SPECTRAL INCLUSION AND C.N.E.

A. R. LUBIN

1. An n-tuple $S = (S_1, \ldots, S_n)$ of commuting bounded linear operators on a Hilbert space H is said to have commuting normal extension if and only if there exists an n-tuple $N = (N_1, \ldots, N_n)$ of commuting normal operators on some larger Hilbert space $K \supset H$ with the restrictions $N_i|_H = S_i$, $i = 1, \ldots, n$. If we take

$$K = \text{c.l.s.} \{ N^{*J}h : h \in H, J \ge 0 \}.$$

the minimal reducing subspace of N containing H, then N is unique up to unitary equivalence and is called the c.n.e. of S. (Here J denotes the multi-index (j_1, \ldots, j_n) of nonnegative integers and $\mathbf{N}^{*J} = N_1^{*j_1} \ldots N_n^{*j_n}$ and we emphasize that c.n.e. denotes minimal commuting normal extension.) If n = 1, then $S_1 = S$ is called subnormal and $N_1 = N$ its minimal normal extension (m.n.e.).

P. R. Halmos introduced subnormal operators and, along with J. Bram, developed much of their basic theory [8], [4], including a characterization of subnormality intrinsic to S. T. Ito considered the case of c.n.e., i.e., n > 1, [12] and extended many of the basic notions. Clearly S has c.n.e. implies S_1, \ldots, S_n are commuting subnormal operators; examples of commuting subnormals without c.n.e. were first given independently in [1], [13], and subsequent examples [14], [15] exhibited even greater pathology. Thus, general commuting subnormal operators are very difficult to understand, but if there is c.n.e., natural analogs of the single operator case often hold.

Bram proved [4] that a subnormal operator S satisfies the spectral inclusion relation $\partial \sigma(S) \subset \sigma_{\perp}(S) \subset \sigma(S)$, where $\sigma_{\perp}(S)$ denotes $\sigma(N)$, the spectrum of the m.n.e. of S. J. Bunce and J. Deddens [5], using a C^* -algebraic characterization of subnormality proved $\sigma_{\perp}(\pi(S)) \subset \sigma_{\perp}(S)$ for any *-representation π . W. Hastings extended the spectral inclusion theorem to the case of c.n.e. as follows [10]:

THEOREM A. Let **S** have c.n.e. **N**, and let \mathcal{S} denote the closed algebra (in B(H)) generated by $\{S_1, \ldots, S_n, I\}$ and \mathcal{N}'' the double commutant of $\{N_1, \ldots, N_n\}$. Then

- 1) $\sigma_{\mathcal{N}''}(\mathbf{N}) \subset \sigma_{\mathcal{S}''}(\mathbf{S})$ and
- 2) $\sigma_{\mathscr{S}}(S)$ is the polynomial convex hull of $\sigma_{\mathscr{N}''}(N)$.

Received March 18, 1981 and in revised form October 15, 1981. This research was partially supported by NSF Grant MCS78-01442.

884 A. R. LUBIN

We note that for $E \subset \mathbb{C}^n$, the polynomial convex hull

$$E^{\wedge} = \{ \lambda = (\lambda_1, \ldots, \lambda_n) \in \mathbb{C}^n : |p(\lambda)| \leq \sup \{|p(\mathbf{z})|, \mathbf{z} \in E\} \}$$

for all *n*-variable polynomials p, and for an abelian algebra of operators \mathcal{A} containing $\mathbf{A} = (A_1, \ldots, A_m)$, $\sigma_{\mathscr{A}}(\mathbf{A})$ denotes the joint spectrum of \mathbf{A} in the Banach algebra \mathcal{A} , i.e.,

$$\sigma_{\mathscr{A}}(\mathbf{A}) = \{ (\phi(A_1), \dots, \phi(A_n)) \in \mathbf{C}^n :$$
 ϕ is a multiplicative linear functional on $\mathscr{A} \}$

$$= \{ \lambda \in \mathbf{C}^n : \text{ there is } \mathbf{B} \subset \mathscr{A} \text{ with } \sum B_i(A_i - \lambda_i) = I \}.$$

Thus, this notion of joint spectrum clearly depends on the algebra \mathscr{A} . The double commutant, being inverse closed, is a natural choice for \mathscr{A} , but the nature of the spectral inclusion theorem forces the use of two different algebras, \mathscr{S}'' and \mathscr{N}'' .

