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ABSTRACT. The radiation stress at an ice edge due to incident sea and swell is 
reconsidered in the light of new theoretical results concerned with the calculation of 
the reflection and transmission coefficients at the edge of a thin elastic sheet. Both 
monochromatic seas and seas made up of a spectrum of periods are discussed, the 
latter invoking the Pierson-Moskowitz spectral model. It is found that the force per 
unit length due to radiation stress is comparable in magnitude with other driving 
mechanisms at the edge, i.e. with winds and currents. 
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Description 
elastic modulus 
radiation stress or force per unit length of 
wave front 
significant force per unit length 
water depth 
complex incident travelling wave amplitude 
coefficient 
flexural rigidity (=Eh3 /12(1 - v2

)) 

average horizontal momentum 
complex reflected travelling wave amplitude 
coefficient 
amplitude reflection coefficient in the waters 
off the ice sheet 
complex transmitted travelling wave 
amplitude coefficient 
amplitude transmission coefficient in the 
waters beyond the ice sheet 
complex amplitude coefficients for 
bounded evanescent modes in water 
complex amplitude coefficients for first 
damped travelling mode 
complex amplitude coefficients for second 
damped travelling mode 
complex amplitude coefficients for bounded 
evanescent modes in ice 
group velocity of incoming water waves 
frequency 
the peak frequency in Pierson-Moskowitz 
spectrum 
acceleration due to gravity 
ice thickness 

R 
generic water wavenumber 
travelling water wavenumber 

mo 
t 
x 

y 

K,,, 

v 
cP(x,y) 
cPw 
cPi 
W 

p 

evanescent water wavenumbers 
mass per unit area of the ice plate 
area under radiation stress spectra 
time 
horizontal coordinate (positive to 
the right from ice edge) 
vertical coordinate (positive 
upwards from sea floor) 
Phillip's constant, taken to be 1.2 x 10-2 

(Phillips, 1(77) 
generic ice wavenumber 
travelling ice wavenumber 
damped ice travelling wavenumber 
evanescent ice wavenumbers 
Poisson's ratio 
velocity potential 
open water velocity potential 
velocity potential for ice-covered region 
radian frequency (= 27f /period) 
density of water 

INTRODUCTION 

Large-scale numerical models of ice- ocean dynamics (e.g. 
Hibler, 1(86) include no parameterization for incoming 
ocean waves, yet the influence of waves and swell ap­
pears to be significant in comparison with other terms 
in the stress balance equation. The effect of waves is felt 
through radiation stress, an excess flux in momentum 
due to the presence of the waves which acts both into 
and along the ice edge. At an ice edge, indeed at any 
floating or fixed body, the radiation stress depends dir­
ectly on the proportion of energy reflected by the body 
together with the proportion allowed through into the 
open seas beyond the body. Hence, open water reflec­
tion and transmission coefficients are crucial. 
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In a recent series of papers, Fox and Squire (1990, 
1991a, b) and Squire and Fox (1990) have reworked the 
classical problem of ocean waves propagating into an ice 
sheet, obtaining precise solutions where only approxi­
mate solutions were hitherto available. The new analysis 
includes a mathematically complete set of wave poten­
tials on both sides of the ice edge, and the problem is 
solved variationally as will be discussed briefly later. The 
precision of the solution is established by an independent 
asymptotic energy flux calculation. It is this work which 

is used to provide the reflection coefficient at the edge 
of the marginal ice zone, enabling the contribution of 
radiation stress in the ice edge stress balance to be as­
sessed. In modelling the ice cover as a continuum we are 
certainly idealizing the real world. However, for numer­
ical practicality the continuum hypothesis underpins all 
of the large scale models with which we are concerned, 
and it is commonly used in connection with wave propa­
gation problems in ice-infested seas (e.g. Weber (1987), 
who models the sea ice as a viscous Newtonian fluid; or 
Liu and Mollo-Christensen (1988), who assume a thin 
elastic plate under compression). The continuum hypo­
thesis will be most valid when the entire ice cover moves 
horizontally as what is effectively a rigid or near rigid 
lid. This will occur at high sea-ice concentrations such 
as are observed at the Greenland Sea ice edge where high 
waves pommel ice floes into a slurry of 100% concentra­
tion. A similar ice cover exists in the Weddell Sea in 

winter for hundreds of kilometres (Wadhams and oth­
ers, 1989). Radiation stress ideas have been invoked by 
Martin and others (1983) and Wad hams (1983) in con­
nection with the formation and subsequent dynamics of 
ice-edge bands, and by Squire (1989) for the special case 
of obliquely incident waves at super-critical angles. In 
each of these papers either perfect or zero absorption was 
assumed so that the issue of the accurate calculation of 
the reflection coefficient did not arise. 

