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Abstract. For bicovariant differential calculi on quantum matrix groups a generalisation of
classical notions such as metric tensor, Hodge operator, codifferential and Laplace—Beltrami
operator for arbitrary k-forms is given. Under some technical assumptions it is proved that
Woronowicz’ external algebra of left-invariant differential forms either contains a unique form
of maximal degree or it is infinite-dimensional. Using Jucys—Murphy elements of the Hecke
algebra, the eigenvalues of the Laplace—Beltrami operator for the Hopf algebra O(SL,(N))
are computed.
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1. Introduction

About ten years ago, S.L. Woronowicz introduced the concept of bicovariant
differential calculus on arbitrary Hopf algebras and developed a general theory
of such calculi [11]. One of the most interesting parts of this theory is his definition
of external algebras and higher-order calculi by using a braiding map instead of
the flip operator in the corresponding classical constructions. The higher-order
differential calculus defined in this manner becomes then an Nj-graded differential
super Hopf algebra ([1], [2]; see [7] for a complete proof). However, applying
Woronowicz’s construction of higher-order calculi to quantum matrix groups leads
to a number of difficulties and phenomena that do not occur in the classical
(commutative) case. Firstly, the vector space (I'"), of left-invariant differential forms
endowed with the canonical (wedge) product does not form a Grassmann algebra in
general. Secondly, it may happen that the dimensions of the spaces (FAk)l of
left-invariant k-forms do not vanish as k — 4+oo (see [6]). For the irreducible
N?-dimensional bicovariant first order differential calculi on the coordinate Hopf
algebra O(SL,(N)) of the quantum group SL,(N), N > 2, a detailed description
of the higher order differential calculi I'"* was given by A. Schiiler [9]. In this import-
ant case it is proved in [9] that for transcendental values of the parameter g the
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dimension of the vector space of left-invariant k-forms is (A{;) just as in the classical
situation.

In ‘ordinary’ differential geometry the Laplace—Beltrami operator A acting on
differential forms plays a central role. In its construction a metric tensor, the Hodge
star and the codifferential operators are essentially used. The aim of this paper is to
give a definition of invariant Laplace-Beltrami operators A for inner bicovariant
differential calculi on arbitrary Hopf algebras. It will be a generalisation of the
classical concept and works also in the case when the higher order calculus is infinite
dimensional. The existence of A is shown for coquasitriangular Hopf algebras and
irreducible differential calculi defined by generalised /-functionals. As tools we
use g-metrics (a generalisation of the concept of a metric tensor in the commutative
case), Hodge star operators (in a special case) and codifferentials.

In Section 2 we introduce o-metrics for a pair of bicovariant bimodules. In Section
3 we give examples for these structures. In Section 4 further basic notions like con-
tractions with forms (see also [3]) and o-metrics on higher order forms of
Woronowicz’s external algebra are introduced and a number of useful properties
of these mappings are developed. Section 5 is concerned with Hodge operators
and codifferential operators. For their definitions we require two assumptions.
The first one is that the Hopf algebra is ‘connected’ (i.e. it has only one one-
dimensional corepresentation), and the second assumption is satisfied (for instance)
if the left-invariant part of the external algebra is finite dimensional. In Theorem
5.2 it is proved that if there is a left-covariant g-metric on the external algebra then
there exists a unique (up to a complex multiple) left-invariant differential form
of maximal degree. For the proof of Theorem 5.2 (and its Corollary 5.3) we don’t
need the assumption that the Hopf algebra is ‘connected’. Further we define Hodge
star and codifferential operators and prove some of their properties. One of the
formulas for the codifferential operator is independent of the Hodge star and will
be taken as a definition in the next section. In Section 6 the invariant Lap-
lace-Beltrami operator is defined and a number of results on this operator are
derived. Among others, it is shown (Theorem 6.3) that there is a duality between
the differential and codifferential as in the classical case. In Section 7 the eigenvalues
of the Laplace-Beltrami operator for the quantum group SL,(N), N =2 are
determined.

In this paper we shall use the convention to sum over repeated indices belonging to
different terms. Throughout, A denotes a Hopf algebra over the complex field with
comultiplication 4 and invertible antipode S. The symbol ® 4 means the algebraic
tensor product over the Hopf algebra A, while 4; and Ar denote left and right
coactions on a bicovariant A-bimodule, respectively. If # and v are corepresentations
of A, then we write Mor(u, v) for the set of intertwiners of u and v. We set
Mor(u) = Mor(u, u). Throughout the paper we freely use basic facts from the theory
of bicovariant differential calculi (see [11] or [7], Chapter 14).

I want to thank Prof. Schmiidgen for posing the problem and for motivating dis-
cussions.
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2. o-Metrics

Let A be an arbitrary Hopf algebra and let I'y and I'_ be two finite dimensional
bicovariant A-bimodules. Recall that any bicovariant bimodule I' is a free left
and right A-module and there are bases of I consisting of left- and right-invariant
elements respectively. In what follows we use the symbols (I');, (I'), and (I');, to
denote the vector spaces of left-, right- and biinvariant (i.e. both left- and
right-invariant) elements in a bicovariant bimodule I'. Further, there is a canonical
braiding 6: T, @4y > I'v @41, (defined by Woronowicz [11]) for each
7,7 € {+, —} which is an invertible homomorphism of bicovariant bimodules.

We shall write ¢t for ¢ and ¢~ for ¢ 1.

DEFINITION 2.1. A linear mapping g: ' @ T- +T_®4 T — A is called a
a-metric of the (not ordered) pair (I'y, I'_) if it satisfies the following conditions:

e g is a homomorphism of .A-bimodules,

e g is nondegenerate, (i.e. for & € I'; both g(¢ ® 4 &) =0 for any & e I'_; and
g€ ®4¢) =0 for any & € T_, imply & = 0)

e goog =g (o-symmetry),

e the following diagrams commute (7,7’ € {+, —}):

ot
F‘[@AFI/@AF—Ti)r‘r@AF—T@AFT’

UTzl lglz (D
rr’®Arr®Ar71 ﬁ) |

T
The o-metric of the pair (I'y, I'_) is said to be left-covariant resp. right-covariant if

Aog=(1d®g)d4; resp. (2)

dog=(g®id)dr 3)

on I'y @I +T_®4T;. We call it bicovariant if it is both left- and
right-covariant.

If no ambiguity can arise then we use the symbol “,” in order to separate the two
arguments of g. Recall that by definition we still have g(&a, p) = g(&, ap) for any
aeA, ¢telandpel_,, 1€ {+, -}

If g is a homomorphism of the A-bimodules ', ® 4 I'_; and A, 7 € {+, —}, (e.g. if g
is a g-metric of the pair (I'y, I'_)) then on the tensor product ®lf”:1 .. tme{+ -}
the equation

Zii+1 0 &jj+1 = gj—2j-10&iiv1 fork>j>i+1 “4)

holds. One can check that the only conditions on the above map to be well defined is
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Tit+1 = —7; and 1j1; = —7;. The formulas

8iit1 0041 =0j—2j-10&iir1 and 041 0gjjt1 =g j+1 0 Oiiy1, J>i+1,
(5)
should be clear as well.

Let now g be a g-metric of the pair (I',I'_). Then on the tensor product
I*@,4I® 1 e{+,—} we define a map g recursively by setting

—7

g¢ a):=¢a, gla{):=al,
2E®a&1, G ®40) = 8(le1,01). 0
forall £el® ¢ el (eT® el ;andac A

Since g is a homomorphism of .4-bimodules, the map g is well defined and it is a
homomorphism of bimodules. Note that g is left-, right- or bicovariant if g is.

The next lemma is crucial in what follows.

