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Finite groups which are the
product of two nilpotent subgroups

Fletcher Gross

Suppose G = AB where (G 1is a finite group and A and B are
nilpotent subgroups. It is proved that the derived length of G
modulo its Frattini subgroup is at most the sum of the classes
of A and B . An upper bound for the derived length of G in
terms of the derived lengths of A and B also is obtained.

1. Introduction

Suppose (G 1is a finite group which is the product of two nilpotent
subgroups A end B . That G must be solvable was proved by Kegel [5].
It has been conjectured that d(G) , the derived length of G , is at most
e(A) + e¢(B) where c(4) and c¢(B) denote the class of 4 and B ,

respectively. This conjecture has been verified only in two special cases:
(1) when A and B are both abelian (I1t6 [4]), and

(2) when A and B have relatively prime orders (Hall and
Higman [3]).

One of the principal theorems of the present paper is that if D(G) is the
Frattini subgroup of G , then d(G/D(G)) < e(A) + e(B) . As a result, the
problem of finding some upper bound for d(G) in terms of ec(4A) and e(B)
is reduced to finding a bound on d(D(G)) . But D(G) is nilpotent, and,
if P and & are Sylow p-subgroups of A and B , respectively, a
theorem of Wielandt [6] implies that PQ is a Sylow p-subgroup of G .

Hence, if f(x, y) were some function such that whenever S = Pg , where
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S is a p-group and P and & are subgroups, it followed that

d(a) = fle(P), e(Q)) , then it would be true that

d(G) = fle(4), e(B)) + e(4) + e(B) . Thus one consequence of this paper is
that the original problem is reduced to a problem concerning p-groups.
Unfortunately, G/D(G) is abelian if G is a p-group, and so the results

of this paper are trivial for p-groups.

It is also possible to bound d(G/D(G)) in terms of other invariants
of A and B . For example, if the Sylow 2-subgroups of both A4 and B
have class at most 2 , then d(G/D(G)) < d(4)d(B) + 1 . Under a
similar hypothesis, the nilpotent length of G is at most d(4) + d(B) .
In comparing these results with the previous one, it should be remembered
that, in general, d(4) is much smaller than c(4) (to be more specific,

d(4) =1+ log, (c(A)) ). I conjecture that the requirement on the Sylow

2-subgroups of A and B in these theorems is unnecessary.

2. Preliminaries

All groups considered in this paper are finite and solvable. F(G)
and D(G). denote the Fitting and Frattini subgroups of G , respectively.

(n)

G' 1is the derived group of G and G is defined inductively by

+ ’
% - ¢ ana ) (G(")) . d(G) and 1(G) are the derived length
and nilpotent length, respectively, of G . If G is nilpotent, e(G} is
the class of G . If p is a prime, then Zp(G) is the p-length of G

and Op(G) and Op,(G) are the largest normal p-subgroup and p'-sub-

group of G , respectively. OPP.(G) is defined by

Op,(G/Op(G)) = 0pp,(G)/0p(G) . If A and B are subsets of G , then

[A, B] is the subgroup of G generated by all elements of the form
-1
x

(A, B, C] = [[A, B}, C] . CG(A) is the centralizer of 4 in G and

y-l:cy where x €A and y €B . If C is a third subset, then

2(G) 1is the center of G . |S| denotes the number of elements in the set
S .

If n 1is a positive integer, Fn denotes the collection of all

groups G satisfying d(G/D(G)) =n . It is an easy exercise to verify

https://doi.org/10.1017/50004972700043161 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700043161

Finite groups 269

¢ 1) g nilpotent.

that the group G belongs to Fn if, and only if,
It is immediate from this that Fn is a saturated formation in the sense
of Gaschutz [1]. Nn is the collection of all groups G of nilpotent
length at most »n . Nn is also a saturated formation.

LEMMA 1. Suppose G is a growp and F <s a satwrated formation

such that G § F but F contains every proper homomorphic image of G .
Then D(G) =1 and G has only one minimal normal subgrowp.

This follows directly from the definition of a saturated formation.

LEMMA 2. Let G be a growp, p a prime, and P a Sylow p-sub-
grow of G . Assume that Op,(G) = 1 and that either p > 2 or

e(P) =2 . Then d(P/Op(G)) = d(P) - 1.

This follows from [3, Theorem 3.2.1] if p > 3 , from [3, Theorem
3.2.2) if p =3, and from [3, Lemma 1.2.3] if p =2 .

LEMMA 3. Let P be a Sylow 2-subgrowp of G and assume that
e(P) =3. Then d(P) =2 and ZQ(G) =2,

Proof. Without loss of generality, we may assume that 02,(G) =1,
P is not abelian and P(e) c [P, P,P,Pl=1. Hence d(P)=2 . let V
be 02(6)/0[02(6)) written additively. Since [y, x, 2, €] = 1 for all
x and y in P , it follows that if we represent 6/02(6) as a linear
group operating on V , then G/OQ(G) satisfies the hypothesis of Theorem
3.1 of [2]. Hence 1, (6/02(6)) =1 by that theorem. Lemma 3 now follows.

