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SPECTRAL INCLUSION AND C.N.E. 

A. R. LUBIN 

1. An w-tuple S = (Si, . . . , Sn) of commuting bounded linear operators 
on a Hilbert space H is said to have commuting normal extension if and 
only if there exists an w-tuple N = (iVi, . . . , Nn) of commuting normal 
operators on some larger Hilbert space K D H with the restrictions 
Nt\H = Sit i = 1, . . . , n. If we take 

K = c.l.s. {N*'A: heH,J^0], 

the minimal reducing subspace of N containing H, then N is unique up to 
unitary equivalence and is called the c.n.e. of S. (Here / denotes the 
multi-index (ji, . . . , jn) of nonnegative integers and N* J = Ni*jl . . . 
Nn*

jn and we emphasize that c.n.e. denotes minimal commuting normal 
extension.) If n = 1, then Si = S is called subnormal and Ni — N its 
minimal normal extension (m.n.e.). 

P. R. Halmos introduced subnormal operators and, along with J. Bram, 
developed much of their basic theory [8], [4], including a characterization 
of subnormality intrinsic to S. T. Ito considered the case of c.n.e., i.e., 
n > 1, [12] and extended many of the basic notions. Clearly S has c.n.e. 
implies Si, . . . , Sn are commuting subnormal operators; examples of 
commuting subnormals without c.n.e. were first given independently in 
[1], [13], and subsequent examples [14], [15] exhibited even greater 
pathology. Thus, general commuting subnormal operators are very 
difficult to understand, but if there is c.n.e., natural analogs of the single 
operator case often hold. 

Bram proved [4] that a subnormal operator S satisfies the spectral 
inclusion relation da(S) C c±(S) C o"(S), where a±(S) denotes cr(iV), the 
spectrum of the m.n.e. of S. J. Bunce and J. Deddens [5], using a C*-
algebraic characterization of subnormality proved o-j_(7r(S)) C O"_L(S) for 
any "^representation ir. W. Hastings extended the spectral inclusion 
theorem to the case of c.n.e. as follows [10]: 

THEOREM A. Let S have c.n.e. N, and let £f denote the closed algebra 
(in B(H)) generated by {Si, . . . , Sn, I) and JV" the double commutant of 
{Ni,...NH}. Then 

1) <^"(N) C < r ^ ( S ) and 
2) ay (S) is the polynomial convex hull of o>" (N). 
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We note that for E C Cn, the polynomial convex hull 

£T = {1 = (Xlf . . . XJ G Cn: \p(l)\ ^ sup {\p(z)\, z ^ ) 

for all w-variable polynomials p, and for an abelian algebra of operators s/ 
containing A = (Ah . . . , Am), cr^(A) denotes the joint spectrum of A 
in the Banach algebras/ , i.e., 

cr„(A) = \(4>(A1)9...14>(An)) e Cn: 

0 is a multiplicative linear functional o n j / ) 

= {1 G Cw: there is B C j / with £ 5 , ( 4 , - X,) = / } . 

Thus, this notion of joint spectrum clearly depends on the algebra S$. The 
double commutant, being inverse closed, is a natural choice for s/, but 
the nature of the spectral inclusion theorem forces the use of two different 
algebras, 5 " ' and Jf". 

J. Janas [11] also considered the problem of spectral inclusion and 
R. Curto [6] has recently proved a spectral inclusion theorem using the 
Taylor spectrum. In Section 3 below, we prove a spectral inclusion 
theorem using the Waelbroeck-Arveson spectrum for commuting opera­
tors. The Bunce-Deddens result extends easily in this context. The major 
tool we use is a result of Bruce Abrahamse which appears in an un­
published alternate version of [1]; we therefore present this interesting 
result here. We note that all Hilbert spaces considered below are assumed 
to be sparable. 