(6)

LEMMA 2.1. For a o-metric g of the pair (I 1, U'_) and arbitrary integers i, k, [ such
that 1 <i <k, I, we have

2o (0 g i> id®) = g o (id®, 1) (N

on the bimodule F?k @ F‘%ﬁ.

Proof. Because of (6) it suffices to show the assertion fori = 1 and k =/ = 2. Butin
this case we have g = g1, o g23 and it suffices to apply the fourth condition on the
cg-metric g (see (1) in Definition 2.1) twice. We obtain

80 ®a ), (1 ®al) =g120823 001561 ®aér ®a L ®aln)
=g1208120055(¢1 ®4 5 ®a8 ®al)
=g1208340053(61 @45 @4 ®aly)
= 81208300561 ®aE @A ®aly)
=2 ®u & 0 (L ®a D)),

where the third equation follows from (4). O

Let g be a homomorphism of the bicovariant bimodules 'y @ 4 T- +T_ ® 4 'y and
A. The general theory of bicovariant bimodules assures that g is nondegenerate
whenever the matrix of g with respect to one fixed basis of (I';.); and one fixed basis
of (I'_), is invertible. Conversely, if g is left-covariant (i.e. (2) is fulfilled) then
the matrix G of g with respect to any basis of (I'y); and (I'_), has complex entries
and the nondegeneracy of g implies the invertibility of the matrix G. In this case
we easily conclude that the following assertions are equivalent:

(i) g is nondegenerate,
(if) the restriction of g onto the subspace (I'y 4T ) +T_-®4T4) is
nondegenerate,
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(iii) the matrix G of g with respect to one (and then any) basis of (I';); and (I'_), is
invertible.

Obviously, this holds for left-covariant o-metrics as well. In what follows most of the
o-metrics will be left-covariant.

3. Examples

Let A be a coquasitriangular Hopf algebra (see for example [7], Section 10.1) with
universal r-form r and let u = (u;:),-J:l ,,,,, 4 be a corepresentation of A. Then
U = ((uc)})i,j=l 77777 ds (uc)} = S(i)) is the contragredient corepresentation of u and u
and u° determine two bicovariant A-bimodules I'; and T'_, respectively. They
are given by fixing the bases {w;|i,j=1,...,d} and {0;]i,j=1,...,d} of
left-invariant forms of I'; resp. I'_ and defining the right coactions Ar and right
A-actions ¢ <a = S(aq))éap), &€ (7)), T € {+, -}, a e A, by the formulas

Ar(y) = o ® @), Ar(0y) = O ® WUy, )
oy aa = S (@ou = v, ap)r(ae), o, 9)
9,']' <a = l/jiS(Z]fl)(a)ekl = r(a(l), S(uf‘))r(S(uj), a(z))eld, (10)

Note that the 1-forms w := Zﬁlzl w; el and 0:=(fo S)(uj’:)H,-j e I'_, where
f(a) =r(aq), S(ae))), are biinvariant.

Assume for a moment that the corepresentations u# and u¢ are equivalent (u« =2 u°)
and let T = (7}")1»‘/:1_'“# be an invertible morphism 7 € Mor(u, u°). Clearly we have
T-! € Mor(u°, u). Then the mapping

0; > x(uf, up)(T~ )} Tl (11)

extends uniquely to a homomorphism of the bicovariant bimodules I'_ and T',.
Moreover, this mapping is invertible and its inverse is given by

Wy 1(uf, Su) THT )0k (12

We also see casily that this isomorphism maps 0 into w.

Let now u be an arbitrary corepresentation and let F; € Mor(uc, u),
F, € Mor(u, u®®) and Gy, G, € Mor(u) be invertible morphisms. Then we define lin-
earmaps g : I, @I > Aand g’ :T_®,4T; —> A by

g(aw; ® 4 On) = aFyl B! and  g'(aly ® 4 o) = aGGl. (13)
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LEMMA 3.1. The mappings ¢ : T, 4T —> A and g’' . T_@,4T — A are
homomorphisms of bicovariant bimodules. Moreover, as bilinear forms they are
nondegenerate.

Proof. Firstly let us show that g'(w;; ® 4 Oia) = g'(w;; ® 4 Oxr)a. For this we com-
pute

g (05 ® 4 011a) = g'(anyr(u}, ag))r(ag), W)r(aa, SISO, as)wrs ® .4 0pn)
= aqyr(u, ap)r(a). w)r(agy. SCI(S@,). as)FisFal
= aqyr(Fa)uf, ap)r(a), S F)K(S(u)). ag)
= aqyr(F)uf, ag)r(a), SQ)FYS*(u)r(S(u), aw)
= Frlaqr(Faju;, ag)r(ag), S(Suy)u)r(S(u,). aw)
= Fiaqyr(Fau, ap)r(S(uy), ag)
= Frianr(S* @) P2} S(). a)
= FyFolagr(SQ,S@)), am)
= Fi}Fla = g'(wy ® 4 0)a.

Secondly we prove the covariance of g, that is
(d®g)d,=40g¢g and (¢ id)Ar=4d0g (14)

as a mapping from I'; ® 4 I'_ to A ® A. Similarly to the proof of Lemma 2.1 in [5]
one can show that the equations (14) are equivalent to g'(w; ® 4 0x) € G and
g (wij ®4 0k1)(uu°u°°u°)f{fffm = g (0 ®4 0,5). The first one is trivial. For the second
we compute
& (@ @4 O iu™u)N) = F) B, S S*(uf)S(u})
= R, SWFiES(u)) = Fy S*(ul)Fyl, S(u))
= Fi}Fy, S@;S() = Fi} Fy}, = & (0 @4 0ry).

Hence the assertion follows.

Thirdly we have to prove the nondegeneracy of g’. We shall carry out the proof
only for the second argument of g’. Let p be an arbitrary element of I'_. Then there
are elements a; € A such that p = 0;a;. Assume that g'(p’®4p) =0 for all
p' e 'y. Inserting p' = wyy, k,l=1,...,d and using that g’ is a right A-linear
mapping, we obtain Flszjl;ai]- =0 for all £, / and the invertibility of F| and F; gives
a; = 0. Hence p =0. ]

Assume for a moment that the corepresentations u and u€ are equivalent and let us
identify I'_ and I'; via the isomorphism (11).

LEMMA 3.2. Suppose that the corepresentations u and u® are equivalent. Then the
homomorphisms g andg” : Ty @ 4 I'y — Ain Lemma 3.1 coincide if and only if there
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is a nonzero complex number ¢ such that
Fii =T ),G3T, and Fj=c (T7)GT;. (15)

Proof. Since g’ and g” are homomorphisms of .A-bimodules it suffices to prove the
assertion on the vector space (I';); ® (I'});. Inserting (12) into the definition of g’ and
g", it follows that g'(w; ® 4 wk1) = g’ (wj; @4 wiz) if and only if

TXT Y ix(ul, S FLF! = r(u}, S@) T (TG, Gol
for any i,/, k, . For the right hand side we compute
(T2, S@(T™)))GL Gl = n(SW) T, S(T),S))Gr) Goly
= T/(T")x G\, S(Gohd)) = TH(T ™G, S(,Ga)))
and hence the lemma is valid if and only if
T (T, SW))FYFy] = TH(T™Y(Gyuy, SlGo))).
Multiplying this equation by r(u, u)(T~'); T we obtain the equivalent condition
Fip, B = (Y6 1) (T7,G1LTY)
for any i, j, m, n, from which the assertion follows. O

Now let u be an arbitrary corepresentation of A and let g be the homomorphism
fromI'; - +T'_®4I'; to A given by g’ and g”. To prove the third and fourth
conditions of Definition 2.1 for g let us recall the following explicit formulas for
the braiding o (see [7], Section 13.1):

(@i ® 4 1) = 1], SQI(uf, W I(S(u)), U (Wi ) Omn @ 4 Oy

a(wy @4 Oxr) = 17, SQ)r(uj, S WNE(S(y), (S (1), )0 @ 4 O,
(0 ® 4 rr) = ¥ (ud), e (udy, SN, w0 )F(SQL), 1) Opn @ 4 O,

o(0; ® 4 Okr) = x(e), u)r(SW), ubr(is, uﬁ,)r(ué, S(3))0n @4 Ors.

