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Abstract

An algebra A is homogeneous if the automorphism group of A acts transitively on the one dimensional
subspaces of A. Suppose A is a homogeneous algebra over an infinite field k. Let La denote left
multiplication by any nonzero element a e A. Several results are proved concerning the structure of A in
terms of La. In particular, it is shown that A decomposes as the direct sum A — ker La © Im La. These
results are then successfully applied to the problem of classifying the infinite homogeneous algebras of
small dimension.
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1. Introduction

The algebras to be discussed are assumed to be finite dimensional over a field k and
are not necessarily associative. We call an algebra A nontrivial if dim A > 1 and
A2 j£ 0. Also, Aut(A) will denote the group of algebra automorphisms of A.

An algebra A is homogeneous if Aut(A) acts transitively on the one-dimensional
subspaces of A. This is a very strong condition indeed and the known examples fall
into two easily described classes. The existence of homogeneous algebras depends
critically on the choice of k, the field of scalars, and a number of results are known
classifying these algebras according to the field. Kostrikin [5] showed how to con-
struct homogeneous algebras of any dimension over the finite field GF(2). Work by
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Shult [7], Gross [3] and Ivanov [4] showed that if k is finite, then there are no algebras
other than those constructed by the method of Kostrikin. Djokovic [1] completely
classified homogeneous algebras over the reals and found only 3 examples, one each
in dimensions 3, 6 and 7. It was shown by Sweet [10] that there are no non-trivial
examples whatsoever when the scalar field is algebraically closed.

The first general study of homogeneous algebras was carried out by Sweet [9],
and subsequently the authors [6, 8] have completely classified the non-trivial algebras
of dimensions 2, 3 and 4 over any field. There it has been shown that no examples
exist other than those found by Kostrikin and by Djokovic. Recently, motivated by
the examples over the reals, Djokovic and Sweet [2] have shown that all non-trivial
homogeneous algebras over any infinite field satisfy x2 = 0 for all x € A, and hence
are anti-commutative.

The main purpose of this paper is to prove the following structure theorem which
applies to homogeneous algebras over any infinite field. For any a € A, La : A ->• A
will denote left multiplication by a.

THEOREM. Let A be a non-trivial homogeneous algebra over an infinite field. Then
for any a € A\{0}, A = kerLa © ImLa.

This theorem has a number of interesting^consequences regarding the possible
structure of infinite homogeneous algebras which will provide important tools in our
continuing program of classifying these algebras.

In all that follows, A will be a non-trivial homogeneous algebra over an arbitrary
infinite field k.

2. Results and proofs

One of the immediate consequences of homogeneity (see [9]) is that all left multi-
plications are projectively similar. More precisely, for any a, b € A, if a e Aut(A)
maps a to Xb, then ctLaa~l = XLb. This fact has been exploited very successfully
in [6] and [8] to classify the homogeneous algebras of dimensions 2, 3 and 4. In
particular we use the matrix representation of La with respect to some suitably chosen
basis. Note that if a, b € A\{0} then rank La = rank Lb. Also if some coefficient of
the characteristic polynomial of La is zero then the corresponding coefficient of the
characteristic polynomial of Lb is also zero.

THEOREM 2.1. Let Abe a nontrivial homogeneous algebra over an infinite field k.
If a e A, then La has no nonzero eigenvalues in k.

PROOF. In [2] it is proved that any homogeneous algebra A over an infinite field
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has the property that x2 = 0 for all x e A. The theorem then follows from Theorem 3
of [8]. •

Our main result, which is Corollary 2.3, follows from the following theorem.

THEOREM 2.2. Let A be a nontrivial homogeneous algebra over an infinite field k.
If a, b e A\{0] and ab = 0, then Im La = Im Lb.

