϕ̃i; (x − x̃i)/rε,λ)| ≤ cκr3
ε,λr−1. (39)

Recalling that Ñ (ṽ) = G̃ν ◦ R̃(ṽ), we will estimate Ñ (0) in different subregions of �̄∗(x̃).

� In Br0 (x̃i), we have χr0 (x − x̃i) = 1 and �ṽ = 0 so that

|R̃(0)| ≤ cκε
2|x − x̃i|−4(1+η̃i)

m∏
�=1,� �=i

|x − x̃�|−4(1+η̃�) + cκλ|∇ ṽ|q ≤ cκε
2r−4(1+η̃i)

+ cκλ
∣∣4(1 + η̃i)r−1 + (1 + η̃i)|∇xH(x, x̃)| + |∇He(ϕ̃i; (· − x̃i)/rε,λ)|∣∣q

≤ cκε
2r−4(1+η̃i) + cκλ

(
(1 + η̃i)r−1 + (1 + η̃i)| log r| + r3

ε,λr−2)q
.

Hence, for ν ∈ (−1, 0) and η̃i small enough, we get

||R̃(0)||C0,α
ν−2(

⋃m
i=1 Br0 (x̃i))

≤ sup
rε,λ≤r≤r0/2

r2−ν |R̃(0)| ≤ cκε
2r−2

ε,λ + cκλ.

� In �̄ − Br0 (x̃i), we have χr0 (x − x̃i) = 0 and �ṽ = 0. Thus,

|R̃(0)| ≤ cκε
2

m∏
�=1

e(1+η̃�) G(x,x̃�) + cκλ
(

(1 + η̃i)r−1 + (1 + η̃i)| log r| + r3
ε,λr−2)q

.

So for ν ∈ (−1, 0) we have

||R̃(0)||C0,α
ν−2( �̄−⋃m

i=1Br0 (x̃i))
≤ sup

r0≤r
r2−ν |R̃(0)| ≤ cκε

2 + cκλ.
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� In Br0 (x̃i) − Br0/2(x̃i), using the estimate (39), we have

|R̃(0)| ≤ cκ ε2r−4(1+η̃i) + cκλ
(

(1 + η̃i)r−1 + (1 + η̃i)| log r| + r3
ε,λr−2

)q

+
m∑

i=1

|[�,χr0 (x − x̃i)]| |He(ϕ̃i; (x − x̃i)/rε,λ)|

≤ cκ (ε2 + λ
(

(1 + η̃i)r−1 + (1 + η̃i)| log r| + r3
ε,λr−2)q + r−1r3

ε,λ),

where

[�,χr0 ]w = �wχr0 + w�χr0 + 2∇w · ∇χr0 .

Then,

||R̃(0)||C0,α
ν−2((Br0 (x̃i)−

⋃m
i=1 Br0/2(x̃i)))

≤ sup
r0/2≤r≤r0

r2−ν |R̃(0)| ≤ cκr2
ε,λ + cκλ.

So,

‖R̃(0)‖C0,α
ν−2((�−⋃m

i=1 Br0 (x̃i)))
≤ cκ r2

ε,λ. (40)

Making use of Proposition 3 together with (34) we conclude that

‖Ñ (0)‖C2,α
ν (�̄∗(x)) ≤ cκ r2

ε,λ. (41)

For the proof of the second estimate, let ṽ1 and ṽ2 ∈ C2,α
ν (�̄∗(x̃)) satisfying

‖ṽi‖C2,α
μ (�̄∗(x̃)) ≤ 2 cκr2

ε,λ for i = 1, 2, we have

|R̃(ṽ2) − R̃(ṽ1)| ≤ cκε
2eṽ

∣∣(eṽ2 − eṽ1 )
∣∣ + cκλ

∣∣ |∇(ṽ + ṽ2)|q − |∇(ṽ + ṽ1)|q| ∣∣.
Then for all small η̃i ∈ �+, making use of Lemma 2, there exists a positive constant cκ

such that

|R̃(ṽ2) − R̃(ṽ1)| ≤ cκε
2|x − x̃i|−4(1+η̃i) |ṽ2 − ṽ1| + cκλ

(
|∇(ṽ + ṽ2)|q − |∇(ṽ + ṽ1)|q

)
≤ cκε

2r−4(1+η̃i) |ṽ2 − ṽ1| + cκλ (|∇ ṽ|q−1 + |∇ṽ1|q−1

+ |∇ṽ2|q−1)|∇(ṽ2 − ṽ1)|.