The inverses ¢~ of these braidings take the form

o (g ® 4 rr) = v (1], SRS, U s, w WU, ) 0yn @ 4 s,

o™ (i ®.4 Ok1) = 1(S*(w). upr(utl, S*WD)IN(S(L)). (L, SWE)) O @ 4 s,
o7 (0 ® 4 wi1) = ¥(S(up), wWr(uly, SW)IF(, X, ULy @ 4 O,

005 ® 4 Oxr) = v(ue), ) )r(uf, (S (), DIl SN Opn @ 4 Os.

PROPOSITION 3.3. Let F| € Mor(u®, u), F, € Mor(u, u*®) and G, G, € Mor(u) be
arbitrary invertible morphisms. Then the bilinear map g: T, 4T _4+T_®4 T
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— A given by g’ and g" in Lemma 3.1 satisfies the fourth condition
21205381 ®u & ®4 &) = g3 (& ®a & ®u ),

el &ely, &el_, 1,7 € {+, =}, of Definition 2.1.

Proof. Since g is a homomorphism of .A-bimodules (see Lemma 3.1) it suffices to
prove the assertion on the vector spaces (I';); ® (I'v), ® (I'—¢);, 7,7 € {+, —}. We
have to consider four cases which correspond to the possible values of T and 7'. Since
the proofs are very similar, we only show the assertion glzazgl = gr3012 fort = 4+ and
7 = —. We will only use the formula r(S(a), S(b)) = r(a, b) for any a, b € A and the
properties of F; and G;, i =1, 2.

g23(0(wyj @4 Okr) ®.4 Oup)
= r(u, S@)r(uf, S*WNR(S(L), u)(S* (1), )0y F1F)
= r(S7(u)), S@)r(uf, SISy, w)R(S* 1), ul) Oy Fr F
= r(S@)), wpr(usf, SIS @W), PS> (1), )0 F1 F
= r(S@)), Wr(S*(uy), S> (W )r (s, S@IN(S> (1), S*))0n FrL
=1}, u™r(ul, E(SL), W), S))0un Frl F>!
= g12(wy ®.4 067 (O ®.4 Oup)).-
O

Let us introduce the functional f/: A — C (see [7], Proposition 10.3) defined by
f(a) =r(aq), S(ap))) and let f denote the convolution inverse of f, i.e.

fla) =x(S*(aqw)), ap)).

PROPOSITION 3.4. Let g be as in Proposition 3.3. Then the bilinear map g is
o-symmetric if and only if there are complex numbers ¢ and z such that

f (S(u;)) =zf (u}) and
Fl; = CGZ;J(”.;() and FQ; = C*Ij(u;'()Gljlf

forij=1,...,d.
Proof. Firstly let us suppose that go = g. From the equation g(o(w; ® 4 Oxr)) =
g(wj; ® 4 0rs) we conclude that there is a nonzero complex number ¢’ such that

Fii = dGof(SG)) and Bl = ¢7'f(Sw)Gyh. (%)

Further, g(a(0; ®4 wx1)) = g(0 ®.4 wr1) gives Gi} = ¢f () F2f and Gy} = C‘_lFIZf(u;F)
for some nonzero complex number c¢. Inserting this into (%) we obtain
Fyl = ¢~ 1ef (S(u))f (uf)Fyl for any i, j. Multiplying by (F,~") f(u”) and summing
up over j we obtain f(ul) = ¢ ~'cf(S(u')). Inverting this equation we also get
f(uj) =cc! f'(S(u;)). Let us set z = ¢’c~!. Then (x) gives the assertion. The converse
direction is an easy computation. O
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4. Contractions

Let I'y and T'_ be two bicovariant A-bimodules over the Hopf algebra A. Let
I =@, T2, t € {+, —} denote the external algebra for T'; as constructed by
Woronowicz [11]. This means that there is an antisymmetrizer A4 : T®¢ — T®
for each k > 0 (49 = A; = id) which is a homomorphism of bicovariant bimodules
and l"fk = l"f’k /ker Ay. Let us recall some properties of A;. Because of the general
theory there are bimodule homomorphisms 4;;, B;;: T — I'®* i j >0 such
that

Airj = Aij(4i ®a A4)), Aiyj = (4 ® 4 4))Bi. (16)
In particular we have

i—1 i—1

Ai = [ [Aiso11 ®41d%) = [ (4™ @4 41 x1) (17)
k=0 k=0
i—1 ) i—1 )

Ai = [(Bea ®4id® 1) = [ [(d® " @4 B1). (18)
k=0 k=0

where A(),() = A]yo = A()A’] = ld, Bo.() = Bl,O = B()yl =1d and

Ay =1id — 012+ 023010 — ...+ (= 1) 01141 - 012, (19)
Aig =id — 6501+ 01,0501 — .+ (=1) G120+ Gi a1, (20)
Bii=id — o1+ 012003 — ...+ (=D'o12 - 0441, 21
By =id —6ii1 + 054101 — .+ (=1 0,41 012 (22)

It is easy to see that

A =1id — (id ®4 41,i-1)012, A1 =1id — (41,1 ®41d)0; 141, (23)

Bi=1id —012(d ®4 B1,i-1), Bii =1d —0;i41(Bi—1,1 ®41d) (24)

for i > 0. One could also take (19) and (17) for the definition of Ay.

The preceding properties hold for any .4-bimodule isomorphism ¢ which satisfies
the braid relation. Therefore, replacing everywhere ¢ by ¢~! the above works as
well. In what follows we will use both kinds of operators and write 4}, 4;; and
B;; whenever we are dealing with ¢ (tr € {+, —}).

Let us introduce some operators in End(®Q/, I';,), m > 1 and 1 <j, k < m (they
can be associated to the permutations (j,j+1,...,k), (k,k—1,...,)),
1, mQ2,m-1)3,m-=2)--- and (1,2,....7+D2,3,...,j+2)---(k,k+1,...
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j+ )
aﬁ_)k] = _?,Ej+1f7ji+1,j+2 e a,f_l’k forj <k, a[ﬁ;k] =id forj >k, (25)
a[ﬁ_k] = a,f_l,ka,f_zyk_l . -JEH for j < k, a[jf(_k] =id forj >k, (26)
o—?fn) = Uﬁq]“[jfez] x 'Oﬁem] form =1, cr(ﬁf)) =id, (27)
O’ék) = Giéﬂk](iiiléﬂkil] o -o[jltﬁjﬂ] form=j+k. (28)

The verification of the following equations needs only braid group techniques and is
left to the reader. We have

O'?,:() = O'[lﬁk](dz‘]:(_l) (S ld) = O'ﬁ:(_k](id (= GZ‘]:(_])), (29)

+ + + +
01—k Ol «k—1] = O[1<k]O2—k] (30)

for k > 2 and

71 ig(br1 ®.41d) = (id @ 4 br—1)0;_ - (31)
i sg(id ® 4 b1) = (b1 @4 id)aj (32)
Oi4) = Ot ki 10 ki2] " Ok (33)

for k > 1, where by is an arbitrary expression of the complex algebra generated by
012, - - ., 6%_1 x and their inverses. Observe that A,fafk) = a(Ik)A,f = (—l)k(k_l)/zA,f (see
[11], p. 157). Hence, in particular we have ker 4;" = ker 4; .