The reflection and transmission coefficients 

The new theoretical solution of Fox and Squire (1990, 

1991a, b) and Squire and Fox (1990) provides accurate 
estimates for the reflection and transmission coefficients 
at the edge of an ice sheet as a function of wave pe­
riod, ice thickness and water depth. For completeness, 
we include here a brief account of the method of solution 
for normally incident ocean waves; the more complicated 
case of the reflection of obliquely incident waves has now 
been solved and will be reported in subsequent publica­
tions. 

With normal incidence, the problem is essentially two­
dimensional and we may consider an open water region 
x < 0, 0 < y < H with the usual free surface boundary 
conditions, and an ice-covered region, x > 0, 0 < y < H 
with suitably modified boundary conditions. The ice 
sheet is assumed to behave as a continuous thin elastic 
plate of uniform thickness, with zero bending moment 
and shear at its free cnd. Thus, assuming linearity and 
irrotational flow, a wave-like velocity potential cP(x, y)eiwt 

is to be found such that cP(x, y) satisfies Laplace's equa­
tion V2cP = 0 for -00 < x < 00, 0 < y < H, with 
all boundary conditions satisfied. It is assumed that 
cP(x, y) may be expressed as the sum of separated sol­
utions (modes) of Laplace's equation, where the modes 
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are found as the products of eigenfunctions of the sep­
arate x-variable and v-variable differential operators in 
that equation, chosen to satisfy the appropriate bound­
ary conditions. In the open water region, the modes have 
the form eh cos ky where k satisfies 

(1) 

This equation has two imaginary roots ±ikT correspond­
ing to travelling waves and infinitely many real roots 

±kn (n = 1,2, ... ), where (n - !)7f / H < kn < n7f / H, 
corresponding to evanescent modes. These modes form 
a complete set and are orthogonal. In the ice-covered 
region the modes have the same form (e"X cos KV), and K 

satisfies 
pw2 

K tan KH = - L 4 2 • 
K + pg - mw 

(2) 

This dispersion equation also has two imaginary roots 
±iKT which correspond to travelling waves, four complex 
roots ±KD ± K:i), where' indicates complex conjugate, 
corresponding to damped travelling modes, and infinitely 
many real roots ±Kll (n = 1,2, . .. ), where (n - 1)7f / H < 
Kn < n7f / H, each giving an evanescent mode. These 
modes also form a complete set but are not in general 
orthogonal. 

Including only the physically significant roots of 
Equations (1) and (2), i.e. those satisfying boundedness 
at large x, we may write down the potential for the open 
water region: 

00 

cPw = (Ie-ikTX+ReikTX)coshkTV+ 2:anek"xcosknV' (3) 
n=! 

and for the ice-covered region: 

00 

+ b_e-"ox cos K:oY + L bne-""x cos KnV· 
n=) 

(4) 

To determine the reflection and transmission coeffi­
cients a cP(x, V) must be found such that cPw = cPi and 
ocPw/ox = OcPi/OX on x = 0,0 < V < H, noting that 
bending moment and shear vanish at x = 0+, V = H. 
The problem is solved variationally, after terminating 

the series in Equations (3) and (4) at a finite number 
of terms, by minimising the error term 

{ll 1 12 (1 l0cPi OcPw 12 
c; = lo cPi - cPw dy + J.l lo ox - ox dy, (5) 

on x = 0 subject to unit incident amplitude and the 
edge boundary conditions. The weight J.l is adjusted to 
improve convergence. The error term c; is a quadratic 
form in the real and imaginary parts of the coefficients 
I,R,T, {an},b+,b_ and {bll}. The minimisation is per­
formed, with respect to these coefficients, using a precon­
ditioned linear conjugate gradient algorithm (Gill and 
others, 1981) restricted to the subspace in which the in­
cident amplitude is unity and the edge conditions are 
satisfied. For more details see Fox and Squire (1990, 
1991a, b). 
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Radiation stress 

The phenomenon of radiation stress in water waves 
is now well understood and the reader is referred to 
Longuet-Higgins and Stewart (1964) for a complete 
treatment of the theory with some applications. The 
results of a later work (Longuet-Higgins, 1977) are also 
relevant to the present discussion. That paper begins 
with the following few sentences which we repeat here as 
a concise description of the radiation stress effect. "Wa­
ter waves transport both energy and momentum, and 
any solid body which absorbs or reflects wave energy 
must absorb or reflect horizontal momentum also. Hence 
the body is subject to a mean horizontal force. In low 
waves, the force may be calculated immediately when 
the incident, reflected and transmitted wave amplitudes 
are known." Using the method of Fox and Squire (1990) 
to obtain accurate values for the transmission and reflec­
tion coefficients at an ice edge, Longuet-Higgins (191/) 
enabled the radiation stress to be found for water of fi­
nite or infinite depth. Longuet-Higgins (1977) considered 
the effect of two-dimensional, irrotational waves on any 
number of floating or submerged bodies of finite horizon­
tal range; the bodies may absorb or generate energy at 
the same frequency. He showed that the horizontal force 
acting normally on the bodies is 

