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Abstract. If the injective hull E = E (RR) of a ring R is a rational extension of
RR, then E has a unique structure as a ring whose multiplication is compatible with
R-module multiplication. We give some known examples where such a compatible ring
structure exists when E is a not a rational extension of RR, and other examples where
such a compatible ring structure on E cannot exist. With insights gleaned from these
examples, we study compatible ring structures on E, especially in the case when ER,

and hence RR ⊆ ER, has finite length. We show that for RR and ER of finite length, if
ER has a ring structure compatible with R-module multiplication, then E is a quasi-
Frobenius ring under that ring structure and any two compatible ring structures on E
have left regular representations conjugate in � = EndR (ER), so the ring structure is
unique up to isomorphism. We also show that if ER is of finite length, then ER has a
ring structure compatible with its R-module structure and this ring structure is unique
as a set of left multiplications if and only if ER is a rational extension of RR.

2002 Mathematics Subject Classification. Primary 16D50, 16S90, Secondary
16L60.

1. Introduction. Throughout this paper, all rings are associative with identity,
and all modules are unitary. The concepts are standard ones that can be found in
books such as [7], [11] or [1].

In the middle of the 20th century, there was a lot of activity in ring theory. The area
of interest in this paper arose from a concern with rings of quotients of arbitrary rings,
extending the concept of the classical ring of quotients for commutative rings or Öre
domains. These rings of quotients of a ring R are rings S that are essential extensions
of the ring R as a right R-module; that is, they are overrings of R which, as R-modules,
embed in the injective hull of the module RR. The case when the injective hull ER of
RR is a rational extension of RR, that is, homR (E/R, R) = 0, was studied in papers
such as [8], [9] and [10]. In the rational extension case, the map λ : EndR (ER) −→ E,
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122 BARBARA L. OSOFSKY ET AL.

λ �→ λ (1) is an abelian group isomorphism which induces a ring structure on E, making
it isomorphic to EndR (ER). There is an exposition of the maximal rational extension
of a ring, with the previous work summarized in [7]. We formally state these early
results in one combined theorem.

THEOREM. Let R be a ring with identity 1R such that the injective hull E = E (RR) is
a rational extension of RR, that is, homR (E/R, R) = 0. Then the map f ∈ EndR (ER) �→
f (1R) ∈ E induces a ring multiplication on E, extending the R-module multiplication
on E, that is, the ring multiplication E × E → E restricts to R-module multiplication
E × R → E.

If R is right non-singular, then the ring structure on E makes it a right self-injective
von Neumann regular ring.

Early results on the situation when the injective hull E (RR) is not a rational
extension of RR consisted of some examples where the injective hull has a compatible
ring structure, and other examples where it does not. See [14], [15] and [16]. Ten years
later there was a theorem by Lang (see [12]) that a commutative artinian ring has an
injective hull with a compatible ring structure if and only if the ring is quasi-Frobenius.
But almost nothing else was known before the turn of the millennium.

2. Crucial preliminaries. NOTATION. The following notation will be used
throughout the rest of this paper.

(a) R will denote a ring with identity denoted by 1R.
(b) A right (respectively left) R-module M will often be denoted by MR

(respectively RM).
(c) E = ER = E(RR) will denote a fixed injective hull of RR with a fixed essential

embedding of the right R-module RR into ER.
(d) � will denote the ring EndR (ER).
(e) We use J(−) to denote the Jacobson radical of a ring, and socle(−) to denote

the socle of a module. A subscript may be used to indicate the appropriate
side; in its absence right is assumed.

(f) The composition length of a module M of finite length will be denoted by
� (M).

(g) The n × n matrices over a ring F will be denoted by Mn (F).
(h) Matrix units in Mn (F) will be denoted by the letter ε with appropriate

subscripts; for example, ε11 = [ 1
0

0
0 ], where 0 is the appropriate matrix all

of whose entries are 0. The letter ε with other annotations will also be used to
indicate some other idempotents.

We say that a ring structure E on E(RR) is compatible if the ring multiplication
extends the R-module scalar multiplication. Rings R such that E (RR) has a compatible
ring multiplication were called (right) Osofsky compatible in [3]. In this paper we omit
the word right. In [2] a particular Osofsky compatible ring R with ring structure E on
E (RR) was studied (Example 7 in this paper) using the left regular representation of E .
This turned out to be a very effective way of getting away from the early approach of
mainly looking at specific examples of rings to see if they are or not Osofsky compatible.
The use of the left regular representation is crucial to the new results in Section 3.2
here. So we formally define the left regular representation (left multiplications) of a
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compatible ring structure on ER and then show in Remarks 1–3 the definition that this
indeed is the left regular representation of a compatible ring structure.

DEFINITION (Compatible left multiplications). Let λ : ER → � = EndR(ER) be an
additive group monomorphism. Denote λ(u) by uλ, that is, set λ(u) (v) = uλ (v) to avoid
possibly confusing adjacent parentheses. Assume

(i) these left multiplications, {uλ : u ∈ E}, are closed under composition in �,
(ii) (1R)λ = 1� and

(iii) uλ (1R) = u.
Define the multiplication of the ring structure E by · : E × E → E, (u, v) �→

u · v = uλ (v).

We say that λ is a left multiplication map on ER with mλ left multiplication by m, · is
a compatible ring multiplication on ER induced by λ and E =〈E , + , ·〉 is a compatible
ring structure on ER. The image of λ is called the left regular representation of E in the
literature. We will often refer to the image of a left multiplication map λ as Eλ, but when
the meaning is clear we will also drop the subscript λ and/or the letter E and just use
the letter E to refer to this ring structure.

Now assume we have such a left multiplication map.

REMARK 1. The image Eλ of λ is a subring of � since λ is additive, Eλ is closed
under composition in � by (i) and the identity of � is in the image of λ by (ii).

REMARK 2. The maps λ and the evaluation mλ �→ mλ (1R) are inverse abelian group
isomorphisms between E and the image of λ by (ii) and (iii).

REMARK 3. For all u and v in E, u · v = uλ ◦ vλ (1R) since uλ (v) = uλ (vλ (1R)) by
(iii) and uλ (vλ (1R)) = uλ ◦ vλ (1R) by definition of composition of functions. Hence,
evaluation at 1R is a ring isomorphism from 〈Eλ , + , ◦〉 to the ring 〈E , + , ·〉, and its
inverse isomorphism is λ.