Now let g be a g-metric of the pair (I'y, I'_). The next formulas follow from the
fourth condition on the o-metric by induction over k:

€120p 0T k1) = &k—1k»  Ck—1AO 11012ty = &1z fOr k =>2. (34)

Next we define contractions (-, )y : T® @, T® — o 1 e {4+, -}, ¢ = for
k =1, otherwise " = —1, by

(&, &) = g(BE, 6 AFE) fork =1,

35
(€. &)y = B(AEE BE, &) fork <. (33)

This maps are homomorphisms of .4-bimodules and inherit all covariance properties
of g. If both k and / are less than two, then the contraction doesn’t depend on the sign
+ and we sometimes omit it: (¢, &), = (&, &)= =: (£, ).

Next we prove a generalisation of Lemma 2.1.
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LEMMA 4.1. Let g be a a-metric of the pair (', T'_) and let g be the map defined by
(6). Then we have for all nonnegative integers i,j,k, 1,1 <i+j<k,l,

g0 ((d® 7 @4 4F ®41d¥),id®) = g o (id®*, (i[d¥ ®4 4F ®41d® 7)),
Proof. Using Lemma 2.1 one checks that
80 (0fis1_pop1 14%) = g0 (™ af: ) (36)
for 1 <1<t <k,I. From this and Equations (22) and (19) we obtain

Zo ((d® ™ @4 Af,_; ®41d®"),id®)

=go (id®’f” Qu (Z(—l)’“a[ﬂo Q4 1d®", id®’)

t=1

= g © ((Z(_l)t-H O-a:c-ﬁ-l—)‘—‘w—k—r—s-i-t]) ’ id®[)
=1

s

e ( d®k’ (Z(_l)tﬂg[iszH“’”))

=1

1
s
— g ° id®k, id®r ®A <Z(_1)[+laf‘;—t+l<—s]) ®A id®lrs>
=1
=%o (id®k, (id®r Q4 B;t—l,l Q4 id®l—r—5))

forallr,swithO <r, 1 <s,r+s5 <k, r+s </ Using this result together with (17)
and (18) similar computations give the assertion of the lemma. N

LEMMA 4.2. Let § be as in Lemma 4.1 and & e T®*, &, e T® 1 € (+, -}, k, [ = 0.

Then a1 (0,(&), 03(E)) is an element of I'® @4 T% and the equation
g(o(ji,z)(a(ik)(fk), U?[E)(f;))) = Jatkfn)(g(fk, f;)) (37)

holds.

Proof. We prove the case k > [ by induction on /. Then the assertion follows also
for k <1 because of the formulas of;0() = id, of; (47, id¥) = (id¥, 4F)of; ) (see
also (28) and (29)) and J(J—;J)a(f’i) =1id for all i,j > 0.

If /=0 then ojj =0y, =id, hence the left-hand side of (37) is equal to
2005 (&), &) = a3 (&)E). For the right hand side we obtain o ,2(&. &) =
1 (&&))- Since &) € Aand o) is a homomorphism of .A-bimodules, the assertion
of the lemma is valid.

Suppose that (37) holds for an / € Ny, / < k. Consider the map

o + £\ @kt ®I+1 @k—
8051 140 Ty Oy s To @A T2 — T
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We compute

~ & + +
801141 O g1y OA T 41)
=g o (o Q4 id)(oF (6%, @4id) ®4 65, )
88+ 1,1+20 1115 ke 142\ T (et 1,1) DA [—k+1]\% () YA A O(1+1)
p + + + 1t . +
= 881411420 2 ket 14210k + 1 ki1 (T 1,1y @4 1d)(0() ® 4 1d ® 4 07 y))
= g'gk+l+1,k+l+2(0'(i+1,1) ®A id)((f?/i) ®.41d ®4 031:“))
~ . 1R2 . 1R2
= ggk+l+1,k+l+2(0'(ik7[) A id® )O-i+1(—k+/+l]o-[jl:{+2<7k+l+2](o-?/é) (2 id® XA O'?;))
5 + + + + - 1®2 +
= 8Ok &K1 kH+20 | e 11O s 2k 142 (T oy @4 1% ® 4 077)
~ - 1R2
= gai,z)gkﬂ,kﬂ(a(j/i) ®41d% @4 O'(jzt))
= 20310 ®ag12 @A 0p) = Zhi1h42 =&
where we used the following formulas: (28) and (29) in the first equation, the
g-symmetry of the o-metric, (28) and (31) in the second, (34) in the third, (33)

and (29) in the fourth, (34) in the sixth, the induction assumption in the eighth
and the recursive definition of g in the last equation. O

An important consequence of Lemma 4.1 is the possibility to extend the definition
of our contractions (-, -), to amap (-, -)4 : ka Q4 Fflf — Fﬁ'k_”, te{+,-}L7=1
for k > 1, otherwise v = —t. To see this, we treat the case k > /. Let & e I'®f
and & € T® 1 € {+, —}. Firstly, let & be a symmetric /-form, i.e. 47°(¢;) = 0. Then,

—1

by definition,

On the other hand, if & is a symmetric k-form, i.e. A,f(é;) = 0, then we conclude
A G & = A 8B Es AT ED)-

Applying Lemma 4.1 this is equal to
A 8™ @ ADBE 16k €) = (AL ®a ADBE 164 E)-

Now formula (16) insures that the latter expression is zero. Hence (&), &)y is
symmetric. In the case k < / similar reasoning gives the desired result.

Remark. In view of Lemma 4.5 and Proposition 4.6 we should also consider the
contractions for k =/ (composed with the Haar functional, see in Section 6) as
a kind of higher rank o-metric. O

LEMMA 4.3. For &, € Fﬁik’, i=0,1,2, 11 =1 = —710, k1 + ka < ko the contractions
satisfy the following relations:

D) (&1, (&, Co)a)e = (G A& Go) e and (o, 1) as E)a = (G0 &1 A &) o
(i) (&1, (o, &) )a = (&1, Lo Eo)
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Proof. From Lemma 4.1 and formula (16) we conclude that Aif (), {)s =
2, AEG) for k=1, € Fﬁk, (€ eI, 1 € {+, —}. Then for the ﬁrst equatlon of

—7

(i) and representants {; € I“fk" of &, i=0,1,2 we compute

A (GG Codada) = 86 A, (G Lo)a))
= 2(81, 8, A Lo)) = 8 @4 G 45 Ko)
= A,jfo_kl_kz( (1 ®a 82, o))

The second equation can be proved similarly.
To prove (ii) we use the same arguments. For the left hand side we obtain

A (G (Con B e = 80 Aj g (Cob G2) 1)
= &((1. 84 Lo, )

and for the right-hand side

Ajp oo (81 GoYas 0)E = 8(Aje . (Cr Go)ss §)
= 2(28(81. A5 Lo). &)

But both last expressions are equal because of the definition of g and since
ki + ks < ko. O

The following lemma contains some recursion formulas which are useful in order
to compute contractions.

