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Abstract

We present a new derivation of the polynomial identities satisfied by certain matrices A
with entries AtJ (i, j = 1,...,n) from the universal enveloping algebra of a semi-simple
Lie algebra. These polynomial identities are exhibited in a representation-independent
way as p(A) = 0 where p(x) (herein called the characteristic polynomial of A) is a
polynomial with coefficients from the centre Z of the universal enveloping algebra. The
minimum polynomial identity m(A) = 0 of the matrix A over Z is also obtained and it is
shown that p(x) and m(x) possess properties analogous to the characteristic and
minimum polynomials respectively of a matrix with numerical entries. Acting on a
representation (finite or infinite dimensional) admitting an infinitesimal character these
polynomial identities may be expressed in a useful factored form. Our results include the
characteristic identities of Bracken and Green [1] as a special case and show that these
latter identities hold also in infinite dimensional representations.

1. Introduction

In this article we present a simple derivation of the polynomial identities
satisfied by certain matrices with entries from a semi-simple Lie algebra (in finite
or infinite dimensions). Identities of this form are not new and have a long
history. Polynomial identities satisfied by the infinitesimal generators of Sl(2, C)
were employed by Dirac [2] in a study of relativistically invariant wave equations.
Later it was shown by Lehrer-Ilamed [13] that n2 elements chosen from the
universal enveloping algebra of any Lie algebra satisfy n2 identities which, in
certain instances, could be written as a single polynomial identity of degree n for
a n n X n matrix.
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258 M.D.Gould [2J

Polynomial identities satisfied by the infinitesimal generators of various classi-
cal groups were also encountered by Louck [14, 15], Mukunda [16] and Galbraith
[15]. Bracken and Green [1] derived the characteristic identities, in finite dimen-
sional irreducible representations, for the Lie groups GL(«), O(«) and Sp(/i) for
general n. The results of Bracken and Green [1] have since been extended to finite
dimensional representations of an arbitrary semi-simple Lie algebra by Hanna-
buss [9] using earlier work of Weyl (see also Okubo [18] and Gould [6]).

Recent work of Kostant [12] shows in fact that such polynomial identities hold
also in infinite dimensions. The connection between Kostant's work and the work
of Bracken and Green was investigated by O'Brien, Carey and Cant [17] using
techniques based on the earlier work of Lehrer-Ilamed. By extending the classical
Cayley-Hamilton theorem to the universal enveloping algebra of gl(«,C) they
demonstrated that the identities of Bracken and Green may be written as a
polynomial identity with coefficients from the centre of the universal enveloping
algebra. In particular the identities of Bracken and Green must hold in infinite
dimensional representations. The techniques of Bracken and Green have also
recently been extended to graded Lie algebras (Jarvis and Green [11]).

In this paper we present a new, simple derivation of the polynomial identities
for an arbitrary semi-simple Lie algebra. It shall be shown that such polynomial
identities may be written in a representation-independent way as a polynomial
identity with coefficients from the centre of the universal enveloping algebra. As a
result of this one sees, in particular, that the polynomial identities satisfied by the
infinitesimal generators of an arbitrary semi-simple Lie group hold also in infinite
dimensional representations. Various properties of these identities (such as
minimality) are also investigated. In the course of our investigation it shall be
shown that, unlike the special case treated by O'Brien et al. [17], that these
polynomial identities do not, in general, follow from the Cayley-Hamilton theo-
rem. Finally we conclude by considering some interesting examples.

2. Notation and fundamentals

Our notation follows that of Humphreys [10]. Let L be a complex semi-simple
Lie algebra of rank /, let U be the universal enveloping algebra of L, and let Z be
the centre of U. Select a Cartan subalgebra H of L, with dual space H* and let $
denote the set of roots of L relative to H. Let $ + denote the system of positive
roots and take 8 to be half the sum of the positive roots. Finally let A+ c H* be
the set of dominant integral linear functions on H and let W denote the Weyl
group.

For any v e H* let TF denote the translation map defined by
T , ( A ) X + J » foranyAe/ /* .
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The translated Weyl group W is defined as the conjugate r_sWrs of W in the
group of invertible affine transformations of H*. Thus every element of W is of
the form

a = T.jonj,

where a e W.W therefore acts on H* according to

a(X) = a(X + 8) - 8 foranyXetf*.

Now let U{H) c U denote the universal enveloping algebra of H. It is often
convenient to identify U(H) with the ring of polynomial functions on H*. The
Weyl group Wacts on U(H) where if a e Wand h <= U(H), X e H*, then

Similarly the translated Weyl group acts on U(H) according to

(6h)(X) = hia-^X)) = h(a-l(\ + 8)- 8).

Now let B be the nilpotent subalgebra of L spanned by root vectors xa e L
corresponding to roots a e $ + . For any z e Z it is known (see Humphreys [10])
that there is a unique element fz e U(H) such that

z-fz^UB. (2.1)

Accordingly one obtains an algebra homomorphism Z -* U(H) defined by
z -»fz. Following Harish-Chandra and Dynkin one, in fact, has the following
result:

THEOREM 1. For any z e Z one has fz e U(H)1^ and the map Z -» U(H)i*',
z —»/z, is a« algebra isomorphism {called the Harish-Chandra isomorphism).

By virtue of this result one may identify Z with the ring of ^-invariant
polynomial functions on H*. Moreover if / = rank L = dim H one obtains, from
the above result, the well known fact that Z is generated as an algebra by /
algebraically independent invariants.

For example, let g I(/i, C) be the Lie algebra of all n X n complex matrices. This
Lie algebra is not semi-simple but nevertheless is reductive and all the above
results apply. For this it is well known that the centre of the universal enveloping
algebra is generated by n algebraically independent invariants

/m = t r ( £ m ) , m = l,2,...,n,

where Etj is the elementary matrix with 1 in the (/, j) position and zeros
elsewhere and where we define

k-l k=l
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From equation (2.1) the invariants Im determine polynomial functions fm which
are well known to be given by the W'-invariant polynomials

r_i r i*\ Xr- X, - r + I

where A = (A1,... ,An)isan arbitrary weight. Clearly this is the eigenvalue of the
invariant Im on a maximal weight state of weight A. (See for example Edwards [4]
and Okubo [18].)