- J. Janas [11] also considered the problem of spectral inclusion and R. Curto [6] has recently proved a spectral inclusion theorem using the Taylor spectrum. In Section 3 below, we prove a spectral inclusion theorem using the Waelbroeck-Arveson spectrum for commuting operators. The Bunce-Deddens result extends easily in this context. The major tool we use is a result of Bruce Abrahamse which appears in an unpublished alternate version of [1]; we therefore present this interesting result here. We note that all Hilbert spaces considered below are assumed to be sparable.
- 2. We first state some well-known theorems from which the lemma and theorem of Abrahamse follow by a clever observation. The basic facts concerning direct integrals as well as proofs of Theorems B and C can be found in [7, Chapter II]; Theorem D is due to J. Bastian [3], and Theorems E, F, G are due to Abrahamse. We use the notation $\int \oplus H_x d\mu(x)$ for the direct integral of Hilbert spaces H_x over a compact set X supporting μ in the complex plane. M_x denotes the operator on $\int \oplus H_x d\mu(x)$ defined by $(M_x f)(x) = x f(x)$ and A on $\int \oplus H_x d\mu(x)$ is called decomposable if and only if for each x there is an operator A_x on H_x such that the function $x \to ||A_x||$ is bounded and Borel measurable and $(Af)(x) = A_x f(x)$ a.e. $[\mu]$; Such an operator A will be denoted $\int \oplus A_x d\mu(x)$.

THEOREM B (Spectral Theorem). Any normal operator with spectrum X is unitarily equivalent to M_x on some direct integral space $\int \oplus H_x d\mu(x)$. Further, M_x on $\int \oplus H_x d\mu(x)$ is unitarily equivalent to M_x on $\int \oplus K_x dv(x)$ if and only if μ and v are mutually absolutely continuous and the dimensions of H_x and K_x are equal a.e. $[\mu]$.

THEOREM C. An operator on $\int \oplus H_x d\mu(x)$ commutes with M_x if and only if it is decomposable.

THEOREM D. A decomposable operator $S = \int \oplus S_x d\mu(x)$ is subnormal if and only if S_x is subnormal on H_x a.e. $[\mu]$.

THEOREM E. In Theorem D, the m.n.e. of S is $N = \int \oplus N_x d\mu(x)$ on $\int \oplus K_x d\mu(x)$ where N_x on K_x is the m.n.e. of S_x .

Proof. Since $||N_x|| = ||S_x||$ for all x, N is easily seen to be normal on a direct integral space and also a minimal extension of \mathscr{S} . (The standard technicalities of fundamental sets and measurability are handled using the fundamental set of $\int \oplus H_x d\mu(x)$, the structure of the m.n.e. spaces K_x with respect to H_x , and the separability of the various spaces.)

Lemma F. Let S be subnormal on H with m.n.e. N on K. If A is normal in H and SA = AS, then A has normal extension B on K commuting with N and B is unitarily equivalent to A.

Proof. Except for the unitary equivalence, this result is well-known. By Theorem B, there is a unitary U such that $UAU^* = M_x$ on $\int \oplus H_x d\mu(x)$. By C and D, there is a decomposable operator $\int \oplus S_x d\mu(x)$ such that each S_x is subnormal on H_x and $USU^* = \int \oplus S_x d\mu(x)$. By E, the m.n.e. N is unitarily equivalent to $\int \oplus N_x d\mu(x)$ on $\int \oplus K_x d\mu(x)$ where N_x is the m.n.e. of S_x . Clearly, M_x on $\int \oplus K_x d\mu(x)$ is a normal extension of UAU^* and commutes with $\int \oplus S_x d\mu(x)$. If H_x is finite dimensional, then S_x is normal [9] and hence $H_x = K_x$. If the dimension of H_x is infinite, then dim $H_x = \dim K_x$, so by again using Theorem B, A is unitarily equivalent to M_x on $\int K_x d\mu(x)$.

THEOREM G. Let $S = (S_1, S_2)$ have c.n.e. $N = (N_1, N_2)$ on K. Then for $i = 1, 2, N_i$ is unitarily equivalent to m.n.e. S_i .