LEMMA 4.4. For any &, e T2, & eT™, pi e, pyel_, k=1, te{+, )} the

equations

A p1p2)e = Elprs p2) e — (& Py = A PG (38)
and

(p1s P2 A& = (P12 18 — Py A PGy Ci)+ (39)

hold, where 6¥(p; ®.4p;) = pjy ®apl €T ®aT:.
Proof. For k =1 the left hand side of the first equation reads as

(CLAPL Py = ((51 ®4p — 0 (& ®ap))), Pz)
= 223(¢) @ P ®a p2) — £12053(E1 ®a P O 4 P2)

because of the fourth condition of Definition 2.1 on the g-metric g. Further, if & > 1
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we then use (24) to conclude in a similar manner that

(Ck A p1s p2) s = 8(Br1(Ek ®a p1)s p2)
= e 142(Ek ®APL ®a Py — i1 (Bre1.1 ®.41d%2)(E ® 4 p1 R4 )
= & @4 8(P) ®AP2) — Ghk+107 1 ia(Bio11 ®4 1% (E @ p) @4 p3)
=&, 48P ®aP2) — Ghi1(Bro1.1 ®4 07 )&k ®a py ®a p2)
= &klpr p2)+ — (ks Pﬁ))i A P(:Fz)-

The proof of the second equation of the lemma is analogous. [

LEMMA 4.5. For fixed te{+,-},k=1 let p, € FTA]‘, P € Ff’;’ and
J(’,E(,k)(pk ®u4pp) = pé’f) R4 pi‘z). Then the contractions (-, -)y satisfy the equations

(0" PO = = (p1 (5 (D) £ = (03 (1) PR - (40)

Proof. The definition (35) of (-,-). gives (pf§), py)s = &(p(}), AF (). Since
(d® @4 AF)ok | = ok | (Af ®41d®)  (see  (33) and (32)) and 4f =
(—) D2 4F 67, we conclude

0y Py, = 8GA® ® 4 AF)a 4 (01 ® 4 P
= éff(ﬁzi,k)(l‘iljct ®41d%)(p; ®.4 9))
_ (—l)k(IP1)/2§0'?/:(qk)(AITU?;:()pk ®_A p;()
= (=)0 (0% ®a Ayl

by Lemma 4.1. Inserting (—1)®~D24F = a(ik)A,f(ozli))z and applying Lemma 4.2 we
obtain

k k ~ + + + =+ 2
(0'(yPe)+ = &0t (TP T AR (0307 PL)
= 2pp AL (00’ 1) = (P> () Pl

The second equation follows similarly. O
Finally, we should say something about the nondegeneracy of (-, -), as a g-metric.

PROPOSITION 4.6. The maps {-, -}, : FTN‘ A Fﬁlg — A, t e {+, -}, k= 1andtheir
restrictions to (I'"*), @ (T"X), are nondegenerate.

Proof. Firstly we show that g: F?k A F?’T‘ — A and its restriction to
(I®F), ® (I'®F), are nondegenerate.

For k =1 this assertion is true, since g is nondegenerate by Definition 2.1 and
g = g. Suppose that it is valid for some k£ > 1 and let & € 1"?"“. Then there
are finitely many k-forms & € F?k and linearly independent 1-forms p; € (I';); such
that &y = Y, 0, ®4 & Suppose that g, (&, ®40) = 0 for any & € (I%),
and p' € (T_;). Hence by definition of g 8((p;®4¢&), (& ®ap)) =
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g(plg(éi, &), p) =0 for any p’ € (I'_;),. Since g is a homomorphism of right
A-modules, the latter is also true for any p’ € I'_;. Applying the nondegeneracy
of g we conclude that pig(éi, &) =0 and since the 1-forms p; € (T;), are linearly
independent we obtain g(&, &) =0 for any &, € (FQE’]T‘)I. Now we use that g is a
homomorphism of right A-modules and get g(¢', &) =0 for any & € IT'®~. Then
the induction assumption gives ¢ = 0 and hence Eri1 =P ®a & =0.

Now we prove the assertion of the proposition. Let & € l"fk, &y € Ff’k be a
representant of &, and let us assume that (¢, &), = 0 forany &, € (Fﬁ’;)l. This means
F(AFE), &) = 0 for any & € (T¥),. Since g is a homomorphism of right .A-modules,
the latter is true for any &, € I'"*. In the first part of the proof we have shown that
A,ffo = 0. Hence & is a symmetric k-form, so that ¢ = 0.

Nondegeneracy in the second component of (-, -), can be proved similarly. [

COROLLARY 4.7. Let g be a left-covariant a-metric of the pair (I'y,T'_). Then for
any k = 0 we have dim(l"ik)1 = dim(T%),.

5. Hodge Operators
In this section we assume that

(I) the only one-dimensional corepresentation of the Hopf algebra A is 1 and
(IT) there exists a nonzero differential form w{ € (I'"), forsomen € Z and 7 € {+, —}
such that wj A p =0 for all p e I',.

The latter is in particular fulfilled if one of the vector spaces (I'}),, (I'"), is finite
dimensional. Let us fix a triple (n9, 7o, w;’) as in (II) such that for any other triple
(n1, 71, o}') having the same property we have n; > no.

After proving some statements we will show that both + and — can occur as the
value of 7o and for a given left-covariant g-metric g of the pair (I'y,T'_), oF
can be taken biinvariant and in such a manner that

(of, 0y)e = (w5, of )y = 1. 41)

Then we also will assume this on w{ and wy .
Let g be a (not necessarily left-covariant) o-metric of the pair (I'y, ).

PROPOSITION 5.1. For any & e ™% & e TN, 0 <1<k <no, we have

<w6()1 £k>i A é; = (wg)[)’ (ékv é”:F)i (42)

Proof. For [ = 0 the assertion follows from the right .A-linearity of g. Let us exam-
ine first the case k =/ = 1. Inserting 1 = —7¢ and & = w’ into (38) and using the
condition on wy we obtain 0 = wy'(py, po)s — (@, piy)x A pg, for any p; € Ty,
and p, € I'_;,, where pﬁ) ®A pé) =0T (p; ®4 p,). Now we insert 6(¢; ® 4 &) for
p1 ®4 p, and obtain the desired result by the g-symmetry of the o-metric g.
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Secondly we prove the proposition for 1 =/ < k < ny by induction on k. The first
step for this is already done. Suppose now that the assertion is true for a k < ny
and let & € Ff’;o, p, €I, and p, e T'_;,. By (38) we obtain

(o, E0s A 1 p2E = (0F, &) 2 (prs o) — (O E s P)x A PGy ()

where p(f) R4 pzz) =0%(p; ®4 p,). The induction assumption and the second
equation of Lemma 4.3(i) assure that the left-hand side of the latter equation is equal
to

((w(r)oﬁ (ks Pi)x)es P2l = (60(7)07 (ko P1)x A P2)+-

Moving this to the right hand side and the second term of the right-hand side of (%) to
the left we get

(o, &)t PE))i A Pé) = (g, &p1, P2))x — (@0, (Cks P1) 5 A P2) s

where we used the right A-linearity of the contraction and the relation
(P1. P2)4 = (p1, p2)_. Now we take arbitrary elements &} € I'y, & € I'_;. We insert
c:(&] ®4 &) for p; ® 4 p, in the above formula and use Lemma 4.3(i) (on the left
hand side), the g-symmetry of g (in the first term of the right-hand side) and (38)
(on the right hand side of the latter equation). In this manner we obtain

(g, Ex AN+ A& = (g, (& ALY ED )

Hence the assertion of the proposition is true for k + 1.
Suppose now that the assertion of the proposition is valid for a fixed / < ny and for
all k > [. For [ = 1 this is true. Then for arbitrary £ € I';, we apply (42) twice and

conclude
<(D60, ék):t A é; A é;/ = (wf)o’ <§k’ é;)rp)i A é}/ = (wf)oa ((f/c’ 5})15 ;/>q:>:|:‘
Applying now Lemma 4.3(i), we get (42) for [+ 1. O

From now on let g be a left-covariant g-metric of the pair (I';, I'_). A very import-
ant consequence of Proposition 5.1 is the following.

THEOREM 5.2. If there is a left-covariant a-metric g of the pair (T, T'_) then there
exists a natural number ny such that dim(IT'2™), =1 for © € {+, =} and all k-forms
& € ka, k > ng vanish.