Returning to the general case we define an infinitesimal character x as an
algebra homomorphism of Z into the scalars C. If zx,... ,z, e Z are algebraically
independent then a character x is uniquely determined by the scalars x(z,) which
may be arbitrary complex numbers.

We say that a module M over U admits an infinitesimal character if the
elements of the centre Z take constant values on M. Such a module determines an
algebra homomorphism

where XM(Z) is the eigenvalue of the central element z on M. In such a case we
say that M admits the infinitesimal character XM- If vo *s a maximal weight vector
of weight A e H* then v0 determines an algebra homomorphism

where Xx(z) *s the eigenvalue of z e Z on v0. In view of equation (2.1) we see that
X\ is uniquely determined by

For example, if F(A) is a finite dimensional irreducible representation with
highest weight A e A+ and z e Z then Schur's lemma shows that z takes a
constant value on F(A). Since K(A) has a highest weight vector (which is unique)
of weight A this eigenvalue is necessarily given by X\(z)- Thus ^(A) admits the
infinitesimal character xv In particular when z = CL is the universal Casimir
element these eigenvalues are given by the well known formula

where ( , ) denotes the inner product induced on H* by the Killing form.
The characters X\ play a fundamental role in character analysis since it is a

theorem of Harish-Chandra (see Humphreys [10]) that every infinitesimal char-
acter x over Z is of the form x = X\ f°r some A e H*. In view of Theorem 1 it is
clear that the infinitesimal character Xx does not characterize the weight A
uniquely since it may happen that Xx = X/i. M G H*, but A =£ fi. One in fact has
the following result due to Harish-Chandra (see [10]).

THEOREM 2. xx = XM if and only //A and y. are W-conjugate:
i.e. A = o(n + 8) - 8 for some a e W.

https://doi.org/10.1017/S0334270000004501 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000004501


I51 Semi-simple Lie algebras 261

In summary one sees that corresponding to any maximal weight vector v0 of
weight X e H* is an algebra homomorphism XA: Z -* C where Xx( r) ' s t r i e

eigenvalue of the central element z on c0. Conversely every z e Z determines a
(W'-invariant) polynomial function on H* given by A -» Xx(z)-

We conclude this section with a well known result due to Harish-Chandra (see
Warner [19] and Dixmier [3]).

THEOREM 3. Let the notation be as above. Let u e U be an arbitrary {non-zero)
element of the universal enveloping algebra of L. Then there exists a finite dimen-
sional representation IT of L such that IT(U) ¥= 0.

REMARK. In view of the proof of this theorem and Ado's famous theorem one
sees that this result holds not just for semi-simple Lie algebras but for arbitrary
Lie algebras.

3. Polynomial identities

Throughout we shall let F(X) be a fixed (but arbitrary) finite dimensional
irreducible module over U with highest weight X e A+. Let {Xx, X2,...,\k) be
the set of distinct weights in F(X) occurring with multiplicities n(l), n(2), . . . ,n(k)
respectively.

Now U may be imbedded in U ® Uby the diagonal homomorphism

d: U -* U 9 U,

defined for x e L by

dx = x ® l + l ® x ,

which is extended to an algebra homomorphism to all of U. In general du for
arbitrary u e U is a more complicated expression which may be written

du = Zur9or, (3.1)
r

where ur, vr £ U. Now let Y be the algebra

Y= [EndF(X)] 9 U,

and let wx be the representation afforded by F(X). Following Kostant [12] we
consider the map

3: U-+ Y
defined for x G l b y

3(x) = 7TX(X) ® 1 + 1 ® x,
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which we extend to an algebra homomorphism to all of U. More generally if
u e U with du as in equation (3.1) we have

9 ( « ) = I > A ( « J ® ^ (3-2)
r

From this one sees that 3(u) may be viewed as a d X d matrix (d = dimF(X))
with entries from U.

Throughout the remainder of this paper we let z e Z be a fixed (but arbitrary)
element of Z. We let z denote the matrix

z = - * [ 3 ( * ) - i r x ( z ) ® l - l ® z ] . (3.3)

We choose this form since when z = CL (the universal Casimir element) we obtain

CL = - i [ 3 ( Q ) - *A(CL) ® 1 - 1 ® CL].

Now let {xl5.. . ,xm} (m = dimL) be a basis for L and let {x1,. ..,xm} be the
corresponding dual basis w.r.t. the Killing form. With respect to this basis the
universal Casimir element may be written

m

= E
r = l

A

r

xrxr =

m

m

E x xr

5xr.

whence we obtain
m

(3-4)

Thus in the case z = CL one sees that CL is a matrix with entries from L. In
particular when wx is the fundamental contragredient vector representation one
obtains the matrix considered by Bracken and Green [1] (see also Gould [7]) for
the classical groups.

