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SPECTRAL INCLUSION AND C.N.E.

A. R. LUBIN

1. An n-tuple S = (S, ..., S,) of commuting bounded linear operators
on a Hilbert space H is said to have commuting normal extension if and
only if there exists an n-tuple N = (N, ..., N,) of commuting normal
operators on some larger Hilbert space K O H with the restrictions
Nig=S,i=1,...,n If we take

K =cls. {(N¥h:h € H,J 2 0},

the minimal reducing subspace of N containing H, then N is unique up to
unitary equivalence and is called the c.n.e. of S. (Here J denotes the
multi-index (j1, ..., j.) of nonnegative integers and N*/ = N */t .
N,* and we emphasize that c.n.e. denotes minimal commuting normal
extension.) If » = 1, then S; = S is called subnormal and N, = N its
minimal normal extension (m.n.e.).

P. R. Halmos introduced subnormal operators and, along with J. Bram,
developed much of their basic theory [8], [4], including a characterization
of subnormality intrinsic to S. T. Ito considered the case of c.n.e., i.e.,
n > 1, [12] and extended many of the basic notions. Clearly S has c.n.e.
implies Si, ..., S, are commuting subnormal operators; examples of
commuting subnormals without c.n.e. were first given independently in
(1], [13], and subsequent examples [14], [15] exhibited even greater
pathology. Thus, general commuting subnormal operators are very
difficult to understand, but if there is c.n.e., natural analogs of the single
operator case often hold.

Bram proved [4] that a subnormal operator S satisfies the spectral
inclusion relation 9 (S) C ¢.1(S) C o(S), where 1 (S) denotes ¢(XN), the
spectrum of the m.n.e. of S. J. Bunce and J. Deddens [5], using a C*-
algebraic characterization of subnormality proved o1 (w(S)) C o.(S) for
any *-representation w. W. Hastings extended the spectral inclusion
theorem to the case of c.n.e. as follows [10]:

THEOREM A. Let S have c.n.e. N, and let ¥ denote the closed algebra
(tn B(H)) generated by {S., . .., S,, I} and V"' the double commutant of
{Ny,...N,}. Then

1) o4 (N) Cog(S) and
2) a4 (S) is the polynomial convex hull of o 4+ (N).
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We note that for E C C*, the polynomial convex hull
E'={a= (... \) € Cu[pQ)] = sup{[p(z), z € E}

for all n-variable polynomials p, and for an abelian algebra of operators &/

containing A = (41, ..., 4n), 04 (A) denotes the joint spectrum of A
in the Banach algebra.%, i.e.,
oz (A) = {(#(41),...,¢(4,)) € G

¢ is a multiplicative linear functional on .o/}
= {A € G there is B C .o/ with ¥ B;(4; — \;) = I}.

Thus, this notion of joint spectrum clearly depends on the algebra 7. The
double commutant, being inverse closed, is a natural choice for .27, but
the nature of the spectral inclusion theorem forces the use of two different
algebras, %" and A",

J. Janas [11] also considered the problem of spectral inclusion and
R. Curto [6] has recently proved a spectral inclusion theorem using the
Taylor spectrum. In Section 3 below, we prove a spectral inclusion
theorem using the Waelbroeck-Arveson spectrum for commuting opera-
tors. The Bunce-Deddens result extends easily in this context. The major
tool we use is a result of Bruce Abrahamse which appears in an un-
published alternate version of [1]; we therefore present this interesting
result here. We note that all Hilbert spaces considered below are assumed
to be sparable.

2. We first state some well-known theorems from which the lemma and
theorem of Abrahamse follow by a clever observation. The basic facts
concerning direct integrals as well as proofs of Theorems B and C can be
found in [7, Chapter II]; Theorem D is due to J. Bastian (3],
and Theorems E, F, G are due to Abrahamse. We use the notation
f ® H,dp(x) for the direct integral of Hilbert spaces H, over a compact
set X supporting p in the complex plane. M, denotes the operator on
[ ® H.du(x) defined by (M.f)(x) = xf(x) and 4 on [ @ H.du(x) is
called decomposable if and only if for each x there is an operator 4, on
H, such that the function x — ||4,]| is bounded and Borel measurable
and (4f)(x) = A.f(x) a.e. [p]; Such an operator A4 will be denoted
f ® Azdl-"(x)

THEOREM B (Spectral Theorem). Any normal operator with spectrum X
1s unitarily equivalent to M, on some direct integral spacef ® H.du(x).
Further, M, onf @ H,du(x) is unitarily equivalent to M, onf @ K.dv(x)
if and only if u and v are mutually absolutely continuous and the dimensions
of Hyand K ; are equal a.e. [u].

THEOREM C. An operator onf ® H,du(x) commutes with M, if and only
if it is decomposable.

https://doi.org/10.4153/CJM-1982-060-3 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1982-060-3

SPECTRAL INCLUSION 885

THEOREM D. A4 decomposable operator S = f @ S.du(x) is subnormal if
and only if S; is subnormal on H, a.e. {u].

TueOREM E. In Theorem D, the m.n.e. of Sis N = [ ® N,du(x) on
f ® K, du(x) where N, on K, is the m.n.e. of .S,.

Proof. Since ||N,|| = ||S.|| for all x, N is easily seen to be normal on a
direct integral space and also a minimal extension of .. (The standard
technicalities of fundamental sets and measurability are handled using the
fundamental set off ® H,du(x), the structure of the m.n.e. spaces K,
with respect to H,, and the separability of the various spaces.)

LemMma F. Let S be subnormal on H with m.n.e. N on K. If 4 is normal
in H and SA = AS, then A has normal extension B on K commuting with
N and B is unitarily equivalent to 4.