per unit length, where the terms on the right are respec­
tively the momentum fluxes in the incident, reflected and 
transmitted waves. On water of finite depth H, this ex­
pression becomes 

if we assume unit incident amplitude. Note that the 
nand T coefficients both refer to waves travelling in 
open water, n is the amplitude coefficient of waves re­
flected from the floating bodies, whereas T is the am­
plitude transmission coefficient of waves in the open 
water beyond the floating bodies. The factor (1 + 
2kTH(sinh 2kTHt1), which introduces the effect of wa­
ter depth, varies between 1 for infinitely deep water and 
2 for shallow water. 

We suppose now that the ice cover may be represented 
as a continuum and that an elastic constitutive relation 
may be used to determine the energy balance at the ice 
edge itself. Then three types of wave, as described above, 
will exist in the ice: an undamped travelling wave; a 
pair of damped travelling waves; and an infinite set of 
evanescent modes. Only the undamped travelling wave 
will propagate any distance into the sea ice. The others 
will be rapidly attenuated away close to the ice edge. 
We also suppose that the travelling wave is gradually 
damped as it propagates through the ice cover so that at 
some penetration it too will have negligible amplitude. 
Thus, the transmission coefficient T in Equation (7) will 
be zero, as it represents the input of energy into open 
water beyond the ice sheet, and the equation will become 
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We have made a slightly different assumption to those of 
Martin and others (1983) and Wadhams (1983), which 
were both concerned with bands of ice. In Martin and 
others (1983) the band was assumed to absorb all the 
wave energy with no transmission or reflection, and in 
Wadhams (1983) zero absorption was assumed. 

It is Equation (8) which is used to compute the force 
per unit length due to radiation stress at an ice edge. 

THE INCOMING WAVE FIELD 

Monochromatic waves 

We consider first the effect of monochromatic waves of 
various frequencies on ice covers of different thicknesses. 
The force per unit length for 1 m amplitude incident 
waves, as given by Equation (8), is found at three wa­
ter depths; 10 m in Figure 1, 100 m in Figure 2, and 
1000 m in Figure 3. In each case the curves are labelled 
with the appropriate ice thickness, and it is clear that 
the effect of radiation stress increases significantly as h 
is increased. This is due principally to the reflection 
coefficient n which, as might intuitively be expected, in­
creases with increased ice thickness (see fig. 6, Fox and 
Squire, 1DDO). Furthermore, Figures 1, 2 and 3 have 
some common features because F contains: the factor 
(1 + 2kT H / sinh 2kTH) which always lies between 1 and 
2, tending to 1 for short waves and 2 for long waves; and a 
factor (1+R2) which tends to 2 for short waves and tends 
to 1 for long waves because the latter are relatively un­
affected by the presence of the ice sheet. Thus as period 
-+ 0 or period -+ 00, F -+ ~pg. Between these two ex­
tremes, F approaches ~ pg although it may not reach this 
value. Consequently, Figures 1, 2 and 3 are superficially 
similar, with each curve decreasing to a minimum from 
its asymptotic short period limit (as period is increased) 
and then increasing to its long period asymptote. It is 
only for thick ice on shallow water (i.e. for 5 m and 10 m 
in Fig. 1) that more structure is evident where, at inter­
mediate periods, the curves overshoot the ~ pg asymptote 
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Fig. 1. The radiation stTess in Nm- 1 pl.otted 
against wave peTiod (on a logarithmic scale) 
fOT ice of thickness 0.5 m, 1 m, 2 m, 5 m and 
10 m on water of 10 m delJth. The incoming 
wave amplitude is 1 m. 
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Fig. 2. The radiation stress in Nm- 1 plotted 
against wave period fOT 'various thicknesses of 
ice on water of lOOm depth. The incoming 
wave amplitude is 1 m. 
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Fig. 3. The mdiation stress in Nm- I pl.otted 
against wave period for various thicknesses of 
ice on water of 1000 m depth. The incoming 
wave amplitude is 1 m. 
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Fig. 4. The Pierson-Moskowitz spectTum as­
sumed to act on the ice cover. The pea.k pe-
7'iod is at 10 s (0.1 Hz) and significant energy 
is limited to the range 4-20 s, i. e. 0.05 to 
0.25 Hz. 
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before tending to this value from above. In Figure 3 all 
curves drop rapidly to their minimum and remain at this 
value until the incoming waves have sufficient length to 
feel the sea floor. 