Suppose now that V([i) is a finite dimensional irreducible module over U with
highest weight | i e A + and let nj, be the representation afforded by V(fi). One
may extend wM to an algebra homomorphism

#M: [EndF(X)] ® U -* EndF(X) ® EndF(ju),
defined by

D- ® II• —^ 7 O- ® IT i li I

r | I ^^^ r| II \ I / '

i i

where p, e End F(X) and M, G t/. In particular if z is the matrix defined by
equation (3.3) then

Clearly #M(z) is an operator on the tensor product space F(X) ® F(/i). For
notational convenience, in the following we shall identify z and #M(z). A basis
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[7] Semi-simple Lie algebras 263

may be chosen for F(X) ® K(/i) for which z is represented by a diagonal matrix.
The eigenvalues of z are uniquely determined by the infinitesimal characters
occurring in the reduction of V(X) ® F(/x) into irreducible representations of *L.
Moreover one knows that the infinitesimal characters occurring are of the form
XM+x, where { \ v . . . ,\k} denotes the set of distinct weights of V(\). In fact it is
not hard to show that the highest weights of the representations occurring in
F(X) ® V(n) are of the form ju + X, for /x + X, e A+. The eigenvalues of z on the
space V(\) ® V(n) are therefore of the form

The correspondence

M -* -2[x»+\,(z) ~ XAO) - X (̂

determines a polynomial function on H*. We henceforth denote this polynomial
function by f2i,

[ ] f6fl*. (3-5)

From these remarks it follows that on V(n) the matrix z, as defined by
equation (3.3), satisfies the polynomial identity

n(2-/z.,00) = 0. (3.6)
1 = 1

This result in fact follows from the easily established fact that a diagonal matrix
D with distinct eigenvalues dx,...,dk satisfies the polynomial identity

k

i - i

The translated Weyl group acts on the polynomial functions f2l according to

o o , ( M ) ] (3.7)

From Theorem 1 one knows that

and moreover one sees that the weight a-1(/i) + X, is H -̂conjugate to /x + a(X,).
This occurs since

Hence, again by Theorem 1, one has
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Substituting into equation (3.7) gives

4 ~X\(Z) ~

However it is known (see Humphreys [10]) that the Weyl group W permutes the
distinct weights Xv...,Xk of V(X). Hence there exists a permutation IT of the
numbers l,...,k such that a(X,) = Xff(l). Hence

Thus W acts on the polynomial functions fzl by permuting them amongst
themselves. From this it follows that any symmetric combination of the fz,
determines a W'-invariant polynomial function. For example the function

/= LfZ>
i-i

would determine a ^-invariant polynomial.
We have shown that on any finite dimensional irreducible representation with

highest weight n e A+ that the polynomial identity (3.6) holds. Expanding the
L.H.S. of equation (3.6) into powers of z one sees that this identity may be written

is,»J'-' = 0, (3.8)

where Sz0 = 1 and Sz r (r > 1) is the polynomial function defined by

Now the Szr are symmetric in the / z , from which it follows, in view of our
previous remarks, that they are J^-invariant polynomial functions. Hence, from
Harish-Chandra's theorem, there exists elements

which may be identified with the Sz r under the Harish-Chandra homomorphism:

XM(Q,J = S,,r(n), /i e i/*.

Hence equation (3.8) may be written

Z x , ( C j ^ r = (>- Q,o = l- (3-9)
r = 0

As remarked earlier z is a <f X d matrix (d = dim F(A)) with entries from t/.
Let us therefore choose an orthonormal basis ex,... ,ed for the space V{\). With
respect to this basis the entries of the matrix z may be written ztJ. More generally
if u e U with 8(«) as in equation (3.2) one has
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[9] Semi-simple Lie algebras 265

With this definition one sees that entries of powers of the matrix z are given
recursively by

(z"% = £ (z-l)lkzkJ = £ z , , ( l " - % , m>\.
k=l k=\

The matrix equation (3.9) is thus equivalent to the d2 identities

which must hold on an irreducible representation of L with highest weight

JUG A+.

We are now in a position to prove our main result.

THEOREM 4. The matrix 2 satisfies the following polynomial identity

or equivalently the d2 identities
k

E c,,rs*~'= °.

PROOF. From equation (3.9) we know that z satisfies the polynomial identity

Ex,(Q,r)z*- = o
r-0

on a finite dimensional irreducible representation with highest weight f i £ A+.
Replacing the eigenvalues xM(Q,r) w i t n *he (representation-independent) opera-
tors Cz r one sees that z satisfies the polynomial identity

r-0

on all finite dimensional irreducible representations. In view of Weyl's theorem of
complete reducibility this identity is thus satisfied on all finite dimensional
representations. Equivalently the d2 identities

k

I C , , r z* - '= 0, i,j=l,...,d. (3.10)
r = 0

must hold on all finite dimensional representations. However for each /, j
( = \,...,d) the L.H.S. of this equation is a well defined element of U which,
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from the remarks above, necessarily vanishes on all finite dimensional representa-
tions. From Theorem 3 it follows therefore that the identities (3.10) hold as
identities in the universal enveloping algebra. This proves the theorem. Q. E. D.

COROLLARY. Let V be any representation of L {finite or infinite dimensional)
which admits an infinitesimal character x^ M G H*- Then on V, z satisfies the
polynomial identity

PROOF. By simply reversing the argument presented in Theorem 4 we see that
on V, z satisfies the polynomial identity

$
where we have replaced the central elements Czt. by their eigenvalues xfL(.Cz r) =
Sz r(p)- From the form of the polynomial functions Sz r(/n) we see that this
identity may be written in the convenient product form

( G ) = 0. Q.E.D.

The above shows that the polynomial identity (3.6) holds on any representation
admitting an infinitesimal character x̂ » /* e H* arbitrary. In the special case
where z = CL one sees that the polynomial functions fzi are given by

Because of the special nature of this case we denote these polynomial functions by
the special convention

/,(M) = H*. * + 2«) " HK *i + 2(M + 8)).
Hence the identity

11 ( Q - KX, X + 28) + \(X,, X,. + 2(M + 8))) = 0,
/=i

holds on any representation admitting xM
 a s an infinitesimal character. These

identities include the identities of Bracken and Green [1] as a special case.
By varying the (reference) representation V(\) and the central element z one

obtains a whole series of polynomial identities. Examples of these more general
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identities appear in the work of Green [8] who considers the case where L is the
Lie algebra gl(w,Q, z = CL, and where ITX is one of the tensor representations.
These tensor identities of Green are thus also special cases of our general result
and shows that these latter identities of Green hold also in infinite dimensions.

Higher order central elements may be obtained by taking traces of powers of
the matrix CL, viz.