PROOF. Choose a basis B = {bu b2,... bn] of A such that {bu b2,... bs] is a basis
of kerLa and choose another basis C = {cuc2,... cn] suchthatc, = ab{ fats < i < n.
Then the matrix of La with respect to the bases B and C is

O, O

where r = n — s is the rank of La. Let x € Abe arbitrary and let

x2l
X*}

be the matrix of Lx with respect to B and C. Since the rank of Lx + t La = Lx+ta

cannot exceed r for all t e k, we conclude that X{ = O. Hence jc(kerLa) =
Lj(kerL0) C \mLa. Butx is arbitrary~and so A(kerLa) c ImL a . Since b e kerLa,
Afc = Im Lfc c Im La. But rank La = rank Lb and so Im La and Im L;, have the same
dimension. It follows that Im La = Im Lb. •

COROLLARY 2.3. Z^r A be a nontrivial homogeneous algebra over an infinite field
k. If a e A\{0}, then A = ker La 0 Im La.

PROOF. Let b e ker La D Im La. If b ^ 0, then Theorem 2.2 implies that Im La =
Im Lb. But then b € Im Lb, which contradicts Theorem 2.1. Hence ker La D Im La —
{0} and so A = kerLa ©ImZ-a. D

Let A be a nontrivial homogeneous algebra over a field k and let a 6 A. If k is
finite it was shown by Shult [7] that La is either invertible or nilpotent. If k is infinite
the first case is impossible since a2 = 0. Also, if k is infinite the above corollary
implies that the second case is also impossible. In fact, we have a slightly stronger
result.

COROLLARY 2.4. Let A be a nontrivial homogeneous algebra over an infinite field
k. If a € A\{0}, then La cannot have a nonzero nilpotent block in its rational
canonical form.
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Corollary 2.3 says that A can be written as a direct sum of the subspaces ker La and
Im La. We now show that ker La is actually a subalgebra.

THEOREM 2.5. Let A be a nontrivial homogeneous algebra over an infinite field k.
If a e A\{0], then ker La is a zero subalgebra.

PROOF. Assume a e A\{0} and let x e A\{0} be arbitrary. Using Corollary 2.3,
decompose A into A = ker La © Im La. Then using a corresponding basis

\o o~\ pr, x2l
"«=\ n A \ a n d L* = v v •|_0 A,J [_X3 X4J

Using the rank argument as in Theorem 2.2, we conclude that Xx = O for all x e A.
Now let b G ker La\{0}. Then

O

But ab = 0 and so Im La = Im Lb by Theorem 2.2. This implies that B2 = O. Also
Corollary 2.3 implies that At is nonsingular and so B4 is also nonsingular since La

and Lb are projectively similar.
Assume Z?3 ^ O. Then there exists c e kerLa such that be = d e ImLa\{0}.

Since B4 is nonsingular the equation B4x — d must have a unique solution e e Im La.
But then be = be and so b(c — e) = 0. It follows that lmLb = ImLc_,,. Since
c e ker La, we again can assume that

Lc =

On the other hand,

Le =

But now Im Lc_e = Im(Lc — Le) = lmLb = Im La, and this implies that E2 = 0. But
e elmLa and e2 = 0 and so E4 is singular. This is impossible since Le is projectively
similar to La.

Hence B3 = O and therefore ker La is a zero subalgebra. •

COROLLARY 2.6. Lef A be a nontrivial homogeneous algebra over an infinite field k.
/ / a , fc 6 A\{0} andab — 0, tfien kerLfl = kerL^. Also, denoting kerLa\{0} by K*,
the sets K*a partition A\{0}.

PROOF. Assume x e ker Lb. Since a e ker L(,, Theorem 2.5 implies that ax = 0,
and so x e kerLa. Hence kerL^ c kerLa and similarly kerLa c kerL*. Hence
ker La = ker Lb. The proof of the second conclusion is similar. •
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Theorem 2.5 shows that each ker La is a subalgebra. We now show that each Im La

is not a subalgebra.

THEOREM 2.7. Let A be a nontrivial homogeneous algebra over an infinite field k.
Leta,b€ A\{0}. IflmLa =lmLb, thenkexLa = ktvLb.

PROOF. By using an argument similar to that found in Theorem 2.5 it can be shown
that ab = 0 and then the result follows directly from Corollary 2.6. •

COROLLARY 2.8. Let A be a nontrivial homogeneous algebra over an infinite fields.
If a € A\{0}, then Im La is not a subalgebra.