REMARK 4. Let R be the ring of upper triangular 2 × 2 matrices over a field F .
Then E is the ring of all 2 × 2 matrices and by standard linear algebra

[
a b
c d

]
λ

=

⎡
⎢⎢⎣

a 0 b 0
0 a 0 b
c 0 d 0
0 c 0 d

⎤
⎥⎥⎦ ,

where

[
a b
c d

]
λ

([
x y
z w

])
=

⎡
⎢⎢⎣

a 0 b 0
0 a 0 b
c 0 d 0
0 c 0 d

⎤
⎥⎥⎦
⎡
⎢⎢⎣

x
y
z
w

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

ax + bz
ay + bw

cx + dz
cy + dw

⎤
⎥⎥⎦ .

Knowing that R is a subring of E makes it easy to check that this has all of the properties
of compatible left multiplications despite the fact that it has a different appearance
than the usual multiplication of matrices[

a b
c d

]
·
[

x y
z w

]
=
[

ax + bz ay + bw

cx + dz cy + dw

]
.

https://doi.org/10.1017/S0017089510000248 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089510000248


124 BARBARA L. OSOFSKY ET AL.

The following observation indicates why using this definition of a compatible
multiplication can be powerful. Without the definition, getting set theoretically distinct
ring structures can be quite messy and convey very little insight.

REMARK 5. Let φ be any automorphism of ER. Set

C = {φ−1mλφ : m ∈ E
}
.

Then C is closed under composition and contains the identity. It is a subring of � and
is isomorphic to Eλ under the inner automorphism of � induced by conjugation by φ.
Moreover, (φ (1R))λ is a unit in � since RR is essential in ER; this follows since
(φ (1R))λ r = φ (r) for all r ∈ R and R is essential in E so (φ (1R))λ is one-to-one and
has essential injective image. Then

0 = φ−1mλφ ⇐⇒ 0 = (φ−1mλφ (1R)
)
λ

⇐⇒ 0 = φ−1mλ (φ (1R))λ

⇐⇒ 0 = φ
(
φ−1mλ (φ (1R))λ

)
(φ (1R)) −1

λ ⇐⇒ mλ = 0 ⇐⇒ m = 0,

so the map λ′ : E → C can be defined as the inverse to the map φ−1mλφ �→
φ−1mλφ (1R) ∈ E, and this will give us a ring of left multiplications isomorphic to
Eλ but not equal to it unless φ commutes with each mλ.
Note that, in general, mλ′ �= φ−1mλφ. Instead, we have

(
φ−1mλφ (1R)

)
λ′ = φ−1mλφ,

where φ−1mλφ (1R) may very well not be equal to m.

2.1. Early examples. We now look at some examples that have been around for a
long time. All but the first were probably known in the 1960s although not necessarily
published then. These early examples were interesting, but did not appear to yield any
significant insight. We just sketch proofs of the properties claimed for these examples
as an indication of ideas and techniques that help in placing our new results in context.

EXAMPLE 1 [12]. A commutative artinian ring R has a compatible ring structure
on its injective hull if and only if R is quasi-Frobenius.

We will not prove this here, but the next example is a special case of Lang’s result
which will have a significant generalization in Section 3.2, Theorem 8.

EXAMPLE 2. Let F be a field, and R the F-algebra with basis {1, x, y } and relations
x2 = y2 = xy = yx = 0. Then the injective hull of E = E (RR) of R does not have a
compatible ring structure.

Proof. ER is a direct sum ER = E (xR) ⊕ E (yR). Let εxx and εyy be the projections
in � of E onto these summands. Since these are orthogonal idempotents summing to
1�, they are the unique projections of the identity of � with respect to the left direct
decomposition � = �εxx ⊕ �εyy. If E is a compatible ring structure on E, the identity
of � lies in E ⊆ �, εxxE = E (xR) and εyyE = E (yR), the projections of the identity of
E with respect to the direct sum decomposition E = εxxE ⊕ εyyE must lie in E . E (xR)
and E (yR) are injective hulls of isomorphic simple R-modules and so are isomorphic
R-modules. Hence,

E ∼= EndE (E) ∼= M2 (EndE (εxxE))

has a nilpotent socle of F-dimension 4 but the socle of R has F-dimension 2, so if such
a ring structure existed, some simple submodule of ER would not intersect RR. �
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EXAMPLE 3. R = [ � ���

0 � ] is an example where the injective hulls on each side
are von Neumann regular rational extensions of R because R is non-singular on
both sides. They have completely different ring structures since E (RR) ∼= M3 (�) and
E (RR) ∼= M2 (�).

Our next example will be, if the appropriate dimension is finite, artinian with a
Morita duality but not an Artin algebra. We are not sure whether or not it actually
appeared in print; it was not in [14] or [15], but it is certainly in the spirit of the
early examples. It is not Osofsky compatible in a way fundamentally different than
any other example of a ring which is not Osofsky compatible given in this paper. This
phenomenon cannot occur for Artin algebras, because it implicitly depends on the fact
that R is not finitely generated over its center.

EXAMPLE 4. Let K be a field such that there exists an endomorphism σ of K such
that the dimension of K over σ (K) is n > 1. For example, one might have K = � (x) (the
quotient field of � [x]) and σ (x) the endomorphism induced by x �→ x2. Set F = σ (K),
so in our example, F = �

(
x2
)
, and let

〈R, +〉 = F ⊕ σ (F)FF ,

where (σ (F)FF )2 = 0. That is, for α, β, γ , δ ∈ F ,(
α, β

) (
γ, δ

) = (αγ, σ (α) δ + βγ
)
.

Then R is not Osofsky compatible.

Proof. Think of F = σ (K) as saying K = σ−1 (F). Replace F by K in the definition
of R and map

(
1F , 0

)
to
(
1K , 0

)
to get an R-module embedding of RR into the R-module

ER = K ⊕ σ (K)FF . We now justify this notation. ER is clearly an essential extension of
RR. The only proper right ideal of R is

(
0, FF

)
. Any R-map from

(
0, FF

)
to RR or

to ER must take
(
0, 1

)
to
(
0, α

)
for some α ∈ F . Since these maps are given by left

multiplication by
(
σ−1 (α) , 0

)
in E, we observe that

EndR
(
0, FF

) ∼= K Kσ (K)
∼= σ−1(F)KF ,

and E is indeed the right injective hull of RR.
Assume that ER has a compatible ring structure. Then J (E) would have to contain

the nilpotent (right) ideal
(
0, FF

)
and E/J (E) would have to be isomorphic to a

quotient of σ−1(F)KF which is a simple R–R bimodule which is not a ring. This
contradiction to basic (artinian) ring theory shows that R is not Osofsky compatible.