Im = tr(C?)= E(Cf),,,
1 = 1

[/m,*] = 0 f o r x e L .

Corresponding to each central element z = Im is a whole series of polynomial
identities. The polynomial functions fzi may be obtained explicitly, for these
higher order cases, from the character formula (see Gould [6])

XM(O = E "(0/.00 11+ , . x •

REMARK. From the point of view of constructing a full set of invariants

Im = tr(CD,
it suffices to consider the simplest possible choice for the reference representation
ITX and hence CL. For example if we take -nx to be the fundamental vector
representation of the classical Lie groups we obtain the Gel'fand invariants of
GL(/J ) , O(«) and Sp(/i). Corresponding to each Gel'fand invariant is a whole
series of tensor (or spinor) identities.

From now on we write the polynomial identity (3.10) in the form

p,A*) = °
where pzX(x) is the polynomial over Z given by

A.x(*) = E CI>r**-'.
r = 0

We have explicitly included the highest weight label X as a subscript to
emphasize the dependence of the coefficients Cz r on the label A. We call pzX{x)
the characteristic polynomial of z.

4. Properties of the characteristic polynomial

It is well known that the centre Z of U is an integral domain (i.e. a
commutative ring with identity which admits no non-zero divisors of zero) and as
such may be imbedded, in a natural way, in its field of quotients (see Dixmier [3]).
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Thus we may apply the techniques of polynomial algebras and Galois theory to
the algebra Z. Following the language of Galois theory we let Z[x] denote the
algebra of all polynomials in the indeterminate x with coefficients from Z. Then it
is easily seen that Z[x] is also an integral domain.

For example we see that the characteristic polynomial/^ x(x) of the matrix z is
an element of Z[x]. Throughout we assume z is a fixed but arbitrary nontrivial
(i.e. z <£ C) element of Z.

For our purposes it is also useful to consider the algebra U(H) (the universal
enveloping algebra of the C.S.A. H) which may be identified with the ring of
polynomial functions on H* in a natural way (see Section 2). Then U(H) is also
an integral domain. For notational convenience we denote the algebra U(H) by
A. We denote the set of H^-invariant elements of A = U(H) by A. Then Theorem
1 shows that the algebras Z and A are isomorphic (Harish-Chandra's isomor-
phism). So A is also an integral domain. If z G Z is arbitrary we denote the image
of z in A under the Harish-Chandra homomorphism by fz G A.

Since A and A are integral domains we may consider the polynomial algebras
A[x] and A[x] which are also integral domains. Then since A and Z are
isomorphic we have a natural isomorphism between A[x] and Z[x] which we also
call the Harish-Chandra isomorphism. If q(x) G Z[x] we denote its isomorphic
image in A[x] by q(x) G A[x].

Also since the translated Weyl group W acts naturally on A we see that W has
a natural action on A[x]; viz. if

n

q(x) = £Crx
r, Crf=A,

r = 0

we define the polynomial
n

»?(*) = L °(Cr)*
r for aUdelf.

r-0

With this definition it follows that A[x] is the subalgebra of A[x] fixed by all
elements of W, that is

Ax] = {q(x) eA[x]\6q(x) = q{x), for all a <= W).

We find it convenient to work with the polynomial algebras A[x] and A[x]
because the image of the characteristic polynomial/^ x(x) G Z[x], that is, p2>x(x)
G A[x], splits into linear factors over A;

where fzl are the polynomial functions on H* given by equation (3.5).
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The characteristic polynomial^ x(x) of the matrix z need not in general be the
minimum polynomial. This follows from the observation (see Appendix A) that
the polynomial functions/r,(/i) need not be distinct (although it turns out that
they are distinct if L is a simple Lie algebra). Suppose that the number of distinct
ones is n (< k) and that the/z , are numbered so that the polynomial functions
fz i> • • • Jz,n a r e distinct. Further for each / e {1,...,«} let H, be the multiplicity of
the polynomial functions/,, in the sequence {/zl,.. • , / . ,*}• We now define the
W'-invariant polynomial functions

S;,r = ( - ! ) ' E /*..,•••/,.,,, r=l,...,n,
l</1</2< •• • </r<n (4.1)

That the S'z r in fact determine W'-invariant polynomial functions on H* follows
from the fact that W permutes the polynomial functions fz,. Using Harish-
Chandra's theorem we may associate with each of these W'-invariant polynomial
functions the central elements

C/o = 1, Q',r> r = l,...,n,
where

x,(c;,r) = s;ir(M), nor. (4.2)
We call the polynomial over Z defined by

«,,;(*) = t Cir*"-r (4-3)
r = 0

the mim'mum polynomial of z.

THEOREM 5. (a) The matrix z satisfies the polynomial identity

"»,,A(*) = 0.

(b) Ifz satisfies the identity

q{2) = 0 withq(x) e Z[x]

then mzX(x) divides q(x) over Z; i.e. there exists r(x) e Z[x] such that

q(x) = r(x)mzX(x).

PROOF, (a) Let F(/x) be a finite dimensional irreducible representation of L.
Then the distinct eigenvalues of z on the space V{\) ® K(/x) are contained in the
set {/z,,(^)}?-i- Moreover since z = - \[vx ® ̂ ( z ) - TTX(Z) <8> 1 - 1 ® TT^Z)]

may be diagonalized on F( \ ) ® K(/x) it follows that on V(fi) the matrix z
satisfies
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270 M. D. Gould 1141

Expanding the L.H.S. of this equation into powers of z (see equations (4.1)-(4.3))
we see that the identity

is satisfied on an irreducible representation with highest weight /J G A+. Follow-
ing the proof of Theorem 4 we thus deduce that the identity

n

£ c;j"~r = o (4.4)
r-0

is satisfied on all finite dimensional representations. Theorem 3 then implies that
the identities (4.4) hold as identities in the universal enveloping algebra. This
proves part (a).