PROOF. Assume ImLa is a subalgebra. Let A = kerLa © ImLa. Suppose b e
Im La\{0}. Then as before

This implies that ImLa = lmLb and so kerLb = kerLa. Thus b e kerLfl n ImLa

which is impossible. D

It is natural to look at the action of an automorphism on ker La and ImLa. The
next result is well known and the proof is easy.

REMARK. Let A be any algebra over a field k. If a e A\{0], a e Aut(A) and
a(a) = b, thena(kerLa) = kerL;, anda(ImLa) = lmLb.

COROLLARY 2.9. Let A be a nontrivial homogeneous algebra over an infinite field k.
If a € Aut(A), a e A\{0} and a(ker La) D kerLa j/= 0, then a(kerLa) = kerLa and

= Im La.

PROOF. The proof follows easily from the above theorem using Corollary 2.6 and
Theorem 2.5. •

We now show that Aut(A) cannot be abelian if A is a nontrivial homogeneous
algebra over an infinite field k (the result is false when k is finite). Let Z (Aut(A))
denote the center of Aut(A).

THEOREM 2.10. Let A be a nontrivial homogeneous algebra over an infinite field k.
If a € Z (Aut(A)) and a € A\{0}, then a(kerLa) = ker La anda(lmLa) = lmLa.
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PROOF. Let a € Z (Aut(A)). We define a new multiplication a o i o n A t o make a
new algebra A" as follows:

a o b = aa(b).

Then if y e Aut(A)

y(aob) = y(aa(b)) = y(a)y(a(b)) = y(a)a(y(b)) = y(a)oy(b)

and so y € Aut(Aa). Thus A" is a homogeneous algebra. Hence

a o a = aa(a) = 0.

Thus a (a) € ker La,Wa e A, and the result follows from Corollary 2.9. •

COROLLARY 2.11. Let A be a nontrivial homogeneous algebra over an infinite
field k. Then Aut(A) is not abelian.

PROOF. This follows immediately from Theorem 2.10. D

The remaining theorems use the direct sum decomposition to study the possible
dimension of ker La.

THEOREM 2.12. Let A be a nontrivial homogeneous algebra over an infinite field k.
If a € A\{0}, r/iendim(kerLa) < (l/2)dim(A).

PROOF. Let r=dim(kerLfl) and n=dim(A). Assume t>n/2. Let {aua2,... , a,}
be a basis of kerLfl and decompose a as A = kerLa © lmLa. It follows from
Theorem 2.5 that each La. is of the form

L - o
where A, is a nonsingular (n — t) x (n — t) matrix.

Since t > n/2 there exists a nontrivial b = X\at + x2a2 + • • • + x,a, such that

Lh =

But then bnn = 0 by Theorem 2.1, and hence Lb is not projectively similar to La. This
is a contradiction and hence t < n/2. •

0

0

*
*

•

0 ..

0

. 0

*

•
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THEOREM 2.13. Let A be a nontrivial homogeneous algebra over an infinite field k.
Ifn = dim A is odd and n > 3, then for a e A\{0}, dim(kerZ,a) < (n — l ) /2.

PROOF. By Theorem 2.12 we know that t = dim(kerLa) < n/2 and so it suffices
to show that t ^ (n —1)/2. Assume otherwise. Decompose A as A = ker La ©Im La.
Let b 6 Im La and let B = [b, b2,... , b,} be a basis for ker Lb. Each bt can be written
uniquely as

bt = Oi + b\,

where a, e kerLa and b\ G ImLo. Let B' = {b, b'2,... , b\}. We claim that B' is an
independent set. For suppose k\b + k2b'2 + • • • + k,b\ = 0. Then

k2b'2 k,b't) = a(kxb + k2b2 k,bt) = 0.

So k{b + k2bt H h k,b, e ker La D ker Lb = {0}. But B is an independent set, and
so B' must also be an independent set.

Let c be any vector in the complement of the span of B' in Im La. Then B' U {c}
is a basis of Im La. Now bib\ = £/#, € Im La and so using any basis for ker La and
B' U [c] as a basis of Im La, we have

Lh. = 0

*

0
0

;

0

0 . . .
0 . . .