If n < ∞, E is a finitely generated right R-module containing a copy of the only
simple right R-module, and so a right injective cogenerator. By [13], homR (, E) induces
a Morita duality between finitely generated right R-modules and finitely generated left
EndR (E)-modules. So Morita duality does not guarantee an Osofsky compatible ring
structure on E. �

We observe that for R the ring in Example 4, the left injective hull E (RR) of R
is isomorphic to E

(
0, σ (F)F

) ∼=∏ nF and leave to the interested reader the proof that
this cannot be given a compatible ring structure. The proof in Example 2 may help in
the case n < ∞.

https://doi.org/10.1017/S0017089510000248 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089510000248


126 BARBARA L. OSOFSKY ET AL.

The proof for our next example is essentially the original proof, which appeared
in [14] and [15]. There is nothing significant about using �4 here other than it is a
nice concrete ring. A generalization of this example replacing �4 by an arbitrary local
quasi-Frobenius ring A is part of the proof of Theorem 9 in Section 3.2.

EXAMPLE 5. Let R = [ �4 2�4
0 �4

]. Then the injective hull of R does not have any
compatible ring structure.

Proof. Observe that

E = E (RR) = E
([

2�4 0
0 0

])
⊕ E

([
0 2�4

0 0

])
⊕ E

([
0 0
0 �4

])
= ε1E ⊕ ε2E ⊕ ε3E,

where {εi : 1 ≤ i ≤ 3} are the orthogonal idempotent projections in � with respect to
this direct sum decomposition of E. Note that ε2E and ε3E are isomorphic. Hence, ε2E
must contain an element x of additive order 4 with 2x = 2ε2(x) = [ 0 2�4

0 0 ] ∈ ε2E ∩ R.
Since x = ε2 (x), the additive order of ε2 must be 4. On the other hand, ε2 (1R) ∈ ε2E
satisfies 2ε2(1R)([ 0 2�4

0 0 ]) = 0.
Now assume that there is a compatible ring structure Eλ on E. Since εiEλ is a right

ideal of Eλ, which is a direct summand of (Eλ)Eλ
and

∑3
i=1 εi (1R)λ = 1�, {εi (1R)λ}

are orthogonal idempotent projections of the identity of Eλ with respect to the given
decomposition of E, so ε2 = ε2 (1R)λ must have order 4 and 2ε2 (x) = [ 0 2�4

0 0 ] �= 0,
which is a contradiction.

It is not too difficult to show that � ∼= �4 × [ �4 �4
�4 �4

] with matrix multiplication

on the matrices, and ER ∼= �4× [ �2 �4
�2 �4

] with ε1 = ( 1�4 , [ 1�2 0
0 0 ] ), ε2 = ( 0�4 , [ 1�2 0

0 0 ] ),

ε3 = ( 0�4 , [ 0 0
0 1�4

] ) the projections of 1R in E. A difference between this and what
occurs in Example 7 is that here the ring we compute is �, whereas in Example 7 it
is E . �

We next look at an example which is different from most of the other early
examples as it is not a small ring but the injective hull is rather obvious. There is
a non-commutative version of this example using the example of a one-sided injective
cogenerator found in [6]. In that version there is a compatible multiplication on its
injective side, but it is not clear whether or not it has such a compatible multiplication
on the other side.

EXAMPLE 6. Let �(p) denote the integers localized at the prime p, �̂(p) the p-adic
integers and �p∞ the p-torsion subgroup of �/�. Let R be the ring with additive group

�(p) ⊕ �p∞ and
(
�p∞

)2 = 0. Then

E (RR) = �̂(p)⊕ �p∞ ,

because �p∞ is an injective cogenerator for �(p) and �̂(p), and �̂(p) = End�(p)

(
�p∞

)
. This

has a ring structure obtained by setting
(
�p∞

)2 = 0 and letting �̂(p) act on it on both
sides. The compactness of the p-adic topology implies that there is only one possible
multiplication on �̂(p), so this ring structure is unique. Since any non-zero element
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x ∈ �̂(p) \ �(p) has a non-zero map to 1
p � ⊆ �p∞ . E is not a rational extension of R.

Here E is a self-injective ring.

2.2. Recent examples. Examples such as those in Section 2.1 did not appear to
shed much light on whether or not some other ring was Osofsky compatible, or if it
was, what properties a compatible ring structure E on its injective hull might have. But
the first two examples in this subsection do shed light on further work in the area.

Our first example looks very much like Example 5 except that matrices which did
not form a ring there do form a ring here. This example is due to Birkenmeier, Osofsky,
Park, and Rizvi.

EXAMPLE 7. Let A be a commutative local quasi-Frobenius ring with non-zero
Jacobson radical J. Set

R =
[

A A/J
0 A/J

]
.

Then
(a) E = E (RR) ∼= A × [ A/J A/J

A/J A/J ] with the embedding [ α β

0 δ ] �→ α + [ α + J β

0 δ ]
has a ring structure λ as a quasi-Frobenius ring compatible with the R-module
structure, and

homR (E/R, E) ∼= homR

([
A/J 0
A/J 0

]
, A
)

�= 0.

(b) There exists a compatible ring structure λ′ on E with Eλ �= Eλ′ .
(c) All compatible ring structures on E are isomorphic to Eλ.
(d) Eλ is also a compatible ring structure on the injective hull of the left regular

representation RR.

Proof. See [2]. We begin with the left R-module RR which is a left projective
generator, and apply the A-duality homA ( , A) to produce a right R-injective
cogenerator. Just as in the case of vector spaces over a field, the A-dual of a matrix is
its transpose. That is, [

A 0
A
/

J A
/

J

]
R

is an injective cogenerator where the R-module multiplication is matrix multiplication.
Re (a): The socle of R is [ socle (A) A

/
J

0 A
/

J ], which is a direct sum of three simples. Then
the injective hull of RR is

E (RR) ∼=
[

A 0
0 0

]⊕[
A
/

J A
/

J
0 0

]⊕[
0 0

A
/

J A
/

J

]

∼= A ×
[

A
/

J A
/

J
A
/

J A
/

J

]
,

where the matrices clearly form a ring and the bottom line is clearly a ring direct
product. It is an easy check that the product ring structure is compatible with the given
embedding of R into E, and homR (E /R , E) is the direct sum of the composition
factors of E /R isomorphic to [ socle (A) 0

0 0 ] ⊆ R.
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Re (b): We use Remark 5. The maps φμ1μ2 : (1 − ε11) �→ (1 − ε11), ε11 �→ ε11 +
(1 − ε11) μ1, ε21 �→ ε21 + (1 − ε11) μ2 for μ1, μ2 ∈ socle(A) generate automorphisms
of E, and these are all distinct since

φ−1
μ1,μ2

(εi1)λ φμ1,μ2 (ε11) = φ−1
μ1,μ2

(εi1)λ (ε11 + (1 − ε11) μi)

= φ−1
μ1,μ2

(εi1) = εi1 + (1 − ε11) μi.