2. We first state some well-known theorems from which the lemma and 
theorem of Abrahamse follow by a clever observation. The basic facts 
concerning direct integrals as well as proofs of Theorems B and C can be 
found in [7, Chapter II]; Theorem D is due to J. Bastian [3], 
and Theorems E, F, G are due to Abrahamse. We use the notation 
/ 0 Hxdix(x) for the direct integral of Hilbert spaces Hx over a compact 
set X supporting /x in the complex plane. Mx denotes the operator on 
J © Hxdn(x) defined by (Mxf)(x) = xf(x) and A on / © Hxdix(x) is 
called decomposable if and only if for each x there is an operator Ax on 
Hx such that the function x —» \\AX\\ is bounded and Borel measurable 
and (Af)(x) = Axf(x) a.e. [/x]; Such an operator A will be denoted 
J © Axdfx(x). 

THEOREM B (Spectral Theorem). Any normal operator with spectrum X 
is unitarily equivalent to Mx on some direct integral space J © Hxdn(x). 
Further, Mx on J © Hxdn(x) is unitarily equivalent to Mx on j © Kxdv(x) 
if and only if JX and v are mutually absolutely continuous and the dimensions 
of Hx and Kx are equal a.e. [/z]. 

THEOREM C. An operator onj® Hxdn(x) commutes with Mx if and only 
if it is decomposable. 
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THEOREM D. A decomposable operator S = J © Sxdn(x) is subnormal if 
and only if Sx is subnormal on Hx a.e. [/x]. 

THEOREM E. In Theorem D, the m.n.e. of S is N = J © Nxdn(x) on 
j © Kxdtx{x) where Nx on Kx is the m.n.e. of Sx. 

Proof. Since \\NX\\ = \\SX\\ for all x} N is easily seen to be normal on a 
direct integral space and also a minimal extension of $f. (The standard 
technicalities of fundamental sets and measurability are handled using the 
fundamental set of J 0 Hxdn(x), the structure of the m.n.e. spaces Kx 

with respect to Hx, and the separability of the various spaces.) 

LEMMA F. Let S be subnormal on H with m.n.e. N on K. If A is normal 
in H and SA = AS, then A has normal extension B on K commuting with 
N and B is unitarily equivalent to A. 

Proof. Except for the unitary equivalence, this result is well-known. 
By Theorem B, there is a unitary U such that UAU* = Mx on J 0 
Hxdfji(x). By C and D, there is a decomposable operator J 0 Sxd^i(x) 
such that each Sx is subnormal on Hx and USU* = / © SxdjjL(x). By E, 
the m.n.e. N is unitarily equivalent to J © Nxdn(x) on j © Kxdix(x) 
where Nx is the m.n.e. of Sx. Clearly, Mx on J © Kxdfx(x) is a normal 
extension of UAU* and commutes with j © Sxdii(x). If Hx is finite 
dimensional, then Sx is normal [9] and hence Hx = Kx. If the dimension 
of Hx is infinite, then dim Hx = dim Kx, so by again using Theorem B, 
A is unitarily equivalent to Mx on J Kxd^x(x). 

THEOREM G. Let S = (Si, S2) have c.n.e. N = (Nu N2) on K. Then for 
i = 1,2, Ni is unitarily equivalent to m.n.e. St. 

Proof. We emphasize the obvious fact that in general Nt and the m.n.e. 
of St are not equal. We let Mi = m.n.e. (Si) be defined on K1} and we can 
clearly assume that K\ C K. Then T2 = N2\KI is a subnormal extension 
of S2 on Ki commuting with Mi. By F, Mi extends to a normal operator 
Mi unitarily equivalent to Mi commuting with m.n.e. (T2). Since N2 on 
K is a normal extension of T2 and N is a minimal extension of S, we have 
N2 = m.n.e. (T2) and hence Mi = Ni. Thus, iVi is unitarily equivalent 
to m.n.e. (Si) and symmetrically for i = 2. 

COROLLARY 1. Let S = (Si, . . . , Sn) have c.n.e. N = (Nu . . . , Nn). 
Then for i = 1, ... n, Ni is unitarily equivalent to m.n.e. (Si). 