0 . . .
•

0 -
0

0

bn
bn

and Lc =

Since c ^ kerLa, the columns of C2 are independent and so rank C2 = t. Also
c & kerZ,a implies that Cx ^ 0 and so rank Ci = 1. Since n > 3 this implies that
there exists a nonzero b' in the span of B' such that

•--[•m-
Since b' & ker La this is impossible. D

Our final result involves a lower bound for dim(kerLfl). First we need the well-
known result described in the following lemma.

LEMMA 2.14. Let M be ann x n matrix with entries from afield k. Suppose M is
skew-symmetric and ma = Ofor 1 < i < n. Ifn is odd, then M is singular.
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THEOREM 2.15. Let A be a nontrivial homogeneous algebra over an infinite field k.
Let a e A\[0}. If dim A is even, then dim(kerLa) > 1.

PROOF. Suppose dim A = n and let a e A\{0). Then decompose A as

A = kerLa ® lmLa.

Let [a, e2,... , en} be the corresponding basis and assume dim(kerLa) = 1. We
consider the top rows of Le2, Le},... , Ltn. Since A is anticommutative these rows are
of the form

Rn 0

R2:

R4:

0
0
0

0

-e24

e23
0
e34

e24
e34
0

e25 •

e3S
e45

• • e2n

• • e3n

.. e4n

— e2n — - e 4 n - e 5 n
0.

Consider x2R2 + x3R3 + • • • + xnRn = 0 . This is a homogeneous linear system
of the form Mx = 0, where M i s a ( n — 1) x (AI — 1) skew-symmetric matrix, with
mii = 0 (we discard the first column). By Lemma 2.14, M is singular and so the
system has nontrivial solutions. Thus there exists a nonzero x € Im La such that

Again this is impossible since x & ker La. This completes the proof. •

3. Homogeneous algebras of small dimension

The general results described in the previous section are strong enough to limit
the possible existence of homogeneous algebras having small dimension. Their real
strength lies in the fact that they do not depend on the choice of the scalar field. These
theorems allow us to dramatically shorten the work involved in classifying dimensions
2,3 and 4, (as reported in [6] and [8]) and to make some additional useful observations.

We first briefly describe the only known examples of infinite homogeneous algebras.
These exist over the real field and are described by Djokovic in [1]. In that paper,
he shows that there are only 3 such algebras. The first two are well-known: the 3-
dimensional algebra consisting of the pure quaternions and the 7-dimensional algebra
consisting of the pure octonions. In both cases the multiplication is redefined to make
x2 = 0. There is also a 6-dimensional algebra T = C3 considered as a real vector
space with multiplication as follows: for JC = (xx,x2,x3) and y = (yx, y2, y3), let

x • y = (x2y3 - x3y2, x3yx - xxy3, xxy2-x2yx).
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We conclude with a summary of the results of applying Theorems 2.12, 2.13
and 2.15 to algebras of dimension up to 7. It may be that any further progress on
classification will depend on specifying the scalar field k.

• Dimension 2 By Theorem 2.15, dim(kerLa) = 2 = dim(A). Thus there
are no non-trivial homogeneous algebras over any infinite field. This result was first
shown in [9].

• Dimension 3 By Theorem 2.12, we must have dim(kerLa) = 1. Such an
algebra exists as described above (also over certain other fields; see [6].

• Dimension 4 By Theorem 2.12, dim(kerLa) < 2, but by Theorem 2.15,
dim(kerLa) > 1. Therefore there are no non-trivial homogeneous algebras over any
infinite field. This is an improvement on the authors' work in [8].

• Dimension 5 According to Theorem 2.13, the only possibility for a homoge-
neous algebra is to have dim(kerLa) = 1. This case has not yet been resolved, but
we conjecture no such algebra exists over any infinite field.

• Dimension 6 According to Theorems 2.12 and 2.15, the only possibility is for
dim(ker La) = 2. Such an algebra does exist over the reals, as described above.

• Dimension 7 By Theorem 2.13, there are two possibilities: dim(kerLa) = 1
or 2. The case of dim(ker La) = 1 can occur: the algebra of pure octonions described
above. The case of dim(ker La) = 2 is unresolved, but we again conjecture no such
algebra exists over any infinite field.
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