Proof. Since the o-metric (-, -), is nondegenerate by Proposition 4.6 and
left-covariant there is a left-invariant no-form ¢, € Fﬁﬁg such that
(0f, &p)y = 1. Inserting an arbitrary &), /=ny into (42) we obtain &, =

(g Eng) 48y = 0 (Enyr € )—. Hence we get I =af - A Since I} =
A Fﬁok_”" =wy A Ffok_”" for any k > ng, we obtain l"ﬁok = 0. The same assertion
for —z( follows from Corollary 4.7. O
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Remark. In the proofs of Proposition 5.1 and Theorem 5.2 the assumption that
there is only one one-dimensional corepresentation of A4 was not used. O

COROLLARY 5.3. Let A be an arbitrary Hopf algebra over the complex field with
invertible antipode. Let I and T _ be bicovariant A-bimodules and g a left-covariant
a-metric of the pair (I'y,T'_). Then there are precisely two possibilities:

(1) BothT'y and T _ contain a unique (up to a constant factor) nonzero left-invariant
form of (the same) maximal degree.

(i1) Both I'y and T'_ are infinite dimensional and for any form w € (l"fk)l there is a
one-form p € I'; such that w A p # 0.

Let us fix &, = g’ and &,, € I'™? such that (wg’, &, ) = 1. From Proposition 5.1
we obtain (g, &) L0 = of (&, oy )z Hence the numbers (g, &, ). and
(Eny» ¢ )5 coincide. Since dim(I'?); =1 by Theorem 5.2, &, is an eigenvector
of 6(,,). Let a(,)E,y, = ALy, Then we conclude from the definition of the contractions

and the considerations above that

L= (o, &)y = (@F, (=1 200,8,,)
= (=120, &) = (=1 TDRE,, o),

_ (_l)no(n()*l)/Zi((_1)17(1()10*1)/20_("0)5"0’ (H(T)U), — /12(5"0’ 6080),
= j'2(602:)09 én0>+ = /’Lz‘
Therefore, a7, (¢,) = &py-

A consequence of Theorem 5.2 is that Ar(wy’) = w; ® v, where vy is a
one-dimensional corepresentation of A. By assumption (I) stated at the beginning
of this section, it follows that vy = 1. Hence w’ is biinvariant. Similarly, &, is
biinvariant. This implies that o, , (¢ ®4&,,) = &y ®4 @y’ . Applying Lemma
4.5 we get

<énov 0)60>+ = (" '>+(O'(_no,n0)(6060, 6no))

= ((’USO’ 0'(2”0)(5"0))+ = <w(r)0a £n0>+ =1.

This means that (&,,wy’), =1 and hence (wg,&,)_ = (&, wf)y =1 and
(él’lo’ wgo)— = <w607 6}10)-‘1- = 1'

Further, we have &, A p =0 for all p € I'_;. Therefore, the triple (no, —7o, &,,)
satisfies assumption (II) at the beginning of the section as well. Now we can set

w, " :=¢&,, and so (41) is valid. In particular, we have obtained that
Ty 0t = (—1)"°0=D2gE, (43)

Since the triple (n9, —79, w, ™) satisfies assumption (II), we can replace 7o by —7¢ and
Proposition 5.1 remains true. Moreover, it follows from Theorem 5.2 that
p A wF =0forall p e '}, Using this ansatz a similar reasoning as used in the proof
of Proposition 5.1 shows the following.
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PROPOSITION 5.4. For any & e T and & e TN, 0 <1<k <no, 1€ {+, -} the
equations

& A (G op)x = (&) i 05) (44)

hold.

Let %, #% : [ — T~ denote the maps given by

K(E) = (& 0 )e,  *r(E) = (0", O (45)

for any ¢ e 2%, 0 <k <n, v € {+, —}.

LEMMA 5.5. (i) Foranya € Aand ¢ € T, 1 € {+, —} we have x{(a&) = a *i (&) and
#5(¢a) = ¥

(i) *{*p = x[*f = id and xfkxg = *g*x = id. In particular, the mappings i and
*% are isomorphisms of T2 and T _ as left and right A-modules, respectively.

(iil) For any p; € i i=1,2, ki +ky <ng, te{+,—}, we have

T

*f(ﬁl A py) = (py, *f(ﬂz))iv *ﬁ(l)l Apy) = <*§(P1)v P2) s (46)

(P15 *ﬁ(ﬂz)& = (*f(ﬂl% P2) 4 47)

Proof. Since (-, -}, is a homomorphism of .4-bimodules, (i) follows from (45). (ii) is
obtained from Proposition 5.1 by inserting ¢, = wy*® and applying (41). Setting
& = ;" in Lemma 4.3, (46) and (47) are equivalent to the equations of Lemma
4.3(1) and 4.3(ii1), respectively. O

DEFINITION 5.1. We call the mapping # : I’ — I'"_ left Hodge operator and
x% 2 — I’ right Hodge operator on '), 1 € {+, —}.

Remark. The equations in Proposition 5.1 and 5.4 with k = / can also be written in
the familiar form

(&) A & = 0 (& G+ 48)
e ARE(ED) = (& Ei) 505 (49)
O

Up to now I'} and I'" have been only the exterior algebras over bicovariant

A-bimodules I'; and I'_, respectively. In the remainder of this paper we assume
in addition that I'." is an inner bicovariant differential calculus with differentiation
d;, T € {+, —}. That the differential calculus I'/" is inner means that there exists a
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biinvariant 1-form #* € I'; such that
dp=n"Ap—(=Dpan pelf e+ -} (50)

Further, we assume that the corresponding g-metrics (and hence contractions) are
left-covariant.

DEFINITION 5.2. The mappings 3 : " — T'**~! defined by

p =1 sEd o *7 (0), pel0<k<ny,te{+ )

are called (positive and negative) left codifferential operators onI'?. Analogously we
define the right codifferential operators F T S T 0 <k <ng,te{+, —)on
T2 by dfp = (1)~ ad (d_o #F (p)).

LEMMA 5.6. x{(p) =% (p) and ={(p) = xx(p) for any p € l"r , T€{+, -},
k e {O, l,no — l,no}.

Proof. For k=0 we have x{ (p) = * (p) = pw;® and *}(p) = *z(p) = w;'p by
definition. For k = ny we obtain from Theorem 5.2 that there are a, b € A such that
p = awj = coob Then Lemma 5.5(1) and Equation (41) imply that

*(am)) = a xi (0™) = a(w], wy") s = a and xx5(0Fh) = xE(wH)b = (wy", wF)Lb = b.

Let now k = ny — 1. We compute

*f(ﬂ)z p’(’u() :l: g(AnO lp’Bno llw() )
( (A}’jlf) 1 ®-A ld)Bmp 11600 ) g(p’ ﬂ() )

by using Lemma 4.1 and the second equation of (16). We also have
= (—1)"("_1)/2A;0J§C for any k > 1. Hence (43) gives

()

A;:) = (— l)no(no 1)/2A O'no)wo
— (_l)no(no 1)/2An0(_1)no(no 1)/26061 — A;Uwaf_

From this and equation () we conclude that x; (p) = * (p).