So for η̃i small enough and using the estimate (34), there exists c̄κ (depending on κ)
such that

‖Ñ (ṽ2) − Ñ (ṽ1)‖C2,α
ν (�̄∗(x̃)) ≤ c̄κ r2

ε,λ‖ṽ2 − ṽ1‖C2,α
ν (�̄∗(x̃)). (42)

Then we get the second estimate. �

Reducing λκ > 0 and εκ > 0 if necessary, we can assume that

c̄κr2
ε,λ ≤ 1

2

for all λ ∈ (0, λκ ) and ε ∈ (0, εκ ). Then (41) and (42) are enough to show that

ṽ �−→ Ñ (ṽ)
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is a contraction from the ball

{ṽ ∈ C2,α
ν (�2) : ‖ṽ‖C2,α

ν (�2) ≤ 2cκr2
ε,λ}

into itself and hence has a unique fixed point ṽ(:= v̄ε,λ,η̃,x̃,ϕ̃) in this set. This fixed point
is a solution of (35). We summarize this in the following proposition.

PROPOSITION 5. Given κ > 1, there exist εκ > 0, λκ > 0 and cκ > 0 (depending on κ)
such that for all ε ∈ (0, εκ ) and λ ∈ (0, λκ ), for all set of parameters η̃i satisfying (38),
the points x̃i satisfying (36) and function ϕ̃ satisfying (25)–(37), there exists a unique
ṽ(:= ṽε,λ,η̃,x̃,ϕ̃) solution of (35) such that

ũ :=
m∑

i=1

(1 + η̃i)G(·, x̃i) +
m∑

i=1

χr0 (· − x̃i) He(ϕ̃i; (· − x̃i)/rε,λ) + ṽε,λ,η̃,x̃,ϕ̃

solves (33) in �̄rε,λ
(x̃). In addition,

‖ṽ‖C2,α
ν (�̄∗(x)) ≤ 2 cκ r2

ε,λ.

As in the previous section, observe that the function ṽ(:= ṽε,λ,η̃,x̃,ϕ̃) being obtained as
a fixed point for contraction mapping, depends smoothly on the parameters η̃ and the
points x̃.

5. The nonlinear Cauchy-data matching. Keeping the notations of the
previous sections, we gather the results of Propositions 4 and 5. Assume that
x̃ := (x̃1, . . . , x̃m) ∈ �m is given close to x := (x1, . . . , xm) and satisfies (36). Assume
also that τ := (τ1, . . . , τm) ∈ [τ−, τ+]m ⊂ (0,∞)m is given (the values of τ− and τ+ will
be fixed shortly). First, we consider some set of boundary data ϕ := (ϕ1, . . . , ϕm) ∈
(C2,α(S1))m satisfying (23). We set

Ri
ε,λ = τirε,λ/ε

and recall that

ρ2 = 8 ε2

(1 + ε2)2
.

According to the result of Proposition 4, we can find vi
int a solution of

�u + λ|∇u|q + ρ2eu = 0 (43)

in each Brε,λ
(x̃i) that can be decomposed as

vi
int(x) = uε,τi (x − x̃i) + h (Ri

ε,λ(x − x̃i)/rε,λ) + Hi(ϕi; (x − x̃i)/rε,λ)