(b) Suppose q(x) e Z[x] is such that q(z) = 0. Let q(x) G A[x] denote the
image of q(x) under Harish-Chandra's homomorphism. Then we may define the
polynomial functions

Now choose | i £ A + such that the weights n + \, (i = l,...,k) belong to A+.
Following Kostant [12] we say that A is subordinate to /x. In such a case the
irreducible representations F(ju + \ , ) all occur in V(X) <8> F(/i) with full multi-
plicity. Thus acting on V(n) the matrix z has eigenvalues fz ,(ju) (/ = l , . . . , n ) .
Since q(z) = 0 we must have

4K/z,/)(/ i) = 9i(/ t) = 0 for all ju such that X is subordinate to p.

But then by Kostant [12] Propositions (4.1)-(4.2) we must have

<7,(/i) = 0 for all JUG H*.

This implies that

$(/, , ,) = 0 f o r / = 1,. . . ,«.

We thus deduce, since t h e / , , are all distinct, that ^(x) is divisible by
n

i-l

where wr x(x) e ^4[x] is the image of mz x(x) G Z[x] under Harish-Chandra's
isomorphism. Put q(x) = fhz x{x)r(x) where r(x) e A[x]. (See Appendix B for
details.) By the W'-invariance of q(x), mzX(x) G A[X], we have

™2,\(x)°~r(x) = «(JC) = mZiX(x)f(x) for all a G W.

Since /4[x] is an integral domain we thus have

or (x) = r(x) forallaGff',
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i.e. r(x) G A[x]. Thus we may factor q(x) over A according to

Now let q(x), mz x(x), r(x) e Z[x] be the images of q(x), mzX(x), f{x) e A[x]
under Harish-Chandra's isomorphism. Then we have

i.e. mzX(x) divides q(x) over Z. This establishes the result. Q.E.D.

Although the polynomials mzX(x), pzX(x) e ZW n e ed n o t be equal it turns
out that for a large number of cases the characteristic and minimum polynomials
are the same. In particular we have the following results.

THEOREM 6. (L simple). Let z e Z be non-trivial i.e. z <£ C. Then
(a) The characteristic roots fzl,... ,fzk are distinct.
(b) The characteristic polynomial of z is the minimum polynomial, that is

PROOF. In view of our previous results part (b) follows immediately from part
(a). Thus it suffices to prove part (a). We proceed by contradiction. For suppose
on the contrary

fi,,=fij for some/#y.

This implies

X,+x,(*) = X , + * > ) f o r a l l / i e / f .

Replacing n by p — \j we thus obtain

where v = \ , - Xy. Furthermore using ff'-invariance we have

Xa(ii) + AZ) = Xo((i)(Z) = X,i(z) = XfL + AZ) = Xa{ii) + a(v)\Z)

for all ) i e F , a E ^ f o E W).

Thus we deduce

XM(*) = XM+.(,,(^) for all p E / f ( c 6 f .

Now let A(»<) denote the set of all FF-conjugates of v. Since L is simple, A(J»)
contains a basis v1,...,v,oi H*. We denote the set of all linear combinations of
?!,...,!», with integer coefficients by £r c ^*. From the above we easily deduce
that
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Also for ix e H* fixed (but arbitrary)

determines a polynomial function on H* which vanishes on Ev. However Ev is
Zariski dense in H* (see Humphreys [10], pages 132-134). Thus, since polynomial
functions are continuous in the Zariski topology on H* we deduce

i>M(p) = 0 for all p e / / * .

Thus, since /x e H* was arbitrary, we have

P)i(p) = 0 for all m , p e i / * .

That is,

( ) for all , i , p e / f .

Clearly this can only occur if Xp.(z) = a G C for all /i e H* i.e. z e C contrary to
our choice of z. Thus our assumption was false and we have

fz.,*f,,j for/ *j. Q.E.D.

THEOREM 7. {L semi-simple). Let pLX(x), mLX{x) e Z[x] be the characteristic
and minimum polynomials respectively of CL where CL is the universal Casimir
element of L. Then

PROOF. AS for Theorem 6 it suffices to show that the characteristic roots

/ ( / i ) = i(A, X + 28) - 1(X,, X, + 2(ft + 5)), i = 1,.. . ,* ,

are all distinct. Suppose/, = fy We then have

(xj - x,, M) = i(*,, K) - tth> XJ) +(XJ ~ x->8)-
Since the R.H.S. is independent of \i we have (X^ - X,, p.) = c for some c e C.
Evaluating at fi = 0 we obtain (Xy - X,, /i) = 0 for all fi e //*. Since the inner
product induced on H* by the Killing form is non-degenerate this forces X, = X̂
whence i = j . This establishes the result. Q. E. D.

The algebra A together with the roots fzl,... ,fzn of the minimum polynomial
mz x(x) e A[x] generate an algebraic extension AzX of A, that is,

The extension is algebraic since the/z, satisfy the identity

where mz x(x) e A[x]. It is our aim to show that the extension AzX of A is in fact
a normal extension. Before proceeding we establish some notation.
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DEFINITION. Let p(x) be a polynomial with coefficients from an integral domain
A. Set

N

P(x)= £<*,*', a,eA.
1 = 0

The largest positive integer N s.t. aN =t 0 is called the degree ofp(x) and is denoted

3(/>(*))•
A polynomial p(x) £ A[x] is called reducible over A ifp(x) can be decomposed

p{x) = q(x)r{x), q(x),r(x)f=A[x],

with d(q(x)) > 1, d(r(x)) > 1. If p(x) cannot be so decomposed we call p(x) an
irreducible polynomial over A.

LEMMA 1. The algebraic extension AzX = A[fzl,... ,fzn] is a normal extension of
A; i.e. any irreducible polynomial p(x) e A[x] with a root in AzX splits into linear
factors over Az x. The associated Galois group of this extension is the translated Weyl
group W.