Proof. Suppose n > 2 and let M = (Mu . . . , Mn-i) on Kr be the c.n.e. 
of (Si, . . . , Sn-i). Then we may assume K' <Z K and Mt = Ni\K>, and 
by induction Mt is unitarily equivalent to m.n.e. (Sz), i = I, . . . , n — 1. 
Letting Tn = Nn\K>, we have m.n.e. (Tn) = Nn, and by G for i = 1, 
. . . , n — 1, Mt extends to a unitarily equivalent operator, clearly Nu 

commuting with Nn. Thus, Ni and m.n.e. (S<) are unitarily equivalent, 
and similarly Mn and m.n.e. (Sn). 
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COROLLARY 2. Let S = (Sh .. . , Sn) have c.n.e. N = (Nh . . . Nn). 
Then for any n-variable polynomial p, p(N) is unitarily equivalent to m.n.e. 
MS). 

Proof. (Si, . . . , Sn, £(S)) has c.n.e. (Nu • . • , Nn, p(N)). 

Corollary 2 has the following easy but somewhat curious application. 

COROLLARY 3. Let K = L2(M) where /x is a Borel measure on Cn with 
compact support. Let H = H2(ix) be the L2(M) closure of the n-variable 
polynomials and let p{z) = p(zi, . . . , zn) be such a polynomial. Let K} be 
the closed linear span of 

{p{z)mf{z): m = 0, 1, . . . ; / G H} and K2 = K 0 Kx. 

Let M be the multiplication operator on K defined by Mf = pf and N\ and 
Ni be the normal operators M\Kl and M\K2 respectively. Then 

a(N2) C cr(iVi) = a(M) = \p(z): Z £ supp (/*)}. 

3. Our spectral inclusion theorem uses a notion of joint spectrum due 
to L. Waelbroeck and used by W. Arveson [16], [2]. For T a commuting 
w-tuple of operators, we define sp (T) to be the set of all complex w-tuples 
à such that p(X) Ç a(pÇT)) for every w-variable polynomial p. (Note 
that a denotes the ordinary spectrum.) We state the following lemma due 
to Arveson [2, 1.1.2]. 

LEMMA 1. a(p(T)) = p(sp (T)) for every n-variable rational function p 
with poles off sp (T) 

2). sp (T) = o\a(T), where 3% is the smallest inverse-closed Banach 
algebra containing {I, T1} . . . , Tn). 

THEOREM I. Let S = (Su . . . , Sn) have c.n.e. N. Then 

sp (N) C sp (S) C sp ( N r . 

Proof. Let X £ sp (N), p be an n-variable polynomial, and Np = m.n.e. 
p(S). Then 

P(l) € a(p(N)) = a(Np) C er(p(S)) 

by Corollary 2 and the spectral inclusion theorem. Thus, sp (N) C 
sp (S). 

Let 1 G sp (S) and fix p. Since p(X) G <r(p(S)), we have 

\P(X)\ ^ sup {|*|: z G <r(p(S))\ = sup{|s|: z £ <r(7Vp)} 

= sup {|s|: z G cr(^(N))} = sup {\z\: z Ç £(sp (N))} 

= sup{|£(z) | : z 6 sp (N)} . 
Thus, sp (S) C sp (N)*. 

We now show sp (N), the normal joint spectrum of S, is invariant under 
""-representations. The following theorems are extensions of the single 
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operator results of Bunce and Deddens; the proofs from [5] extend im­
mediately to this case. 

THEOREM 2. S = (Su • • • » Sn) has c.n.e. if and only if 

22 BI*S*JSIBj ^ 0 for every finite set {B 7} C C*(S), 

wfeere C* (S) is /fee C*-algebra generated by {I,S1} . . . ,Sn}. 

THEOREM 3. Let S have c.n.e. Tfeew à £ sp (S) if and only if there exists 
a > 0 and polynomial p such that 

Z CB7*S*^(S) - PW)*(£(S) - P(X))S'Bj) 
I, J 

è « I S , * S * ; S ' S ; 

/or every finite set {B 7} C C*(S). 

COROLLARY. / / S feas c.n.e. awd 7r is a *-representation, then 7r(S) feas 
c.n.e. and sp (TT(S)) C sp (S). 
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