+ v̄ε,λ,τi,ϕi (Ri
ε,λ(x − x̃i)/rε,λ),

where the function vi = v̄ε,λ,τi,ϕi satisfies

‖vi‖C2,α
μ (�2) ≤ 2 cκr2

ε,λ . (44)
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Similarly, given some boundary data ϕ̃ = (ϕ̃1, . . . , ϕ̃m) ∈ (C2,α(S1))m satisfying
(25), some parameters η̃ := (η̃1, . . . , η̃m) ∈ �m satisfying (38), provided ε ∈ (0, εκ ) and
λ ∈ (0, λκ ), we use the result of Proposition 5 to find a solution vext of (43), which can
be decomposed as

vext =
m∑

i=1

(1 + η̃i)G(·, x̃i) +
m∑

i=1

χr0 (· − x̃i) He(ϕ̃i; (· − x̃i)/rε,λ) + ṽε,λ,η̃,x̃,ϕ̃

in �̄rε,λ
where the function ṽ(:= ṽε,λ,η̃,x̃,ϕ̃) ∈ C2,α

ν (�̄∗(x̃)) satisfies

‖ṽ‖C2,α
ν (�̄∗(x̃)) ≤ 2 cκ r2

ε,λ. (45)

It remains to determine the parameters and functions in such a way that the
function which is equal to vi

int in ∪m
i=1Brε,λ

(x̃i) and is equal to vext in �̄rε,λ
(x̃)) is smooth.

This amounts to find the boundary data and the parameters so that for each i =
1, . . . , m

vi
int = vext and ∂rv

i
int = ∂rvext (46)

on ∂Brε,λ
(x̃i). Assuming we have already done so, this provides for each ε and λ small

enough a function vε,λ ∈ C2,α (which is obtained by patching together the functions
vi

int and the function vext) solution of −�u − λ|∇u|q = ρ2eu, and the elliptic regularity
theory implies that this solution is in fact smooth. This will complete the proof of
our result since, as ε and λ tend to 0, the sequence of solutions that we have obtained
satisfies the required properties, namely away from the points xi the sequence vε,λ

converges to
∑

i G(·, xi).
Before we proceed, the following remarks are due. First, it will be convenient to

observe that the function uε,τi can be expanded as

uε,τi (x) = −2 log τi − 4 log |x| + O
(

ε2τ−2
i

|x|2
)

(47)

near ∂Brε,λ
. The function

m∑
�=1

(1 + η̃�) G(x, x̃�),

which appear in the expression of vext, can be expanded as

m∑
�=1

(1 + η̃�) G(x + x̃i, x̃�) = −4(1 + η̃i) log |x| + Fi(x̃; x̃i) + ∇Fi(x̃; x̃i) · x + O(r2
ε,λ)

(48)
near ∂Brε,λ

(x̃i). Here we have defined

Fi(x̃; ·) := H(x̃i, ·) +
∑
� �=i

G(x̃�, ·).
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Thus, for x near ∂Brε,λ
, we have

(vi
int − vext)(x)

= −2 log τi + 4η̃i log |x − x̃i| + h (Ri
ε,λ(x − x̃i)/rε,λ) + Hi(ϕi; (x − x̃i)/rε,λ)

−He(ϕ̃i; (x − x̃i)/rε,λ)

−
⎛
⎝(1 + η̃i)H(x, x̃i) +

m∑
�=1,� �=i

(1 + η̃�)G(x, x̃�)

⎞
⎠ + O

(
ε2τ−2

i

|x − x̃i|2
)

+ O(r2
ε,λ)

= −2 log τi + 4η̃i log |x| −
⎛
⎝(1 + η̃i)H(x̃i, x̃i) +

m∑
�=1,� �=i

(1 + η̃�)G(x̃i, x̃�)

⎞
⎠

+O(|x − x̃i|2) + O
(

ε2τ−2
i

|x − x̃i|2
)

+ O(r2
ε,λ)

= −2 log τi + 4η̃i log rε,λ − Fi(x̃i, x̃) + O(r2
ε,λ),

(49)
where x̃ = (x̃1, . . . , x̃m).