Re (c): Every ring structure on E must arise as in Proposition 3 by careful
observation.

Re (d): This is just an observation. �

Proposition 5 in Section 3 gives an alternate way of getting the form of ER in
Example 7 because [ 0 0

0 1 ]R is a projective simple R-module and R has finite Goldie
dimension. This alternate proof illustrates a difference between the rings of Examples 5
and 7. We next use this alternate idea to produce an example modifying Example 3 and
showing that the crucial property of Example 2 is that there is only one isomorphism
class of simple right modules.

EXAMPLE 8. Let [� , ���] be the ring whose nilpotent radical is
[
0 , ���

]
where �

is the real quarternions, and let

R =
[[

�, ���

]
���

0 �

]
.

Then R is Osofsky compatible, with

ER = [�, ���

]× M3 (�) ,

where

1R �→
⎛
⎝[1, 0

]
,

⎡
⎣1 0 0

0 1 0
0 0 1

⎤
⎦
⎞
⎠.

Proof. The 3 × 3 matrices are the injective hull of the second column of R by
elementary linear algebra as embodied in Proposition 5 in Section 3. The first factor is
the injective hull of the remaining simple right ideal [

[
0, �

]
0

0 0 ]. Thus, E is the injective
hull of RR, and it clearly has a ring structure as a product of quasi-Frobenius rings. One
easily checks that the image of R is a subring of E with this direct product structure,
and all of the other properties found in Example 7.

However, there is one difference between Example 7 and this example. The
primitive idempotent ε = [ 1 0

0 0 ] ∈ R is a sum ε� + ε� of idempotents in homogeneous
components of E where ε� is not primitive in E. �

Example 7 shows some significant properties that can occur. The next examples
indicate that there are no comparable results in the general case. Indeed, as Camillo,
Herzog, and Nielsen show in [5], E (RR) need not be a self-injective ring, and it may
have non-isomorphic compatible ring structures.
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EXAMPLE 9. Let F be a field, and V an infinite dimensional vector space with
a non-degenerate (and symmetric, if you wish R to be commutative) bilinear form
〈 , 〉 on it. Let R have additive group

〈R , +〉 = F ⊕ V ⊕ F,

where
(
a, b, c

) (
α, β, γ

) = (aα, aβ + bα, aγ + cα + 〈b, β〉). Then

E = E (RR) = (F, hom (V, F) , F
)
,

with hom (V, F) ⊗ V → F being the dual map. One can make E into a ring by taking
a complement W of V in hom (V, F) and setting hom (V, F) ⊗ W → F any map you
wish. For example, it may be zero, and hence, the corresponding ring structure is not
commutative, or we may pick a basis for W and make also it a dual basis, so the
corresponding ring structure is commutative.

See [5] for additional details.
Our last example shows that, unlike in Example 7, Osofsky compatibility is not a

right–left symmetric concept. This is hardly surprising given Example 3.

EXAMPLE 10. Let � be the rational numbers, and set Si = [ ε
(i)
11� ε

(i)
12�

0 0 ] for i =
0, 1, 2, . . .. Set

R = ⊕∞
i=0Si ⊕ 1 · � ⊆

∞∏
i=0

M2 (�) .

Then
(a) E (RR) =∏∞

i=0 M2 (�) is a rational extension of RR.
(b) E (RR) does not have a compatible ring structure.

Proof. We exploit the fact that a row in a matrix over a field is a right ideal of that
matrix ring, but just a vector space over the field on the left.

Re (a): Since Si ⊕ 1� looks like upper triangular matrices on the left with left
annihilators of elements 0 or of the form R

∑
finite ε

(i)
11 or R(1 −∑finite ε

(i)
11), the injective

hull of Si will be the rational extension M2 (�), and E (RR) will be isomorphic to the
self-injective von Neumann regular ring

∏∞
i=0 M2 (�).

Re (b): We note that J(R) = socle(RR) =⊕∞
i=0 [ 0 ε

(i)
12�

0 0 ] since every ε
(i)
11 annihilates

every [ 0 ε
(k)
12 �

0 0 ] on the right, this socle is essential in RR, and RR/
⊕∞

i=0 [ 0 ε
(i)
12�

0 0 ] is von

Neumann regular. If there were a compatible ring structure on E, E/J(E) would have to
be the full linear ring on this socle. But the biendomorphism ring of the semi-simple left

�-module
⊕∞

i=0 [ 0 ε
(i)
12�

0 0 ] is the field �, not the full linear ring E/J (E) which does not

have any quotient isomorphic to �. Then
⊕∞

i=0 [ 0 ε
(i)
12�

0 0 ] cannot be a �–� bimodule.

This contradiction shows that E (RR) cannot have a compatible ring structure. �

3. Main new results. Because of the Camillo–Herzog–Nielsen Example 9, a com-
patible ring structure E on E (RR) need not be self-injective nor unique up to isomorph-
ism. Considerably weaker properties may hold in general, such as Proposition 1(d)
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and other propositions in Section 3.1. Here we use the results in Section 3.1 to
show in Section 3.2 that for rings R such that ER, and hence, its submodule RR,
has a composition series, the strong properties of injectivity and uniqueness up to
isomorphism do hold if R is Osofsky compatible, and set theoretic uniqueness of E
corresponds to set theoretic uniqueness of injective hulls in E of submodules of RR.

3.1. Some more general results. Our first proposition introduces a framework for
discussion and notation that will be used in the rest of the paper. Much of it appears
several times in the early literature. Item (a) of Proposition 1 shows rather precisely
why the situation when E is not a rational extension of R is so hard to study. Item (a)
says that there is no way to get a ring structure on E as a quotient ring of � unless E
is a rational extension of R. The notation, especially I, as well as the statements, will
be useful in the following.

PROPOSITION 1. Let R be an Osofsky compatible ring, and let Eλ be a compatible
ring structure on E. Set

I = {μ ∈ � : μ (1R) = 0} .

Then, the following hold.
(a) I is a left ideal of �. It is a right ideal if and only if I = 0. In particular, �

/
I

is a ring homomorphic image of � if and only if I = 0.
(b) As left Eλ-modules, 〈� ; +〉 = 〈I ; +〉 ⊕ 〈Eλ; +〉.
(c) I ⊆ J (�).
(d) Eλ

/
J (Eλ) ∼= �

/
J (�) which is a right self-injective von Neumann regular ring.

Proof. Re (a): Let μ ∈ � and η ∈ I. Then μη (1R) = 0, so I is a left ideal. If η �= 0,
since E is essential over RR, there exists an m ∈ E such that 0 �= η (m) ∈ R. The map
1 �→ m from R to � extends to a map ν ∈ � such that ην /∈ I. This result does not use
the hypothesis that there is a compatible ring structure.