PROOF. Since p(x) e A[x], we have, by H^-invariance,

6p(x)=p(x) for all a e W.

Now suppose p(x) has a root fi G AZX. Then we may factorize p(x) over AzX

according to

p(x) = (x-fi)g(x), g(x) e AZtX[x].

By the W'-invariance of p(x) we thus have

p(x) = (x - S(fi))5g(x) where ag(x) e AzX[x].

(Note that Az x is invariant under W since W permutes the roots / . 1 ; . . . ,fz n and

leaves A invariant.) Thus p(x) is divisible by factors (x — d((i)) as a runs

through the elements of W. Now let

be the distinct H'-conjugates of 0. Then p{x) must be divisible by the polynomial
(see Appendix B)

i - i

Since the /?, are all W'-conjugate we thus deduce 6m(x) = m(x) for all a e W,
i.e. m{x) e A[x]. By the irreducibility of p{x) over A we must therefore have

p{x) = am{x) for some a G A.

By definition the Galois group of this extension is W. Q. E. D.
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REMARKS. In the above theorem we used the fact that W acts on the polynomial
functions fzl,... ,fzn by permuting them around. This implies that AzX is mapped
onto itself by W, i.e. AzX is left invariant by W.

In the above we exploited the fact that the polynomial algebra Z[x] is
isomorphic to the algebra A[x] which can be imbedded in a larger algebra A[x].
The advantage of this procedure is that the minimum polynomial mz x(x) may be
identified with its image mz x(x) e A[x] which splits over A into linear factors.
Following O'Brien et al. [17] we can define quite abstractly roots of the minimum
polynomial mz x(x) independently of this isomorphism as follows.

From the general theory of polynomial algebras the centre Z may be imbedded
in an extension field over which the polynomial mz x{x) splits into linear factors

The roots az, together with the centre Z generate an algebraic extension of Z
given by

zz,x = z t«z,i ' - ••>«*,*]•
In applications it is useful to regard the operators az, as elements of an

algebraic extension of Z which commute with the elements of U and which, when
acting on a representation admitting infinitesimal character xM, M e H*, take
constant values given by

The roots az, are thus operator generalizations of the polynomial functions/z,(/i)
and are useful for obtaining representation-indendent results.

It is clear that, since both the algebras ZzX and AzX are minimal extension
domains of Z = A over which the minimum polynomial splits into linear factors,
we must have

Hence as a result of Lemma 1 we obtain

T H E O R E M 8. The extension ZzX = Z[azl,.. .,az n] is a normal extension with

Galois group W.

In general the characteristic polynomial pzX(x) is not irreducible over Z (this
occurs in particular if pz x(x) =£ mzX(x)). We conclude by obtaining necessary
and sufficient conditions for pz x(x) to be irreducible over Z. Before proceeding
we establish some notation.

Let •< denote the usual ordering induced on H* by the positive roots; that is
X >• /x if and only if X — p is a sum of positive roots. Now given /x e H* let A(/x)
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denote the set of distinct weights ^-conjugate to fi. Also given X e A+ let T(X)
denote the set of weights ft e A+ satisfying /n =s; X. Then the set of distinct weights
occurring in V(\), X G A+, is given by the set

U

This result follows from the well known result (see Humphreys [10]) that the
weights occurring in V(X) consist of all n e A+ such that /i =£ X together with
their W-conjugates. Finally let/z „, v e H*, denote the polynomial functions

/ , . » = ~i[xA+,(*) ~ Xx(*) - XM(*)] for all ju e H*.

We assume, in the following, that the characteristic polynomial;?., x(x) e Z[x]
is minimal (which is always the case when L is simple).

THEOREM 9. (Characteristic polynomial minimal). The polynomial pz x(x) e Z[x]
may be factored into irreducible polynomials over Z in 1-1 correspondence with all
weights n e A+ such that /it =£ X.

PROOF. In the above notation the image pZi\(x) e A[x] of pz-\(x) e Z[x]
(under Harish-Chandra isomorphism) splits into linear factors over AzX according
to

/U*)= n n (x-u-
pGT(X)

Now consider the polynomials

<x(*)= n
Since W acts on the roots fz „ according to (see equation (3.7) and remarks
following)

«/,,,=/,.„(,) for all a G W{a & W)

it follows that Wpermutes the roots of mp
zX(x). Thus

6mz\(x) = mz\(x) f o r a11 ° e ^

i.e. w£x(;c) e y4[x]. Clearly w^x(x) is irreducible over A since the roots fzv

(v G A(p)) are all pairwise W'-conjugate. If mp
zX(x) denotes the image of fh"z x(x)

in Z[x] we see thatpzX(x) splits into irreducible polynomials over Z according to

This is enough to establish the result.
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COROLLARY. pZt\(x) is irreducible over Z if and only if characteristic roots fz,
(/ = l,...,k) are distinct (i.e. mz x(x) = pz x(x)) and X e A+ is minimal where we
say that X is minimal if and only if \i G A + with fi =«: X implies n = X.

Note that every semi-simple Lie algebra possesses minimal dominant integral
weights. For g [(«, C) these are the weights of the form (1,6) corresponding to the
antisymmetric tensor representations.

Finally we note that Theorem 5 implies that the minimum polynomial mzX{x)
necessarily divides/>zX(x). In fact (in the notation of the above theorem) mz x(x)
is necessarily a product of the irreducible polynomials m"zX(x) (for some p e
F(X)). We remark also that the Cayley-Hamilton theorem, as applied by O'Brien
et al. [17], would yield a monic polynomial identity of degree d (= dim V(X)) as
distinct from the minimum polynomial derived here of degree n (< k = number
of distinct weights in

5. Some examples

We conclude by giving the polynomial identities satisfied by the matrix CL for
some simple cases of interest.