Proof. We emphasize the obvious fact that in general N_i and the m.n.e. of S_i are not equal. We let $M_1 = \text{m.n.e.}$ (S_1) be defined on K_1 , and we can clearly assume that $K_1 \subset K$. Then $T_2 = N_2|_{K_1}$ is a subnormal extension of S_2 on K_1 commuting with M_1 . By F, M_1 extends to a normal operator M_1' unitarily equivalent to M_1 commuting with m.n.e. (T_2) . Since N_2 on K is a normal extension of T_2 and N is a minimal extension of S, we have $N_2 = \text{m.n.e.}$ (T_2) and hence $M_1' = N_1$. Thus, N_1 is unitarily equivalent to m.n.e. (S_1) and symmetrically for i = 2.

COROLLARY 1. Let $\mathbf{S} = (S_1, \ldots, S_n)$ have c.n.e. $\mathbf{N} = (N_1, \ldots, N_n)$. Then for $i = 1, \ldots, N_i$ is unitarily equivalent to m.n.e. (S_i) .

Proof. Suppose n > 2 and let $\mathbf{M} = (M_1, \ldots, M_{n-1})$ on K' be the c.n.e. of (S_1, \ldots, S_{n-1}) . Then we may assume $K' \subset K$ and $M_i = N_i|_{K'}$, and by induction M_i is unitarily equivalent to m.n.e. (S_i) , $i = 1, \ldots, n-1$. Letting $T_n = N_n|_{K'}$, we have m.n.e. $(T_n) = N_n$, and by G for $i = 1, \ldots, n-1$, M_i extends to a unitarily equivalent operator, clearly N_i , commuting with N_n . Thus, N_i and m.n.e. (S_i) are unitarily equivalent, and similarly M_n and m.n.e. (S_n) .

A. R. LUBIN

COROLLARY 2. Let $\mathbf{S} = (S_1, \ldots, S_n)$ have c.n.e. $\mathbf{N} = (N_1, \ldots, N_n)$. Then for any n-variable polynomial $p, p(\mathbf{N})$ is unitarily equivalent to m.n.e. $p(\mathbf{S})$.

Proof.
$$(S_1, \ldots, S_n, p(\mathbf{S}))$$
 has c.n.e. $(N_1, \ldots, N_n, p(\mathbf{N}))$.

Corollary 2 has the following easy but somewhat curious application.

COROLLARY 3. Let $K = L^2(\mu)$ where μ is a Borel measure on \mathbb{C}^n with compact support. Let $H = H^2(\mu)$ be the $L^2(\mu)$ closure of the n-variable polynomials and let $p(\mathbf{z}) = p(z_1, \ldots, z_n)$ be such a polynomial. Let K_1 be the closed linear span of

$$\{\overline{p(\mathbf{z})}^m f(z) \colon m = 0, 1, \ldots; f \in H\}$$
 and $K_2 = K \ominus K_1$.

Let M be the multiplication operator on K defined by Mf = pf and N_1 and N_2 be the normal operators $M|_{K_1}$ and $M|_{K_2}$ respectively. Then

$$\sigma(N_2) \subset \sigma(N_1) = \sigma(M) = \{ \rho(\mathbf{z}) \colon \mathbf{z} \in \text{supp } (\mu) \}.$$

3. Our spectral inclusion theorem uses a notion of joint spectrum due to L. Waelbroeck and used by W. Arveson [16], [2]. For T a commuting n-tuple of operators, we define sp (T) to be the set of all complex n-tuples α such that $\beta(\alpha) \in \sigma(\beta(T))$ for every n-variable polynomial β . (Note that α denotes the ordinary spectrum.) We state the following lemma due to Arveson [2, 1.1.2].

LEMMA 1. $\sigma(p(T)) = p(\operatorname{sp}(T))$ for every n-variable rational function p with poles off $\operatorname{sp}(T)$

2). sp $(\mathbf{T}) = \sigma_{\mathcal{R}}(\mathbf{T})$, where \mathcal{R} is the smallest inverse-closed Banach algebra containing $\{I, T_1, \ldots, T_n\}$.

Theorem 1. Let $S = (S_1, \ldots, S_n)$ have c.n.e. N. Then

$$\mathrm{sp}\ (N)\,\subset\mathrm{sp}\ (S)\,\subset\mathrm{sp}\ (N)\hat{\ }.$$

Proof. Let $\lambda \in \operatorname{sp}(\mathbf{N})$, p be an n-variable polynomial, and $N_p = \operatorname{m.n.e.} p(\mathbf{S})$. Then

$$p(\lambda) \in \sigma(p(\mathbf{N})) = \sigma(N_p) \subset \sigma(p(\mathbf{S}))$$

by Corollary 2 and the spectral inclusion theorem. Thus, sp $(N) \subset sp(S)$.