These calculations can, of course, be done at any 
depth with the caveat that a larger number of evanes­
cent modes are required to reach a predefined accuracy 
for very deep water, but that there is little point in in­
troducing additional depth for a wave which effectively 
already sees the water as deep. 

Spectral input 

We now consider a more realistic ocean wave forcing, 
namely that of an incident sea made up of waves at var­
ious frequencies. In line with earlier work, the spectral 
model we shall use is the Pierson-Moskowitz spectrum 
described by Phillips (1977). This spectrum, which mod­
els a fully developed sea, is represented by the equation 

It is assumed that a Pierson-Moskowitz spectrum with 
a peak frequency fm = 1/10 Hz (Fig. 4) acts upon an 
ice cover floating on water of depth 100 m. Five thick­
nesses of sea ice are considered: 0.5 m, 1 m, 2 m, 5 m and 
10 m. The radiation stress spectral density functions cor­
responding to each thickness at water depths of 10 m and 
100 m are plotted in Figures 5 and 6, respectively. The 
equivalent plot at 1000 m is not induded, being very sim­
ilar to that at 100 m. Because of the convex-up nature of 
Figure 4, as opposed to the concave-up nature of Figures 
1- 3, the radiation stress spectrum tends to be slightly 
less strongly dependent on frequency than the forcing 
spectrum, as the two effects counteract one another. The 
bell-shaped form is preserved in all cases, but there is a 
slight change in peak frequency. The significantly greater 
radiation stress spectral densities of Figure 5 as com­
pared to Figure G are due to the (1 + 2kTH / sinh 2kTH) 
factor in Equation (8). This approaches 2 for most waves 
in this shallow water. 

x lO' 
8.---~--~--~--~--~--~--~--~--~---, 

0.08 0.1 0.14 0.16 0.18 0.2 0.22 0.24 0.26 

Frequency. HI. 

Fig. 5. FOTce per 'Unit length spectra fOT 10 m 
of ice resulting from the PieTson-Moskowitz 
spectT'Um of Figure 4. 

99 

https://doi.org/10.3189/1991AoG15-1-96-100 Published online by Cambridge University Press

https://doi.org/10.3189/1991AoG15-1-96-100


Squire and Fox: Incoming waves in ice-edge t(ynamics 
x10' 

2 . 5 ~-~-~ __ ~-~-~-~-~-~-~---, 

2 

1.5 

0.5 

0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 

Frequency. J-Iz 

Fig. 6. Force per unit length spectr-a foy· 100 m 
of ice resulting from the Pierson-Moskowitz 
spectrum of Figure 4. 

An indication of the magnitude of the radiation stress 
effect is provided by finding the significant force per 
unit length, Ps, defined by analogy with significant wave 
height as 4jm;;", where mo is the variance or area beneath 
the spectrum. This is done in Table 1. 

CONCLUSIONS 

The significant force per unit length estimates given in 
Table 1 totally dominate those which could arise due to 
wind stresses, current stresses, sea surface tilt or Coriolis 
force. Suppose, for example, we consider the effect of the 
normally incident fully developed Pierson-Moskowitz sea 
as described above on a 10 km2 area of 1 m ice, and we 
then compare this with the force due to the action of 
a 10 m s-1 wind, assuming an air- ice drag coefficient of 
3 x 10-3

. The force at the ice edge due to the incoming 
waves is approximately 1.3 x 108 N for deep water, and 
nearly double this for shallow water. The force imparted 
on the ice due to the wind is 3.0 x 107 N. Likewise, if 
we consider the effect of a current beneath the ice cover 
with, say, a water- ice drag coefficient of 7 x 10-3 and a 
current velocity of 0.2 ms-I, we obtain a force of about 
2.9 x 107 N. In part, the significance of the wave radia­
tion stress is due to the input forcing spectrum chosen, 
which has a large significant wave height ("-' 4 m) as it 
represents a fully developed sea. However, even in more 
moderate seas, the radiation stress is a significant con­
tribution which has been neglected hitherto. 

Table 1. Significant force per unit length due to Pierson­
Moskowit<. spectrum with fm = 0.1 H<. impinging on 
various ice thicknesses at three water depths 

h (m) 

0.5 
1.0 
2.0 
5.0 

10.0 

100 

H = 10m 

x 104 

l.99 
2.04 
2.18 
2.46 
2.71 

Fs(Nm- l
) 

H = 100 m H = 1000m 

x 104 
X 104 

l.23 l.22 
l.27 l.26 
1.37 1.34 
1.58 1.53 
1. 76 1. 70 
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