Re (b): For μ ∈ �, set μ (1) = m ∈ E. Then μ − mλ ∈ I. Thus, � = Eλ + I. If
m �= 0, mλ /∈ I, so the sum is direct.

Re (c): Note that I ⊆ J (�) since for all λ in the left ideal I, 1 + λ fixes 1R and so
has zero kernel and essential image, so it must be an isomorphism. Or one could quote
the well-known result (see [7]) that the Jacobson radical of the endomorphism ring of
an injective module is the set of all endomorphisms with essential kernels. Our proof
is just a portion of the standard proof.

Re (d): As left ideals, �/J(�) ∼= �/I
/

J(�)/I ∼= Eλ

/
J(�) ∩ Eλ

∼= Eλ/J(Eλ), where
we have used the three previous statements in this proposition plus basic isomorphism
theorems. Note that the left ideal being factored out in all but the second quotient is
actually two-sided, so the first and last quotients are actually quotient rings, not just
quotient left ideals.

Reference [17] shows that �/J(�) is a right self-injective von Neumann regular
ring and orthogonal idempotents lift orthogonally modulo J(�). By Proposition 1(c)
Eλ/J(Eλ) must also be a right self-injective von Neumann regular ring, and the proof
of lifting orthogonal idempotents in [17] goes through almost word for word to show
that the property also holds for Eλ/J(Eλ). �
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We are now ready for useful new results not requiring chain conditions on RR.
Here is where almost all of the hard work proving the theorems in the next section is
done.

PROPOSITION 2 (Duals of simples are simple). Let R be a ring which is an essential
extension on the right of a finitely generated socle. Assume E has a compatible ring
structure, and call the corresponding left multiplication ring Eλ just E, omitting the
subscript λ when it is not needed. Then E has the property that the E-dual HomE (S , E)
is simple for every simple right or left E-module S.

Proof. We begin with some well-known facts stated with sketches of proof as
required details are available in standard texts in the area such as [1].

Since ER is an essential extension of the finite-length socle of R, ER is a direct sum⊕n
i=1 E (Si) where Si are simple submodules of RR.

The identity 1R is a sum
∑n

i=1 ei, where ei ∈ E (Si). Since (1R)λ = 1�, P =
{ei : 1 ≤ i ≤ n} form a complete set of orthogonal idempotents in E. They are primitive
since the socle of E (Si) is essential and uniform, and E (Si) = eiE. Moreover, every
non-zero E-submodule of eiE must contain Si, so the intersection of all the non-zero
E-submodules of eiE must be SiE, and thus SiE is an essential simple submodule of
eiE.

�/J(�) and hence E/J(E) is semi-simple artinian, so it must be a direct product

E/J(E) ∼=
k∏

ν=1

Mην
(�ν)

of matrices over division rings �ν . Each matrix ring has one isomorphism class of
simple modules, so there are precisely k isomorphism classes of simple E-modules.

Now eiE ∼= ejE if and only if Si ∼= Sj by uniqueness of injective hulls, and
eiE/eiJ(E) ∼= ejE/ejJ(E) if and only if eiE ∼= ejE by uniqueness of projective covers.
Hence, socle(eiE) = Si is isomorphic to socle(ejE) = Sj if and only if the tops
eiE/eiJ(E) ∼= ejE/ejJ(E). For a given isomorphism class [eiE] of right ideals of E
generated by a primitive idempotent ei, denote this class by [ei]; denote by [eσ (i)] the
unique isomorphism class such that Si ∼= eσ (i)E/eσ (i)J(E). To summarize this notation,

socle(eiR) = Si, top(eiR) = Sσ−1(i),
top(eσ (i)) = Si, socle(eσ (i)) = Sσ (i).

(∗∗)

Since there are k classes [ei], by the pigeon hole principle σ induces a permutation
of the isomorphism equivalence classes of primitive idempotents.

Two minimal right or left ideals of E/J(E) are isomorphic if and only if they lie in
the same Mην

(�ν), so for primitive idempotents e, e′ ∈ E,

eE ∼= e′E ⇐⇒ eE/eJ(E) ∼= e′E/e′J(E)

⇐⇒ Ee/J(E)e ∼= Ee′/J(E)e′ ⇐⇒ Ee ∼= Ee′.

We note that the dual homE(eiE/eiJ(E), EE) ∼= socle(EE)ei, which is the
annihilator of eiJ(E) + (1 − ei)E and the left-sided version of this also holds.

Now let si ∈ Si. Since the idempotents in P are primitive and orthogonal and siR
is simple, there is a unique element eσ (i) ∈ P such that eisieσ (i) �= 0. Here the uniqueness
is actually as elements, not just isomorphism classes as in (∗∗).

https://doi.org/10.1017/S0017089510000248 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089510000248


132 BARBARA L. OSOFSKY ET AL.

It is well known that, for MR a quasi-injective R-module, any finitely generated
EndR(MR)-submodule of EndR(MR)MR is its own double annihilator. See for example
[7, p. 26]. The right annihilator of �eisi in R is a maximal right ideal of R. Hence,
its annihilator in E, �eisi, cannot have any non-zero proper cyclic submodules. That
is, �eisi is a simple �-module. Since Ieisi = 0, �eisi = Eeisi is simple. Then Eeisi

must be isomorphic to Eei/J(E)ei. On the other hand, eσ (i)J(E) annihilates si, so the
right annihilator of si in E is eσ (i)J(E) + (1 − eσ (i)), and thus, the simple E-modules
Eei/J(E)ei ∼= Esi and are E-duals of each other, and every simple right E-module is
isomorphic to some eσ (i)E/eσ (i)J(E). �

PROPOSITION 3. Assume E has a compatible ring structure Eλ. Let MR be a submodule
of RR such that M has two distinct injective hulls eE and f E in E, where e is an idempotent
in E and e �→ f induces an isomorphism from eE to f E. Then the ring structure on E is
not set theoretically unique. This will be the case if there is an idempotent e′ ∈ E \ R with
[e] �= [e′], e′J(E) �= 0 and socle(eE) ∼= e′E/e′J(E) is simple.

Proof. Let φ ∈ � map eE isomorphically to f E taking e to f and also map 1 − e
to itself. Then φ is an automorphism of ER since it is the identity on the essential
submodule (eE ∩ f E) ⊕ (1 − e)E, so by Remark 5,

C = {φ−1mλφ : m ∈ E}
is the image of a compatible ring structure λ′ on E with λ′(φ−1mλφ(1)) = φ−1mλφ.
Since f /∈ eE, ef �= f . Then, since

φ−1eλφ(1) = φ−1(eλ(f + (1 − e))) = φ−1(ef ) �= φ−1(f ) = e,

and φ−1eλφ(1)λ′ = φ−1eλφ ∈ �, so φ−1eλφ(1)λ′(φ−1eλφ(1)) = φ−1eλφ(1) = e is
idempotent under the ring structure λ′. In Eλ there is only one projection of the
identity to eE with kernel (1 − e)E and that is e, so e cannot be idempotent in Eλ.