THEOREM 1. Assume that A and B are proper nilpotent subgroups of
the group G such that G = AB . Assume that D(G) = 1 and that G has
only one minimal normal subgroup M . Let p be a prime dividing |M| .
Then M = Op(G) =F(G) # G and one of A and B 18 a Sylow p-subgrowp

of G while the other is a Hall p'-subgrowp of G .

Proof. Since G is solvable, M is an elementary abelian p-group.
Due to the uniqueness of M , F(G) = Op(G) DM . Let J and K be the
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Hall p'-subgroups of 4 and B , respectively. let P and § be the
Sylow p-subgroups of A and B , respectively. Then by a theorem of
Wielandt [6], PQ is a Sylow p-subgroup of G and JK is a Hall
p'-subgroup of G . Since D(G) = 1 , there is a maximal subgroup #
which does not contain M . Then MH = G , and, since M is abelian,
MnH is normal in M{ . Hence M nH =1, eand so H is a complement to
M in G . Then |H#] = |G/M| which implies that H contains a Hall
p'-subgroup of G . Replacing H by a conjugate if necessary, we may

assume that H contains JK .
Since CH(M) is normal in M{ =G and M nH =1 , we must have
C (M) = 1 . Hence C (M) = MC,(M) =M . Next, Mo z(F(G)) is a non-

identity normel subgroup of &G . The minimality of ¥ implies that
Mc 2(F(6)) . Then F(G) S C (M) =M. Hence M=F(G) . If G=M,
then G can have no proper non-identity subgroup which would imply that
IG[ =p . Since A and B are both proper and G = AB , this is
impossible. Thus G # M .

Since MC PQ and (PR, Jk] =1, JNnKC CG(M) = M . Therefore
J nK=1. Now let R= Op,(b') . H 1is isomorphic to G/M and
M= Op(G) . Hence Op(H) =1 . It follows from this that CH(R) = Z(R) .
Now CM(R) is normal in M{ = G and M is a minimal normal subgroup of
G . Thus CM(R) is either 1 or M . But CM(R) = M would imply that
Rc CG(M) = M, an impossibility. Thus CM(R) =1 . Since
CG(R) S Cy(RM = Z(R)M and C,(R) = 1 , we must have C,(R) = 2(R) . But

RcJK and [JK, PrQ) =1 . Hence P n@ =1, which implies that
AnB=1. Therefore |G| = |A]|B| .

l=AMnH and Bl=BMnH. Since AM = M(AMnH) and

Al NM=HnM=1, Al is isomorphic to AM/M which is isomorphic to

the nilpotent group A/(ArM) . Similarly, B, 1is isomorphic to B/{(Bn) .

Clearly J and K are Hall p -subgroups of Al and Bl , respectively.

Thus if L is & p-subgroup of 4; 0B, , then (R, L} c(Jk, L] =1 .

Now let A
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Since CG(R) is a p'-group, it follows that Al n Bl is a p'-group.

Then AlnBl_C_JnK=1 . Hence

4,3, = [a,]18,] = |4]18]/Cjaru] [Broe])

|G|/ (Actt) (BrM)| = |G|/ |M] = |H] .

Since AlBlgH » this implies that AlBl =H and M= (ArM)(Br¥) .

Now AnMC CM(J) .  Therefore CM(J) = (4An¥) (BnMnCM(J)} . But
CM(J) NnBnMc CM(JK) = CM(R) =1 . Thus CM(J) =ANnM ., Similarly

CM(K)=BnM.

Suppose now that [J, K] =1 . Then CM(J) and CM(K) are both
normalized by JK . Since CM(J) n CM(K) =1,
Cd) = [C(9), K] < (M, K] . Since M= [M, K] x C\(K) and
M= CM(J) x CM(K) , we must have [M, K] = CM(J) . Similarly.
M, J] = CM(K) . Since P normalizes J and €& normalizes K , it
follows that PE normalizes both CM(J) and CM(K) . Thus C‘M(J) and
CM(K) are normel in (JP)(KQ) = AB = G ., Due to the minimality of M ,
one of CM(J) and CM(K) is 1 . Assume, say, that CM(J) =1 . Then
CM(K) =M. Hence KC Cy(M) =M andso K=1. Then
Pc CG(J) = C4(JK) < Co(R) = Z(R) which implies that P =1 . It now
follows that A is a Hall p'-subgroup and B is a Sylow p-subgroup.

We now assume that [J, X] # 1 and derive a contradiction. Let
T=1[J, K] . Since T is a p'-group; [M, T} # 1 . From Maschke's
Theorem, there is a subgroup ¥ in M such that ¥ is a minimal normal
subgroup in MJ/K and [N, 7] #1 . If x € N, then x = y2 for some
y € CM(J) and & € CM(K) . Then N D |[x, J]=[3, J] . It follows from
this that Nz € CM/IV
Similarly, y € CN(J) . It now follows that N = CN(J) x CIV(K) .