In the case k = 1 we use that the mappings *{ are isomorphisms of left .A-modules.
Therefore there is a p’ € Ff"“‘l such that p = #{ (p’). By the preceding we also have
p = *L(p'). Hence, * (p) = x{ * (p') = p’ and * (p) = * *| (p') = p’. Similarly,
#£(p) = *x(p) for any p € T2*, k=1,n — 1. ]

LEMMA 5.7. For any p € (I'y),, T € {+, —} we have *{(p) = (=1yr-! *% (p).
Proof. The np-form w;”® is left-invariant. Hence there are left-invariant 1-forms

P1s -+ Ppy € (C0); such that og® = py A... A p,. Then (39) and the o-symmetry
of the o-metric yield

o
5 (0) =) (=D o1 A A PP ) APt A A Py (51)
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The o-symmetry of the g-metric implies that (p;, p) = (p, p;)for any i =1, ..., no.
Using this fact and Equation (38) we obtain the same formula for
(—=1)ym~! *g (p). Applying Lemma 5.6 the assertion follows. O

PROPOSITION 5.8. The codifferentials 3} and 3%, v’ € {+, —}, coincide. On a € A
they act trivially: dfa = d5a = 0. For any p € l"fk, k>0, te{+,—} we have

dEp = (o e + (=D (17 ) (52)
Proof. Let k >0 and p € FTAk . The definition of df and (50) give

p = (=D oo (0) = (=D 55 7 A (p) = (1" 5] (0) A7),
From the first equation of (46) and Lemma 5.5(ii) we obtain that the first summand is
equal to (—l)k(n‘f, (e (0)) s = (—l)k(n‘f, p)y. For the second summand we use
(46) and Lemma 5.7 and obtain (—1)"*'(x7(p), % (n~"))x = (¥ (p), x5 (7)) 1.
We apply now (47) and Lemma 5.5(ii) to the latter and get (xi(x{(p)),n ")+t =
{p,n~")4. This proves (52) for the left codifferentials. Similar computations lead
to the same expression for d5p. O

PROPOSITION 5.9. For any p € (Ff”"_l)l, 7 € {+, —} we have d.p = 0.
Proof. Let p € (T?™1),. Because of Lemma 5.5(ii) and the left-covariance of j
there are pi € (I_;), such that p = *{(p}). Then d.p = 0 is equivalent to

0 = (dep) = ¥ (de %7 (p)) = =07 T

Since 7 is biinvariant, p; is left-invariant and the ¢-metric is g-symmetric, we con-
clude from Proposition 5.8 that

ol =7 e — W pD)e = (7. 0" — (o], ") = 0.

6. Laplace—Beltrami Operators

Let A be again an arbitrary Hopf algebra and let I'y,I'_ be two bicovariant
A-bimodules which admit a left-covariant g-metric in the sense of Definition 2.1.
Moreover, (as in the last part of Section 5,) we assume that the bicovariant
A-bimodules I'?, t € {+, —} admit a differential operator d, such that they become
inner bicovariant differential calculi on A. Further we suppose that the o-metrics
(and hence contractions) are left-covariant.

In addition we now assume that the Hopf algebra A is cosemisimple ([7], Sect.
11.2), that is, there exists a linear functional % on A, called the Haar functional,
such that 4(1) =1 and

(h ® id)4(a) = (id ® h)A(a) = h(a)l (53)
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for all a € A. Further, we suppose that the Haar functional is regular, that is, both
h(ab) = 0 for all b € A and h(ba) =0 for all b € A imply that a = 0. Recall that
any CQG-algebra is cosemisimple and its Haar functional is regular ([7], Proposition
11.29). By Proposition 4.6 the restriction of (-, -}, to ka A Fﬁf is nondegenerate.
Hence for each p € T?* there is a p’ € I such that A3 a:= (p,p’), #0. By
the regularity of the Haar functional there is a b € A such that i(ab) # 0. Then
we have h{p, p'b)y = h({p, p’).b) = h(ab) # 0. Therefore, the mapping Ao (-, ), :
l"fk 4 Fﬁ’; — (C is nondegenerate for all £ > 0 and 7 € {4+, —}. We shall consider
it as a generalisation of the classical notion of the metric on k-forms.

Motivated by Definition 5.2 and Proposition 5.8, we introduce the following
notion.

DEFINITION 6.1. The mappings 8* : T — T'"*"1 k>0, t € {+, —}, defined by
d*(a) =0 for a € A and

Fp=(p,n e+ (=D p) (54)

forp e FTA/‘, k > 0, are called (positive and negative ) codifferential operators on FTM‘.

LEMMA 6.1. (i) (85)* = 0.

(ii) 5(ap) = adp + (=D¥(d_ca, p)y for any a€ A, p € % te{+, k=1

Proof. (i) Since (8%)%(p) € T2 for any p € I'’%, k >0, = € {+, —}, we obtain
(05)*(p) = 0 for p e T, k < 1. For k > 2 we get

@ (p) = ((p, n ") + (=D, p)2)
=(((p,n e+ (=DF 0, p)s) o) s
+ D (o e+ (D T p)e)) s

Applying Lemma 4.3(i) on the first and fourth summand we obtain

=, AN L+ (DT p) e ) s
+ D T e D — T AT
Since n~" is biinvariant, n7° A n~" = 0. Using Lemma 4.3(ii) the second and third

summand in the last expression also vanish.
(i1)) From (50) it follows that

-7 T

(d,ra, p)i = (W_Tas p>i - (a'l_r7 p)i = <’1 s ap)i - a(”]— s p)i

Then (54) gives the assertion. O

LEMMA 6.2. For any ae Aand p € (I';);, p' € (I'_;);, T € {+, —} we have

) h(ap, p') L) = h({pa, p') £) = h(a){p, p') +,
(i) h(d% (ap’)) =0.
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Proof. (1) Let {0;]i =1, ..., m} be a basis of the vector space (I';);. It suffices to
prove the assertion for p = ;. The left-invariance of the o-metric ensures that
(p, p')yx € C and we conclude that h({ap, p').) = h(alp, p'Y1) = h(a){p, p) ..

By the general theory [11] there are functionals f; i i,j=1,...,m, such that
Oia = anyf} '(a@))0; and f’(l) = 5' We have again (0;,p"). € C and therefore

h((0ia, p) 1) = h(a@)f{ (a@)(0;, p")+ = 1} (haq))a@)(0;, p')+
= f(h(a) - 1)(0, p) + = h(@)(0;, p') +
by (53). Hence we get (i).
(i) Firstly we see from (54) that 9% (p') = (0', %)y — (1%, p')x = 0 since the
g-metric is o-symmetric, #* is bi-invariant and p’ is left-invariant. Secondly, Lemma

6.1(ii) gives (8% (ap') = h(ad* p' — (dwa, p') 1) = h({an®, p')x — (n%a, p)). Then
the assertion follows from (i). O

THEOREM 6.3. Suppose that g is a left-invariant a-metric of the pair (', T'_). Let
(,-)x be the corresponding contractions. Then for any p € l"fk, o€ l"ﬁ/;“,
T € {4+, —} the equations

h({p, 9Z.p) 1) = h({dep, p')) and (55)

h((0%.p', p)s) = h({p', dep) ) (56)

hold.
Proof. Inserting the definitions (54) and (50) we obtain
h((p, 3" — (dep. pi) = h((p, (0. )+ + (=D %, 02
— (" Ap+ (=D p A, p)y).

Applying Lemma 4.3 we now substitute (p,(p’,n%)+)x by ((p,p)s, 1%,
(0, (1%, p"Y)e Y (p AN, p)x and (0" A p, ') by (", (p, p')+)+. Then we have

h({p, .p")+) — h({dep, p))2) = h({p. p")es 1) — (17, (0, P)i)x)
= h(0=,(p. p) ).
Since (p, p’) is an element of I'_; = A(I'_;);, we obtain (55) by Lemma 6.2(ii). The
proof of (56) is similar. O

DEFINITION 6.2. We call the operators AT : T — T A := d.&F + 9%d, Lap-
lace—Beltrami operators.

The following properties of Af are simple consequences of the facts that d> = 0,
(85)* = 0 and (54).
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LEMMA 6.4. The Laplace—Beltrami operators satisfy the equations

AF = (d, + 85, (57)
AFd, = d.AF = d.55d,, (58)
ATFE = AT = 95d,oF, (59)
Ala=A a=(na,n") + "a,n™) = 2at* n7) (60)

for any a e A and ©,7 € {+, —}.