Now let e′ ∈ E \ R be a primitive idempotent /∈ [e] such that the socle of eE is iso-
morphic to the simple top e′E/e′J(E) of e′E and e′J(E) �= 0. Let s ∈ socle(eE), se′ �= 0.
Then e′E and (e′ + se′)E are distinct injective hulls of e′E ∩ (e′ + se′)E = e′J(E). �

We can take the previous proposition even further.

PROPOSITION 4. Let R be a ring of finite right Goldie dimension. Let Eλ and Eλ′ be
compatible ring structures on E. Then there is an automorphism φ in � such that Eλ and
φ−1Eλ′φ have a complete set P of primitive orthogonal idempotents of � in common.

Proof. Let R be essential over ⊕n
i=1Si, where the Si are uniform R-modules. Let

Eλ (Si) (respectively Eλ′ (Si)) denote an injective hull of Si in Eλ (respectively Eλ′ ), and ei

(respectively e′
i) the projection of the identity to Eλ (Si) (respectively Eλ′ (Si)). Then there

is a φ in � which maps each Eλ′ (Si) isomorphically onto Eλ (Si). The morphism φ is an
automorphism since it is monic on ⊕n

i=1Si which is essential, and onto since its image is
injective and essential. Set Eμ = φ−1Eλ′φ. Now for each i, φ−1e′

iφ (ei) = φ−1φ (ei) = ei

since e′
i acts as the identity on φ (eiE). That is, each ei is in Eμ so the P= {ei} is a

complete set of orthogonal primitive idempotents in both Eλ and Eμ. �

The following proposition can be used to get an alternate proof of the form of the
injective hull in the Birkenmeier–Osofsky–Park–Rizvi Example 7, and was used in the
proof of Example 8. The heart of the proof is in [10].
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PROPOSITION 5. Let R be a ring, and let SR be a projective simple right ideal of
R. Let H =∑S′∼=S S′ be the right ideal of R generated by all right ideals isomorphic
to S. Let h be an idempotent in � projecting E (R) to E (H). Then h� (1 − h) = 0 and
hE = E (h�hhRh) is a full linear ring over EndR (SR). Moreover, if H is finitely generated,
homR (h�, (1 − h) �) = 0, so EndR (E (HR)) is a ring direct factor of �.

Proof. Note H �= 0 since S �= 0. Now H and hence hE is non-singular since any
non-zero element in H has annihilator a direct summand of R distinct from R. Since
h2 = h, EndR (hE) ∼= h�h. By non-singularity, the map h�h → hE, hλh �→ hλh (1R) is
an abelian group isomorphism, which makes hE into a ring isomorphic to the full
linear ring on the semi-simple essential socle H of hE.

Let u ∈ (1 − h) E. Assume there exists a non-zero R-map φ from uR to hE. Since
hE is essential over its socle, there is an r ∈ R with 0 �= φ (u) r ∈ S′ ∼= S. But S and
therefore S′ is projective, so φ : urR �→ S′ splits. Then (1 − h) E contains a copy of
S, contradicting the assumption that hE is essential over the sum of all simple right
ideas of R isomorphic to S. Thus, h� (1 − h) E = 0, so h� (1 − h) = 0. In particular,
h� = h�h. The Peirce decomposition of � with respect to the ordered idempotents
{1 − h, h} is then, as a block matrix,

� ∼=
[

(1 − h) � (1 − h) (1 − h) �h
0 h�h

]
.

If H is finitely generated, the only non-zero quotients of h�h are direct sums of
copies of S, so there are no such non-zero quotients in (1 − h) E and (1 − h)�h = 0,
and this means EndR (E (HR)) is a ring direct factor of �. �

3.2. Our major theorems given composition series. Example 9 of Camillo, Herzog,
and Nielsen shows that, in general, one cannot show properties of a compatible ring
structure on the injective hull of a ring comparable to the properties in Example 7.
What Example 7 has that Example 9 does not is modules of finite composition length.
So our major theorems here will be about rings where the injective hull has a compatible
ring structure Eλ, and all modules looked at have finite length. If we are looking at
the ring structure on E itself as opposed to the left multiplications, we will drop the
subscript λ. Note that � (ER) ≥ � (EE) and RR embeds in ER, so � (ER) < ∞ implies
� (RR) and � (EE) are both finite.

THEOREM 6. Let ER have finite length, and let ER have a compatible ring structure
Eλ. Then Eλ is quasi-Frobenius.

Proof. Given Proposition 2 this is in [13]. The proof is also provided in later texts
such as [1]. With duals of simples being simple on both sides, a composition series on
one side gives rise to a composition series of annihilators on the other side, so we do
not have to impose chain conditions on the left. �

THEOREM 7. Let ER have finite length, and let Eλ and Eλ′ be compatible ring structures
on E. Then Eλ is conjugate to Eλ′ in �.

Proof. By Proposition 4, there is an Eμ conjugate to Eλ′ having a complete set
P ={ei} of primitive orthogonal idempotents in common with Eλ. These {ei} ⊆ �

are projections of the identity with respect to the direct sum decomposition �E =
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i=1 eiER in all of �, Eλ and Eμ. By Theorem 6 EE is left artinian, so �E is artinian

by Proposition 1. We claim that λ = μ.
Take a left composition series for E, say

0 = C0 ⊂ C1 ⊂ · · · ⊂ Cm ⊂ · · · ⊂ C�(�E) = E.

Now assume λ|Cm
= μ|Cm

for some m < �(�E), where the vertical bar denotes function
restriction. C0 clearly satisfies this. Then for x ∈ Cm+1 \ Cm, there is an ei ∈ P such
that eix = x and J(Ẽ)eix ⊆ Cm and Cm+1 = Ẽeix + Cm, where Ẽ is any one of �, Eμ,
Eλ.

Since λ(x) = λ(eix) = λ(ei)λ(x) = eiλ(x) and similarly μ(x) = eiμ(x), ei(λ(x) −
μ(x)) = 0. But (1 − ei)λ(x) = (1 − ei)μ(x) = 0, so λ(x) − μ(x) = (1 − ei + ei)(λ(x) −
μ(x)) = 0. By induction, λ|C�(E) = μ|C�(E) , so λ = μ. �

Without finite length, Example 9 shows we can never hope to start from 0 and get
to all of E in this manner.