Let $\lambda \in \text{sp }(\mathbf{S})$ and fix p. Since $p(\lambda) \in \sigma(p(\mathbf{S}))$, we have

$$\begin{aligned} |p(\lambda)| &\leq \sup \{|z| \colon z \in \sigma(p(\mathbf{S}))\} = \sup \{|z| \colon z \in \sigma(N_p)\} \\ &= \sup \{|z| \colon z \in \sigma(p(\mathbf{N}))\} = \sup \{|z| \colon z \in p(\mathbf{sp}(\mathbf{N}))\} \\ &= \sup \{|p(\mathbf{z})| \colon \mathbf{z} \in \mathbf{sp}(\mathbf{N})\}. \end{aligned}$$

Thus, sp $(S) \subset sp (N)^{\hat{}}$.

We now show sp (N), the normal joint spectrum of S, is invariant under *-representations. The following theorems are extensions of the single

operator results of Bunce and Deddens; the proofs from [5] extend immediately to this case.

THEOREM 2. $S = (S_1, \ldots, S_n)$ has c.n.e. if and only if

$$\sum_{I,J} B_I^* \mathbf{S}^{*J} \mathbf{S}^I B_J \ge 0 \quad \text{for every finite set } \{B_I\} \subset C^*(\mathbf{S}),$$

where $C^*(\mathbf{S})$ is the C^* -algebra generated by $\{I, S_1, \ldots, S_n\}$.

THEOREM 3. Let **S** have c.n.e. Then $\lambda \in \text{sp }(S)$ if and only if there exists $\alpha > 0$ and polynomial p such that

$$\sum_{I,J} (B_I * \mathbf{S}^{*J} (p(\mathbf{S}) - p(\lambda)) * (p(\mathbf{S}) - p(\lambda)) \mathbf{S}^I B_J)$$

$$\geq \alpha \sum_{I,J} B_I * \mathbf{S}^{*J} \mathbf{S}^I B_J$$

for every finite set $\{B_I\} \subset C^*(\mathbf{S})$.

COROLLARY. If **S** has c.n.e. and π is a *-representation, then $\pi(S)$ has c.n.e. and sp $(\pi(S)) \subset \text{sp }(S)$.

References

- 1. M. B. Abrahamse, Commuting subnormal operators, Ill. J. Math. 22 (1978), 171-176.
- 2. W. Arveson, Subalgebras of C*-algebras II, Acta Math. 128 (1972), 271-308.
- J. J. Bastian, A decomposition of weighted translation operators, Trans. Math. Soc. 224 (1976).
- 4. J. Bram, Subnormal operators, Duke Math. J. 22 (1955), 75-94.
- 5. J. Bunce, and J. Deddens, On the normal spectrum of a subnormal operator, Proc. Amer. Math. Soc. 63 (1977), 107-110.
- 6. R. E. Curto, Spectral inclusion for doubly commuting subnormal n-tuples, (preprint).
- J. Dixmier, Les algebres d'operateurs dans l'espace Hilbertien (Gauthier-Villars, Paris, 1969).
- P. R. Halmos, Normal dilations and extensions of operators, Summa. Brasil. Math. 2 (1950), 125-134.
- 9. —— A Hilbert space problem book (Van Nostrand, Princeton, 1967).
- W. Hastings, Commuting subnormal operators simultaneously quasisimilar to unilateral shifts, Ill. J. Math. 22 (1978), 506-519.
- J. Janas, Lifting commutants of subnormal operators and spectral inclusion, Bull. Acad. Polon. 26 (1978).
- T. Ito, On the commutative family of subnormal operators, J. Fac. Sci. Hokkaido, Sec. I 14 (1958), 1–15.
- A. R. Lubin, Weighted shifts and products of subnormal operators, Ind. U. Math. J. 26 (1977), 839-845.
- A subnormal semigroup without normal extension, Proc. Amer. Math. Soc. 68 (1978), 133-135.
- 15. —— Extensions of commuting subnormals, Lecture Notes in Math. 693 (Springer-Verlag), 115-128.
- L. Waelbroeck, Le calcule symbolique dans les algebras commutatives, J. Math. Pures Appl. 33 (1954), 147-186.

Illinois Institute of Technology, Chicago, Illinois