Proof. Except for the unitary equivalence, this result is well-known.
By Theorem B, there is a unitary U such that UAU* = M, onf @
Hdu(x). By C and D, there is a decomposable operatorf @ S.du(x)
such that each S, is subnormal on H, and USU* = [ & S,du(x). By E,
the m.n.e. N is unitarily equivalent tof @ N.du(x) onf @ K.dp(x)
where N, is the m.n.e. of S,. Clearly, M, onf ® K.,dp(x) is a normal
extension of U4 U* and commutes withf ® S,du(x). If H, is finite
dimensional, then S, is normal [9] and hence H, = K,. If the dimension
of H, is infinite, then dim H, = dim K,, so by again using Theorem B,
A is unitarily equivalent to M, onf K.du(x).

THEOREM G. Let S = (51, S2) have c.n.e. N = (N, Ny) on K. Then for
1 = 1,2, N,is unitarily equivalent to m.n.e. S,.

Proof. We emphasize the obvious fact that in general NV, and the m.n.e.
of S; are not equal. We let M, = m.n.e. (S;) be defined on K;, and we can
clearly assume that K; C K. Then T, = Ny, is a subnormal extension
of S; on K; commuting with M;. By F, M, extends to a normal operator
M, unitarily equivalent to M; commuting with m.n.e. (7). Since N, on
K is a normal extension of T’y and N js a minimal extension of S, we have
N, = m.n.e. (T;) and hence M, = N;. Thus, N, is unitarily equivalent
to m.n.e. (S1) and symmetrically for ¢ = 2.

CoroLLARY 1. Let S = (S, ..., S,) have cnie. N = (Ny, ..., N,).
Then for i = 1, ...n, N; s unitarily equivalent to m.n.e. (S;).

Proof. Suppose n > 2and let M = (M,,..., M,_;) on K’ be the c.n.e.
of (S, ..., Si—1). Then we may assume K’ C K and M, = N|x, and
by induction M, is unitarily equivalent to m.n.e. (S;),2 =1,...,n — 1.

Letting T, = N,|x’, we have m.n.e. (T,) = N,, and by G for 7 = 1,

., n— 1, M, extends to a unitarily equivalent operator, clearly N,
commuting with N,. Thus, N; and m.n.e. (S;) are unitarily equivalent,
and similarly M, and m.n.e. (S,).
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COROLLARY 2. Let S = (Sy, ..., S,) have cne. N = (Ny, ... N,).
Then for any n-variable polynomial p, p(N) is unitarily equivalent to m.n.e.
»(S).

Proof. (Sy,...,S, p(S)) hasc.n.e. (N1, ..., N, p(N)).

Corollary 2 has the following easy but somewhat curious application.

COROLLARY 3. Let K = L2*(u) where u is a Borel measure on C* with
compact support. Let H = H?(u) be the L*(u) closure of the n-variable
polynomials and let p(2) = p(z1, . . ., 2,) be such a polynomial. Let K, be
the closed linear span of

(p(Z)"f(2):m =0,1,....f € H and K,=K O K,.

Let M be the multiplication operator on K defined by Mf = pf and N, and
N, be the normal operators M|k, and M|k, respectively. Then

o(No) Co(Ny) = o(M) = {p(2): z € supp (w)}.

3. Our spectral inclusion theorem uses a notion of joint spectrum due
to L. Waelbroeck and used by W. Arveson [16], [2]. For T a commuting
n-tuple of operators, we define sp (T) to be the set of all complex n-tuples
2 such that p(&) € o(p(T)) for every n-variable polynomial p. (Note
that o denotes the ordinary spectrum.) We state the following lemma due
to Arveson (2, 1.1.2].

LemMa 1. ¢ (p(T)) = p(sp (T)) for every n-variable rational function p
with poles off sp (T)
2). sp (T) = o4(T), where X is the smallest inverse-closed Banach
algebra containing {I, T, . .., T,}.
TaEOREM 1. Let S = (S, ..., S,) have c.n.e. N. Then
sp (N) Csp (S) Csp (N)".
Proof. Let A € sp (N), p be an n-variable polynomial, and N, = m.n.e.
»(S). Then
p(Q) € a(p(N)) = a(IV;) Ca(p(S))
by Corollary 2 and the spectral inclusion theorem. Thus, sp (N) C
sp (S).
Let 2 € sp (S) and fix p. Since p(&) € a(p(S)), we have
lp(W)| = sup {[z]: 2 € a(p(S))} = supflz|: z € o(IV,)}
= sup {|z[: 2 € o(p(N))} = sup {lz]: z € p(sp (N))}
= sup {[p(2)|: z € sp (N)}.
Thus, sp (S) C sp (N)".

We now show sp (N), the normal joint spectrum of S, is invariant under
*-representations. The following theorems are extensions of the single
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operator results of Bunce and Deddens; the proofs from [5] extend im-
mediately to this case.
THEOREM 2. S = (S, ..., S,) has c.n.e. if and only if
Y. B*S*'S'B; = 0 for every finute set {B ;) C C*(S),
I,J

where C*(S) is the C*-algebra generated by {1, S,, . . ., S,}.

THEOREM 3. Let S have c.n.e. Then X € sp (S) if and only if there exists
a > 0and polynomial p such that

IZJ (B*S8*7(p(S) — p(A)*((S) — p(2))S"B,)
za ), B*S*'S’B,
for every finite set { B ;} C C*(8S). "

COROLLARY. If S has c.n.e. and 7 is a *-representation, then w(S) has
cne.andsp (w(S)) Csp (S).
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