The next theorem is a generalization of Lang’s theorem, Example 1. It is the only
characterization of Osofsky compatible rings of a specific type that appears in this
section, and the second that we know of in the literature. The proof indicates how, in
the artinian case, one does not lose generality by working with the basic ring Morita
equivalent to R, even though Osofsky compatibility is not defined by a categorical
property.

THEOREM 8. Let ER have finite length. Assume every simple in the socle of RR is in
the same isomorphism class [̃S] where S̃ is a simple R-module isomorphic to ε′R/ε′J(R),
where ε′ is a primitive idempotent in R. Let ε be the (unique) idempotent central in
R/J(R) such that εR =∑ε′′∈R, ε′′R∼=ε′R ε′′R. Then the following are equivalent.

(i) ER has a compatible ring structure.
(ii) ER is a rational extension of RR.

(iii) RR is essential over a right ideal of the form
⊕k

i=1 Mi, where each Mi with i < k
is isomorphic to ε′R and Mk = εR, and εRε is quasi-Frobenius.

Proof. Note that ε acts as a two-sided identity on the simple module S̃.

Re (iii) =⇒ (ii): By projecting onto (1 − ε) R, without loss of generality we may
assume that (1 − ε) Mi = Mi for 1 ≤ i < k. Let

{
εi,i : 1 ≤ i ≤ k

}
be a set of orthogonal

idempotents in � summing to 1 where εi,iE is essential over Mi. Let R′ be the subring
of R generated by Miε and the identity. Then the Peirce decomposition of R′ is

R′ ∼=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎢⎣

ε1,1r 0 0

0
. . . 0

0 0 εk−1,k−1r

(M1) ε
...

(Mk−1) ε

0 εRε

⎤
⎥⎥⎥⎥⎥⎥⎦

: r ∈ �

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

,

and this embeds R′ as a subring of the block matrix ring whose diagonal blocks
are k − 1 copies of ε′Rε′ and εRε. Since εRε is quasi-Frobenius by hypothesis, it is
also isomorphic to a matrix ring over ε′Rε′, so R′ embeds in B = Mk(ε′Rε′) and
we give this matrix ring the same k × k block structure as R′. Since the entire last
column Bε of B is contained in R′ and R′ε is essential in R′, for any submodule
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M ⊆ B/R′, homR′(M, R′) = 0. Thus, the quasi-Frobenius ring B = Mk (ε′Rε′) is a
rational extension of R′. BR′ must then embed in E (R′) and contain the socle of R′. By
[9], the maximum rational extension Q (R′) of the ring R′ is the double centralizer of
E (R′), that is, Q (R′) ∼= End� (�E (R′)) under the map End� (�E (R′)) � μ �→ (1) μ ∈
Q (R′), so E (R′) is a right Q (R′)-, and hence, an Mk (A)-module. Since E (R′) is
essential over Mk (ε′Rε′) as an Mk (ε′Rε′)-module and Mk (ε′Rε′)Mk(ε′Rε′) is injective,
E(R′

R′) = Mk (ε′Rε′). Since R is essential over R′, we have that R′ embeds in R which
embeds in Mk (ε′Rε′), so Mk (ε′Rε′) is also E (R) and a rational extension of R.

Re (ii) =⇒ (i): (ii) is a special case of (i).

Re (i) =⇒ (iii): We initially proceed in a manner similar to the proof of
Example 2. εE ∼=⊕k

i=1 E
(
S̃i
)
, where

k = � (socle (εRR)) = � (socle (εER)) = � (socle (εEE)) = � (socle (εEε)) .

Let ε′′ be a primitive idempotent in E. Then εEε ∼= EndE (εE) is isomorphic to k × k
matrices over the local ring ε′′Eε′′. By Theorem 6 E is quasi-Frobenius and so is the
Morita equivalent ring ε′′Eε′′. Moreover, ε′′J (E) ε′′ must annihilate the socle of ε′′Eε′′.
This says that socle (Mk (ε′′Eε′′)) is a k2-dimensional vector space over top (ε′′Eε′′),
and this socle is an essential extension as an R-module of the length k right socle of
εRε. Since the top of εRε is a simple artinian ring it must be the ring of m × m matrices
over the division ring � = top (̃εiR) for any primitive idempotent ε̃i ∈ R. Then S̃ must
be m-dimensional over � on both sides. Hence, mk = k2, so m = k and the top of εRε

is bimodule-isomorphic to the socle of εRε, so εRε is quasi-Frobenius.
We note that this also implies that ε′ remains primitive in E, and every

indecomposable projective E-module is isomorphic to ε′E and must contain an R-
submodule M ∼= ε′R.

By (the proof of) (iii) =⇒ (ii), the subring of E generated by εRε and, for
each i < k, an Mi ∼= ε′R contained in E (Si) embeds E as a rational submodule of
Mk (ε′Rε′) and this makes E ∼= Mk (ε′Rε′). Set Ni = Mi ∩ R for i < k. Now look at
the 2 × 2 upper triangular submatrix [ εiEεi

0
Ni
εRε

] whose 1, 1 entry is the i, i entry of E
and whose second column is contained in R. Multiplying the top row by the second
column gives [εiEεiNiε

′ Niε
′] R ⊆ E

(
S̃i
)
. Thus, the right R-module corresponding to

the top row will have a simple R-module S̃i contained in the last column, and if
Niε

′ ⊆ J(homE(E(ε′S̃k), E(̃Si))), it will also have a simple R-module isomorphic to S̃
in the 1, 1 position (or i, i position of E looked at as a matrix ring). But row i of E is
E
(
S̃i
)

which has a length 1 socle, so Ni = Mi ⊆ R. �
In our next result, we show that the set theoretic uniqueness of ring structures

on E is equivalent to the set theoretic uniqueness of injective hulls if R is Osofsky
compatible and ER has finite length. Theorem 8 plays a significant role in the proof of
this theorem.

THEOREM 9. Let ER have finite length. Then the following are equivalent.
(i) E has a set theoretically unique compatible ring structure.

(ii) E has a compatible ring structure as a direct product
∏

Ri of rings Ri of two
types: either every primitive idempotent of Ri remains primitive in E or there is
only one isomorphism class of simple modules in the socle of Ri.

(iii) ER is a rational extension of RR.
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Proof. It is enough to prove this if R is basic, since the proof in the basic case will
go through for the general case by simply replacing isomorphism classes of principal
indecomposable projectives by sums of the members of the isomorphism class which
are matrices over the endomorphism ring of one of the indecomposable projectives.
This is precisely the relationship between ε′Rε′ and εRε in Theorem 8. Of course, one
cannot assume that E is basic as at least one simple will occur with multiplicity greater
than 1 in the socle of R unless R is quasi-Frobenius.