Next, in (46) all functions are defined on ∂Brε,λ
(x̃i), but it will be convenient to

solve the following equations:(
vi

int − vext
)

(x̃i + rε,λ ·) = 0 and ∂r(vi
int − vext) (x̃i + rε,λ ·) = 0 (50)

on S1. Here all functions are considered as functions of y ∈ S1 and we have simply
used the change of variables x = x̃i + rε,λy to parameterize ∂Brε,λ

(x̃i).

Since the boundary data we have chosen satisfy (23) and (25), we can decompose

ϕi = ϕi
0 + ϕi

1 + ϕi,⊥ and ϕ̃i = ϕ̃i
0 + ϕ̃i

1 + ϕ̃i,⊥,

where ϕi
0, ϕ̃

i
0 ∈ �0 = � are constant functions on S1, ϕi

1, ϕ̃
i
1 belong to �1 = ker(�S1 +

1) = Span{e1, e2} and ϕi,⊥, ϕ̃i,⊥ are L2(S1) orthogonal to �0 and �1.

Projecting equation (50) over �0 will yield the system{
−2 log τi + 4η̃i log rε,λ − Fi(x̃i, x̃) + O(r2

ε,λ) = 0

4η̃i + O(r2
ε,λ) = 0

. (51)

Let us briefly comment on how these equations are obtained. These simply come
from (50) when expansions (47) and (48) are used, together with the expression of Hi

and He given in Lemmas 3 and 4, and also the estimates (44) and (45). The system (51)

can be readily simplified into

1
log rε,λ

[2 log τi + Fi(x̃i, x̃)] = O(r2
ε,λ) and η̃i = O(r2

ε,λ).

We are now in a position to define τ− and τ+ since, according to above, as ε and λ tend
to 0, we expect that x̃i will converge to xi and τi will converge to τ ∗

i satisfying

2 log τ ∗
i = −Fi(xi, x),

and hence it is enough to choose τ− and τ+ in such a way that

2 log(τ−) < − sup
i

Fi(xi, x) ≤ − inf
i
Fi(xi, x) < 2 log(τ+).
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We now consider the L2-projection of (50) over �1. Given a smooth function f defined
in �, we identify its gradient ∇f = (∂x1 f, ∂x2 f ) with the element of �1

∇̄f =
2∑

i=1

∂xi f ei.

With these notations in mind, we obtain equations

∇̄Fi(x̃i, x̃) = O(r2
ε,λ) and ϕi

1 = O(r2
ε,λ). (52)

Finally, we consider the L2-projection onto L2(S1)⊥. This yields the system{
ϕi,⊥ − ϕ̃i,⊥ + O(r2

ε,λ) = 0

∂r
(
Hi,⊥ − He,⊥) + O(r2

ε,λ) = 0
. (53)

Thanks to the result of Lemma 5, this last system can be rewritten as

ϕi,⊥ = O(r2
ε,λ) and ϕ̃i,⊥ = O(r2

ε,λ).

If we define the parameters t = (ti) ∈ �m by

ti = 1
log rε,λ

[
2 log τi + Fi(x̃i, x̃)

]
, ∀ 1 ≤ i ≤ m,

then the system that we have to solve reads(
t, η̃, ϕ0, ϕ̃0, ϕ1, ϕ̃1, ∇̄F(x̃, x), ϕ⊥, ϕ̃⊥

)
= O(r2

ε,λ), (54)

where, as usual, the term O(r2
ε,λ) depends nonlinearly on all the variables on the left

side, but is bounded (in the appropriate norm) by a constant (independent of ε and λ)
time r2

ε,λ, provided ε ∈ (0, εκ ) and λ ∈ (0, λκ ). Then the nonlinear mapping, which
appears on the right-hand side of (54), is continuous and compact. In addition,
reducing εκ and λκ if necessary, this nonlinear mapping sends the ball of radius κ r2

ε,λ

(for the natural product norm) into itself, provided κ is fixed large enough. Applying
Schauder’s Fixed Theorem in the ball of radius κr2

ε,λ in the product space where the
entries live yield the existence of a solution of equation (54), and this completes the
proof of Theorem 1. �
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