(i) Consider the case where L is the Lie algebra of g[(«,C) which is n2

dimensional with basis atj (i, j = 1,... ,/j) satisfying the commutation relations

[«,;.«*/] = skja»- suakj-

The centre Z in this case is generated by the invariants

Im = t r ( f l
m ) ,

where (am)IJ is defined recursively according to

{am),j= ta,Mm-l)kj= t(am-l),kakj.
k=\ k"\

Let 77* be the fundamental contragredient vector representation. The matrix CL

in this case is given by

where Etj is a typical n X n elementary matrix (1 in the (i, j) position and zeros
elsewhere). This is the matrix

"a,, a,, • • • a,

a =

12 "In

hi a n ••• a2n

anl an2
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considered by Green [8] for g I(/I, C). Since the representation w* is n-dimensional
and all its weights occur with unit multiplicity one sees that the matrix a satisfies
a polynomial identity of degree n over the centre Z. The polynomial identities for
the cases n = 2,3 are given explicitly below:

« = 2: a 2 - ( / 1 + l)a + !(/1
2 + / 1 - / 2 ) = 0>

n = 3: a3 -(Ix + 3)a2 + | ( / 2 + 4IX + 4 - 72)a

- [/3 - ( A + 3)/2 + HA2 + 4/x + 4 - 72)] = 0.
Since the weights in the fundamental (contragredient) vector representation are

all IP-conjugate one sees that the above polynomials are irreducible over Z. A
recursive method for determining the polynomial identities for higher order cases
is given in the paper by Green [8].

(ii) Consider the case where L is the Lie algebra of gl(2, C) and wx is the
representation corresponding to the symmetric 2 rank tensor representation. The
corresponding highest weight is X = (2,0) and the distinct weights occurring in
V{\) are (2,0), (1,1), (0,2) whence the associated matrix

2

A = CL=- £ 7rx(a,>,,,
' . 7 = 1

satisfies a polynomial identity of degree 3. In this case the weights X = (2,0) and
(0,2) are H^-conjugate whilst the weight (1,1) is dominant integral and is fixed by
all elements of W. Hence from the discussion of Section 4 one sees that A satisfies
a minimal polynomial identity m(A) — 0 of degree 3 over the centre Z. The
minimal polynomial m(x) in this case may be factored over Z into a linear factor
times a polynomial of degree 2 over Z. Explicitly A satisfies

[A-I,- 2][A2 - 2(A + \)A + 2( / 2 + A - 72)] = 0.

(iii) Let L be any simple Lie algebra of rank / and let wx be the adjoint
representation of L. In this case the set of distinct weights occurring in wA are the
roots of L, which all occur with multiplicity 1, together with the zero weight
which occurs with multiplicity /. Hence the matrix CL in this case satisfies a
polynomial identity of degree

d = dim L — rank L + 1,
and does not satisfy a polynomial identity of lower degree over Z. The zero
weight is fixed by all elements of the Weyl group and hence, from the remarks of
Section 4, the associated minimum polynomial must factor over Z into a linear
polynomial times a polynomial over Z of degree d — 1.

(iv) Let L be the Lie algebra of O(n,C) which has basis atj (/, j = 1,...,«)
satisfying
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The centre Z in this case is generated by the invariants

Im = tr(«m),
where (am)jJ is defined recursively according to

Only the invariants I2, / 4 , . . . are algebraically independent. Note also that the
universal Casimir element is given by CL = \I2.

In the case where irx is the fundamental vector representation the matrix CL

corresponds to the matrix a with entries

(«).y = «,y

considered by Bracken and Green [1]. In this case the matrix a satisfies a
polynomial identity of degree n over Z. The polynomial identities for the lower
order cases are listed explicitly below,

n = 3: (a- l ) [a2 - a - \I2] = 0.

n = 4: a4 - 4a3 +(5 - \I2)a
2 + (/2 - 2)a - \[l, + \I2{2 - 72)] = 0.

n = 5: (a - 2)2(a - 3)(a - l )a - i / 2 (a - l ) (a - if

- i [ / 4 - 3 / 2 - i /2
2](«- 2) = 0.

(v) We conclude with the case where L is the Lie algebra of O(3, C). In this case
CL = jl2 is the single invariant generating the centre. The irreducible representa-
tions 77/ of O(3, C) are labelled by a single quantum number / which may be an
integer or a half-odd integer. The representation IT, is (2/ + 1) dimensional and
the corresponding representation space has an orthonormal basis |'m) (m =
- / , . . . , / ) with the properties

L+\'m) = / ( / - « ) ( / + « + 1 ) I' ,>,

L_\m)={(l

+ \'

I

where

J_
ft

In this notation the universal Casimir element is given by

L ± = ± - ^

Corresponding to each quantum number / is the matrix A, defined by
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The matrix A, is a (2/ + 1) X (2/ + 1) matrix with entries given by

(A,)u = < :i Ll)L0 + < 'J L.\'j)L++ < I| Ljj)L_.

Thus

for/, y = - / , . . . , + / .
When acting on the representation irk of O(3,C) the matrix A, satisfies the

polynomial identity

fi (^,-«m(*)) = o, (5.i)
where

«„(*) = *[(* + m)(k + m + l) - /(/ + 1) - *(* + 1)]

= mk + \{m- l)(m + 1+ l).

Note that

am(k) + a_Jk) = m2 - 1(1+1), (5.2)

and

am(k)a.m{k) = aKm-m2k{k + l), (5.3)

where

Note that the central element Q takes the constant value k(k + 1) in the
representation afforded by -nk so we may replace the eigenvalue k(k + 1) by the
representation independent operator CL = \I2 in (5.3).

In this case the Weyl group has order 2 and the O(3, C) weights m, -m are
IP-conjugates. Thus the identity satisfied by A, may be expressed as a polynomial
identity over the centre Z which splits into quadratic factors over Z. Explicitly we
have, using equations (5.1)-(5.3), for the cases / integer and half-odd integer
respectively.