(iii) implies (i). This is well known, and indeed one of the first results mentioned
in this paper.

(i) implies (ii). If E does not have a compatible ring structure, there is nothing to
prove. So now assume it does have a compatible ring structure Eλ which we will denote
just by E.

Now let e = e2 ∈ E \ R, e primitive. Let SE = eE/eJ(E), the top of eE, and assume
that S is not isomorphic to socle(eER). Since S embeds in the socle of E, S must be
isomorphic to the socle of some e′E such that the top of e′E is not isomorphic to S.
By Proposition 3 there is a set theoretically different ring structure on E for which e is
not idempotent. This contradiction shows that the socle of eE must be isomorphic to
S. Then the dual of S = socle(eE) will equal the socle of Ee. (See Proposition 2.)

Let us recall a definition given in the proof of Proposition 2. We denoted by εS the
idempotent εS = ε2

S ∈ E which is central modulo J (E) and has only one isomorphism
class of simple modules, namely [S]. Then εSEεS ∼= homE (εSE, εSE) is a subring of E
whose socle is the homogeneous component HS of the socle of E. All right composition
factors of εSEεS are isomorphic to S and their duals are isomorphic to the dual of S,
so all left composition factors are isomorphic to the dual of S. The dual of S, Ee, and
its dual S are simple in E and hence in εSEεS, so εSEεS is quasi-Frobenius. For all
other simple modules S′ in the socle of E but not in HS, any homomorphism in either
direction between a composition factor of εSEεS and S′ is 0. That says εSEεS is a ring
direct factor of E. By induction we get

E ⊇

⎛
⎜⎜⎝ ∏

∃e=e2∈E\R
S∼=eE/eJ(E)

εSEεS

⎞
⎟⎟⎠× C = R, (∗)

where C is the injective hull of the sum of the remaining isomorphism classes of simples
in the socle of E.

Every simple not in C is already mapped to itself by the one-to-one correspondence
between isomorphism classes of simples in the tops of indecomposable projectives of
E and isomorphism classes of simples in the socle, so simple tops in C also appear as
simples in the socle of C. Since all composition factors of C are isomorphic to simples
in the socle of C and in the top of C, if we set εC = 1 −∑{S∼=eE/eJ(E):e/∈R} εS, we get
exactly as for εSEεS that duals of simple C = εCEεC-modules are simple, so C is a
quasi-Frobenius ring.

Since every primitive idempotent in E \ R lies in some εSEεS, the primitive
idempotents in C must lie in R.

The ring R in (∗) is thus a quasi-Frobenius subring of E which contains an essential
R-submodule of E and, because it maps isomorphically onto R/J(R) it also contains
the identity of R. Then E cannot split as RR ⊕ MR unless M = 0. Thus, E = R.
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(ii) implies (iii). We observe that the injective hull of a direct product of rings is
the direct product of the injective hulls of the factors, and there are no non-zero maps
between the injective hulls of the factors, so the extension is rational if and only if the
injective hulls of the factors are rational over the factor rings. So we look at the two
kinds of rings separately.

If R = εSEεS, this is part of Theorem 8.

Let E = C. Let P denote a set of orthogonal primitive idempotents which sum
to 1. For each simple Si in the socle of R, there is a subset Pi ⊆ P such that the
Si-homogeneous component of the socle of R is the socle of

∑
ej∈Pi

ejR. Now look at
the right ideal Ci =∑ej∈Pi

ejE of E. E/J(E) is a product of simple rings, and each of
the factors arises as the top of precisely one of the Ci. In the notation in Proposition 2,
the simple module Sσ−1(i) in the top of Ci is an R-module with

�
((

Sσ−1(i)
)

R

) = |Pi| = � (socle (Ci)) ,

so each idempotent of Pi contributes a distinct R-composition factor of Sσ−1(i),
so there can be no non-zero maps from the R-module Sσ−1(i) to the R-module
Sσ−1(i)/ socle

(
Sσ−1(i)

)
. Then

(
E
/

J (E)
)

R is a rational extension of its socle.
Now let μ ∈ I = {λ ∈ � : λ (1) = 0}. Then ker (μ) + J (E) = E, and since J (E)

is contained in the Jacobson radical of the ring R + J (E) it will be small in E, so
ker (μ) = E and I = 0, and thus, E is a rational extension of R by Proposition 1 . �

It need not be true that all primitive idempotents of E lie in R if E is a rational
extension of RR, as shown in Example 3.

4. Concluding remarks. These results show that compatible ring structures on
E, if they exist, behave very much like the injective module E itself if we have finite
length. Set theoretically distinct injective hulls correspond to set theoretically distinct
compatible ring structures, although all compatible ring structures are isomorphic.
And E is a rational extension of R if and only if the ring structure is set theoretically
unique. By Theorem 9, we know precisely what an Osofsky compatible ring with
ER of finite length must look like. And we have a complete characterization of
Osofsky compatible rings with only one isomorphism class of simples in its socle by
Theorem 8.

To help understand Theorem 8, we can apply it to several examples in Section 2.
For Example 2, the only primitive idempotent is 1, and R is not essential over any
simple in its socle, so R is not Osofsky compatible. For Example 5, [ 0 2�4

0 0 ] does not

have an essential extension in R isomorphic to the right ideal [ 0 0
0 �4

] so it cannot be
Osofsky compatible. For Example 4 the sum in Theorem 8 is not a problem, but the
ring is not quasi-Frobenius. If one modifies that example to look at the ring [ K K KF

0 F ]
the hypotheses in Theorem 8 hold, and indeed the injective hull of this new ring is a
rational extension of it as Proposition 5 shows. For Example 7, Theorems 8 and 9 do
not apply directly, but you can observe that the hypotheses of Theorem 8 hold on each
homogeneous component of the socle individually, and this might or might not give
some insight into the non-rational case.

There is one wide open question remaining on compatible ring structures on
injective hulls of artinian rings, or perhaps just Artin algebras if one wishes to eliminate
examples such as Example 4. The problem is to find ‘nice’ conditions equivalent to the
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existence of a compatible ring structure in the absence of a rational extension. We have
some significant clues from the structure of E/J(E)R developed to prove Theorem 9.
Being able to get a �/J(�)–�/J(�) bimodule structure on the right annihilator of
the left socle of �E is a necessary condition for having a compatible ring structure.
But is it sufficient together with some of the necessary conditions shown above? What
conditions on the artinian ring R, with ER of finite length, are equivalent to R being
Osofsky compatible if R has at least two non-isomorphic simples appearing in its socle
and some principal indecomposable projective with non-simple socle? At this time, we
have no serious conjecture as to what necessary and sufficient conditions might look
like.
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