Remark. By (60) the Laplace—Beltrami operator on .4 C I'} neither depends on the
sign 7’ of the antisymmetrizer nor on the A-bimodule I'} containing A. I

PROPOSITION 6.5. For any p e T2*, p' e T8 1 € {+, =}, k = 0 we have

h(Ap, p')s) = h((p, A p') 1), (61)
Proof. Using Theorem 6.3 we compute

h(Ap, p')e) = h((d:35p, p) s + (87 dep. p')2)
= h({07p, 02,04 + (dep. d_cp') )
= h((p, d—0%p")x + (p, 95, dep') 1) = h((p, A p')2).

7. Eigenvalues of the Laplace—Beltrami operator for SL,(/V)

Throughout this section we assume that ¢ is a transcendental complex number and .4
is the Hopf algebra O(SL,(N)), N > 2. Then A is cosemisimple, i. e. any element of A
is a finite linear combination of matrix elements of irreducible matrix cor-
epresentations of A ([7], Theorem 11.22). Further, A is coquasitriangular and admits
a universal r-formr: A® A — C defined by r(u} ® uf) = zfli(j?f, where z is a fixed
complex number with zV¥ = ¢, and

Ry, = ¢"810, + (i < g — q~")3L3). (62)

Here the number (i <) is 1 if i < j and zero otherwise. We shall write R* for R*!,

Let 'y and I'_ be the N?-dimensional bicovariant differential calculi on A deter-
mined by the fundamental corepresentation u and the contragredient
corepresentation u® (see Section 3). Further, let denote Fi, F>, Gy, G, the
N x N-matrices with entries Fi} = z‘qu_2i5;, Pl = q2i5]’:, G} = z‘quéj, Gyl = 5;
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Then F) € Mor(u°, u), F, € Mor(u, u*) and Gy, G, € Mor(u) and they determine a
bicovariant g-metric of the pair (I'y, I'_) (see Section 3).

The Laplace—Beltrami operator A on A is given by (60). For n € 7Z and a complex
number p # 0, 1 let [n], denote the number (p" —p™)/(p —p7h.

PROPOSITION 7.1. The Laplace—Beltrami operator A on A is diagonalizable. Let v*
be afixedirreducible corepresentation of A corresponding to a Young diagram J.. Then
the matrix elements of v* are eigenvectors of A to the eigenvalue

=(@—z" ([m]?[N]q +INL D IN? = 2m+2NG ~ z')]z), (63)

(i,j)er

where (i, j) € Ameans that there is a box in the ith row and jth column of J. and m is the
number of boxes in .

Proof. Using the relations r(u}, S(u})) —quk AR~ br and r(S(), uf) = zR-k ,],
some properties of the r-form r and the R-matrix, Equation (60), for any m >0
we get

i zz i —N—1_ i, i im (o—2m 1+ 2m y— hedwk 2k on
A( . um) — q u[l ulz u]::( D”1+1 + V4 Dl‘l1+1 Zld) j,l’lq 5 s

where

R:t

m—1,m *

R:t

m,m+1

Dy = RS R Ry R, m>2 (64)
are the so-called Jucys—Murphy operators of the Hecke algebra, DT =id. Since
2d ZaRbdRLr — 5e5b + q2N+1(q q—l)q—2a5b5e and q2d Zak—lggk—lﬁ — 525}7 —q(g—

_1 )q_z"éhée we obtam

m

. _ Iy

ZqZk(D s = (@ INLid £ 6" N g =g H Y D)
n=1

and hence
A -y =) -l (27— 27 [N]id +

o

+ (q . q—l) Z(qu_sz,T q—N 2mD )) o

n=1

Since ¢ is transcendental, A is cosemisimple. Moreover, A is generated by the matrix
elements of the fundamental corepresentation u of A. Let P; be a projection of u®™"
onto the irreducible corepresentation of A corresponding to the Young diagram
A. Then Proposition 4.7 and the preceding considerations in [§] 1mp1y that

S DEP =Y e %P, and therefore A(uj - up Pty = Eqdl ol
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ki kom
Pl where

E/l _ (Zm _ me)Z[N]q + (q _ qfl) Z (Zfzqu+2j72i _ Zqu_N72j+2i).
(ij)er

Since g = zV, (63) follows. O

Remarks. 1. The corepresentation v* of A with Young diagram / corresponds to
the representation of U,(g) with highest weight 1 = Zf\; ]1 m;w; where w; are the
fundamental weights and m; the number of columns in A of length i. Let B(-, -) denote
the Killing metric on the Lie algebra s/y_; and let p,, be the half sum of positive roots.
Then the eigenvalue of the classical Laplace—Beltrami operator (with respect to the
biinvariant metric) corresponding to the highest weight A is given by the formula

E; = B(Z+ po. .+ po) — B(po. po)
N-1 - il
(N —=Dm; | . E : ;
:izng l(ml+N)+2j:1]m]

(see [10]). For the quantum case one can check that lim,_.1(g — 1 /q)’zE;, —E,.
2. For N =2 we have g = z> and Equation (63) reduces to the formula

(65)

Eppy = 2(z — 2~ [m].[m + 2].. (66)
O

PROPOSITION 7.2. Let z be a transcendental real number and q = z.

(1) AIll the eigenvalues of the Laplace—Beltrami operator A: A — A are
nonnegative.

(i) For any a € A we have A(a) = 0 if and only if a € C1.

(iii) The smallest positive eigenvalue of A : A — A is

min{E; |1 =15, 0N ¥, k=1,...,N—1}. (67)

Proof. We prove the assertions of the Proposition in the case z > 0. The other cases
are an easy consequence of this one.

Firstly one shows that if A =[/1, b, ..., In, i =L > ... 2y > 1,then E;, = E;,
where /' =[ly =1, —1,...,Iy —1]. Secondly, if A=[l,b,..., L O], I >0,
l<k<N,and [; > l;;1, l; > 2 for some i =1,2,...,k, then let A’ be the diagram
by lio, =1, iy, .. Ik, 1,0N%1]. One can prove that E; > E; since
[n], > [n—2#]. for all ” € N, n € Z. Therefore, for any 4 # [0V] there exists a
2 =[1%,0Y7*] such that E; > Ej. Obviously, Egv; =0 and because of [m], > 0
for any m € N, p > 0, we also have

Ey = (z = 27 (KEINT, + INLIKLIN +2)(N —k = 1) +2].) > 0

for any 2 = [1¥,0Y*], 1 < k < N. Hence the assertions follow. O
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Remark. Let g be a transcendental complex number. Let .4 be one of the quantum
groups O(Sp,(N)) or O(O4(N)), N =3, and I'y, I'_ as in Section 3, where u is the
fundamental qorepresentation of A. Then the settings Glj’: = sr/25]’-, sz’: = 5;,
Fili=rq*i /20, Fyl :=eq~:8}, where r = eq™~* (we use the notation of [4]), deter-
mine a left-covariant g-metric of the pair (I'y, I'_). Similarly to the proof of Prop-
osition 7.1, using (6.14) in [8] one can show that the eigenvalues of the
Laplace—Beltrami operator A on A corresponding to the Young diagram /. are

Er=(—q"Y Y [N—c+2j-2i,
(ij)er
During the computations the operators rY 0, Df —r 'Y 7 Dy of the

Birman—Wenzl-Murakami algebra appear — one can take (64) for the definition
of Dif, where R* denote the matrices

RE = g O0805) & (i < £1)(g — g7 )840 — eierg” 7151, 5F), (68)
which are central in the algebra Mor(u®"*!), O
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