(a)

[A, + \l{l + 1)] El [Aj +(/2 + / - m2)A, + aLm - \m2l2\ = 0, /integer,
m - l

/

(b) E l [Aj +(12 + I- m2)A, + a ,m - | w 2 / 2 ] = 0, /half-odd integer.
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Appendix A

In Section 4 it was shown that for simple Lie algebras the characteristic and
minimum polynomials coincide. Here we illustrate that for general semi-simple
Lie algebras that the characteristic polynomial need not be minimal. To this end
suppose

L = L 1 « L 2 f f i • • • ® I , (t > 2 ) ,

is the decomposition of L into simple (two-sided) ideals. This decomposition
induces a decomposition of the C.S.A. H;

H = H1®H2® • • • © H,

where Ha is a C.S.A. of La (a = 1, ... ,*)• This is t u m induces a decomposition of
the dual

H* = i/f © HI® ••• © H*.

Hence every weight X e H* may be uniquely expressed in the form X = X1 + X 2

+ • • • + Xt, where Xa e H*. Suppose now that V(X) is a finite dimensional
irreducible representation of L with highest weight X e A+. Then V{X) may be
written as the direct product

V(X) = F ( * i ) X V(X2) X •••XV(\I)

where X = Ax + A2 + • • • + X, and where V(Xa) is a finite dimensional irreduc-
ible representation of La with highest weight Xa. (Note that some, not all, of the
V(Xa) may be trivial 1-dimensional representations in which case the correspond-
ing highest weights Xa are zero.)

Now the centre Z of the universal enveloping algebra of L may be written

Z = Zx® Z2 • • • ® Z, (enveloping algebra product)

where Za is the centre of the universal enveloping algebra of La. Hence let us
choose a nontrivial central element

z^Zx(ZZ, z <£ C,

and let/z „, v e H*, denote the polynomial function

/,,„(/*) = -li[x»+,(z) ~ X»{z) ~ Xx(z)], for allM G H*.

Now we have, since z e Zx, that

X»+,(z) = X»(z) for all M eH*,reH*O •••®Hf.

This shows that the polynomial functions fzy with v e //£ © • • • © H* are all
equal. Assuming some V(Xa) (a 3» 2) is nonzero we see that roots fz, (notation as
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in Sections 3 and 4) corresponding to weights X, in V(\) such that \,, e H% ©
• • • © H* are all equal. Thus for this case the characteristic polynomial is not
minimal since it has multiple roots.

This example illustrates why multiple roots may occur in the characteristic
polynomial for a general semi-simple Lie algebra. We can thus choose our central
element to ensure the characteristic polynomial is minimal. For example suppose
for each a = l,...,t we choose a non-trivial central element za e Za<z Z,
za £ C. Then in view of the results of Section 4 (in particular Theorem 6) we
arrive at the following:

THEOREM A. With the notation as above we have
(i) the characteristic polynomial of z, in the case z = zx + z2 + • • • + z,, is the

minimum polynomial.
(ii) If z = zYz2 • • • z, then the characteristic polynomial of z is the minimal

polynomial.

A particular case of this theorem has already been proved as Theorem 7. In the
case of the universal Casimir element CL of L we have

cL = cLi + cLi + • • • + cLi

where CLa is the universal Casimir element of La ( a = l,...,t). Thus Theorem 7

is a particular case of Theorem A(i) (with za = CL , a = 1 , . . . ,t).

Appendix B

For completeness we prove here a result concerning the divisibility of poly-
nomials with coefficients from an integral domain (I.D.) A which was implicitly
assumed in Theorem 5 and Lemma 1 of Section 4.

DEFINITION. Let p(x), q(x) e A[x] be polynomials over an I.D. A. We say that
q{x) divides p(x) over A if there exists r(x) e A[x] such that p{x) = q(x)r(x).

It is our aim here to prove the following result.

LEMMA. Let A be an I.D. and let al,...,an e A be distinct (i.e. a, =£ a for

' * j)- If<l(.x) G A[x] is such that

q(a,) = 0, / = \,...,n,
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then q(x) is divisible by the polynomial

1 - 1

i.e. there exists r(x) G A[x] such that q(x) = m(x)r(x).

PROOF. We note firstly that an I.D. A may be imbedded in its field of quotients
and secondly that any field may be imbedded in an algebraically closed field. This
implies in particular that if q(x) G A[x] then A may be imbedded in an extension
field F over which the polynomial q(x) splits into linear factors

9(*) = j8n(*-A), P,fi,eF. (Bl)
i - i

Following the notation of the Lemma let av...,an be distinct elements of A
such that <?(a,) = 0 (/ = 1,...,«). From equation (Bl) we then have

7 - 1

and it follows that alt...,an must occur among the roots f}lt...,/?,. We may thus
write

q(x) = m(x)r(x)

where

m(x)=fl(x-a,)eA[x)
i-i

and where

r(x) eF[x] 3A[x].
In order to prove the Lemma it remains to show that r(x) G A[x\. Let us

therefore write
/ n P

r=0 l - O i—O

Note that / = n + p and ftn = 1. Also, since m(x), q{x) e A[x] we must have, by
definition c,, iy- G >4 (i = 1,... ,/; 7 = 1,...,«). Equating coefficients of xn + ; ' we
have

c, = bndp = dp so that </, e A.

Similarly equating coefficients of xn+p~1 we have

or

Since c,_1} bn_1 G y4 and dp & A (by the first step) we deduce dp_l
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This step indicates how to establish the result by recursion. Since equating
coefficients of x"+k (k = 0 , . . . ,p) we have

Cn + k = bndk + K-\dk + \ + K-2dk + 2 + ' ' •
or

d k = c n + k - b n _ 1 d k + l - b n _ 2 d k + 2 - ••• . (B2)

Assuming (by the recursion hypothesis) dk+1,... ,dp e A it follows from equation
(B2) that dk e A. Thus (by finite recursion) we deduce that dk e A (k = 0,... ,p)
whence r(x) <= A[x]. Q.E.D.
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