(JK) = CM(JK)IV/N = N/N . Hence =2z € CN(K) .

Suppose that C”(J) =1 . Ten [N, K] =1 . In that case
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(¥, X, J1 =1 and (N, J, K] = [N, K] =1 . The three subgroups lemma
yields [T, N] =1 . Hence CN(J) # 1 . Similarly CN(K) # 1 . Then both

(#, J] and [N, K] are proper subgroups of N .
Let S be a maximal subgroup of N containing [N, J)] . Then J

)M{J

normalizes S and so (SnCy(K) = (SnC”(K))J C S . Due to the

minimality of N , we must have S n CIV(K) =1 . Since IIV/SI =p , we
must have |CIV(K)| =p . Similarly ]CN(J)] =p and so |N| = p2 .

Then |[N, J]| = p . Since the automorphism group of a group of order
p is abelian, J/CJ(IV) must be sbelian. Similarly K/CK(IV) is abelian.
Now let U = JK/CJK(IV) s Jl = JC'JK(IV)/CJK(N) ,» and Kl = KCJK(IV)/CJK(IV)

are abelian and U =J_ K, . A theorem of |16 [4]

Then Jl and Kl 1%

implies that there is a non-identity normal subgroup of U contained in

either Jl or Kl . Assume then that L is a non-identity normal
subgroup of U and LS J, . Then CN(L) is normal in MJK and

CN(L) # N . The minimality of ¥ implies that CN(L) =1 which
contradicts Cy(L) 2 CN(JZL) = CylJ) # 1 . Tnis contradiction finishes the

proof of the theorem.

3. The main theorems
For the rest of the paper, we assume that 4 and B are nilpotent
subgroups of the group G such that G = 4B .
THEOREM 2. d(c/p(G)) = c(4) + c(B) .
Proof. Let G be a minimal counter-example and let
n=-c(A) + e(B) . If N is a non-identity normal subgroup of G , then

due to the minimality of G we must have d((G/N)/D(G/N)) <=n . Hence
G/N € Fn but G ﬁ:'Fn . Since the theorem is certainly true if G is

nilpotent, A and B must be proper. Applying Lemma 1 and Theorem 1, we
find that (]4|, |B]) =1 and D(¢) = 1 . The theorem now follows from
[3, Theorem 1.2.4].

THEOREM 3. Asswme that the Sylow 2-subgroups of both A4 and B
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have class at most 2 . Then
d(6/p(6)) = d(4)d(B) + 1 .

Proof. Let G be a minimal counter-example and let
n = d(A)d(B) + 1 . Then Fn does not contain G but does contain every

proper homomorphic image of G . By Lemma 1, D(G) =1 and G has
exactly one minimal normasl subgroup M . A and B must be proper and so
the hypothesis of Theorem 1 is satisfied. Thus, without loss of
generality, we may assume that A 1is a Sylow p-subgroup of G , that
M= Op(G) = F(G) , and that B is a Hall p'-subgroup of G . Lemma 2

implies that d(A/M) = d(A) - 1 . Then
d((c/m)/D(G/M)) = (d(4)-1)d(B) + 1 .
Hence, if m=n- d(B) and H =G/M , then H € Fm . As pointed out

earlier, H € F_ if, and only if, glm=1)

is nilpotent. Thus
d(H/F(H)) sm -1 . Since Op(H) =1, d(F(H)) =d(B) . Thus
d(H) =m - 1+ d(B) . This implies that d(G) = d{H) + 1 =<n .

THEOREM 4. Assume that the Sylow 2-subgroups of both A and B
have class at most 3 . Then 1(G) = d(A) + d(B) .

Proof. Let G ©be a minimal counter-example and let
r =d(A) + d(B) . Then Nr contains every proper homomorphic image of G
but does not contain G . Therefore, as in the proof of Theorem 3, we may

assume that F(G) = OP(G) , that A4 1is a Sylow p-subgroup of G , and

that B is a Hall p'-subgroup of G . Let H = G/F(G) . Then

1(G) = 1(H) + 1 = d(B) + d(A/F(G)) + 1. Since G is a counter-example,
we must have d(4/FP(G)) = d(4) . It follows from Lemma 2 that p = 2 and
e(A) = 3 . Then Lemma 3 implies that 12(6) < 2 . Prom this, we obtain

1(G) = 4 . Since 1(G) > d(A) + d(B) , we must have d(B) =1 . Since
F(H) is a 2'-group and CH(F(H)) C P(H) , it follows that H/F(H) is a

2-group. Therefore I(H) =2 . Then U(G) = 3 = d(A) + d(B) and the

theorem is proved.
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