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On weaving Hilbert space frames and
Riesz bases
Animesh Bhandari

Abstract. Two frames { fn }∞n=1 and {gn }
∞
n=1 in a separable Hilbert space H are said to be weaving

frames, if for everyσ ⊂ N, { fn }n∈σ ∪ {gn }n∈σc is a frame forH . Weaving frames are proved to be
very useful inmany areas, such as, distributed processing, wireless sensor networks, packet encoding
and many more. Inspired by the work of Bemrose et al.[11], this paper delves into the properties and
characterizations of weaving frames and weaving Riesz bases.

1 Introduction

The concept of Hilbert space frames was first introduced by Duffin and Schaeffer [1] in
1952. After several decades, in 1986, the importance of frame theory was popularized
by the groundbreaking work by Daubechies, Grossman andMeyer [2]. Since then frame
theory has been widely used bymathematicians and engineers in various fields of math-
ematics and engineering, namely, operator theory [3], harmonic analysis [4], wavelet
analysis [5], signal processing [6], image processing [7], sensor network [8], data analysis
[9], Retro Banach Frame [10], etc.

Frame theory literature became richer through several generalizations - fusion frame
(frames of subspaces) [12, 13] , G-frame (generalized frames) [14], K-frame (atomic sys-
tems) [15], K-fusion frame (atomic subspaces) [16], etc. - and these generalizations have
been proved to be useful in various applications.

Over the years, weaving frames have been explored in various contexts (see [18, 19,
20]), yet their characterization through the structure of the associated kernel of the cor-
responding weaving synthesis operator remains largely unexplored. To bridge this gap,
we undertake a comprehensive study of weaving frames and Riesz bases, focusing on
their intrinsic properties and fundamental characterizations. Our approach provides a
deeper understanding of their structural aspects, highlighting their stability and robust-
ness in different settings. By analyzing their interplay with synthesis operators, we
establish new theoretical insights into their behavior. This work aims to contribute sig-
nificantly to the ongoing research in frame theory and its applications in mathematical
analysis.

Throughout this paper,H is a separable Hilbert space. We denote byL(H1,H2) the
space of all bounded linear operators fromH1 intoH2, and L(H ) for L(H ,H ). For
T ∈ L(H ), we denote D(T ), N (T ) and R(T ) for domain, null space and range of T ,
respectively, and I is the identity operator.
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2 A. Bhandari

2 Preliminaries

Before diving into the main sections, throughout this section we recall basic definitions
and results needed in this paper. For a detailed discussion regarding frames, Riesz bases
we refer to [17].

2.1 Frame

A collection { f i }i∈I inH is called a frame if there exist constants A, B > 0 such that

A‖ f ‖2 ≤
∑
i∈I

|〈 f , f i〉|2 ≤ B‖ f ‖2, (2.1)

for all f ∈ H . The numbers A, B are called frame bounds. The supremum over all A’s
and infimum over all B’s satisfying above inequality are called the optimal frame bounds.
If a collection satisfies only the right inequality in (2.1), it is called a Bessel sequence.

Given a frame { f i }i∈I forH , the pre-frame operator or synthesis operator is a bounded
linear operator T : l2(I) → H and is defined by T {ci }i∈I =

∑
i∈I

ci f i . The adjoint of T ,

T∗ : H → l2(I), given by T∗ f = {〈 f , f i〉}i∈I , is called the analysis operator. The frame
operator, S = TT∗ : H → H , is defined by

S f = TT∗ f =
∑
i∈I

〈 f , f i〉 f i .

It is well-known that the frame operator is bounded, positive, self adjoint and invertible.
Here we present the definition of weaving frames, which serves as the foundation

for our study. This paper primarily focuses on examining the structural properties and
theoretical aspects of weaving frames.

Definition 2.1 [11] Two frames { fn}∞n=1 and {gn}
∞
n=1 in a separable Hilbert space H

are said to be weaving frames, if for every σ ⊂ N, { fn}n∈σ ∪ {gn}n∈σc is a frame for
H . i.e. for every f ∈ H and for every σ ⊂ N, there exist universal bounds α ≤ β so
that we have the following inequality:

α‖ f ‖2 ≤
∑
n∈σ

|〈 f , fn〉|2 +
∑
n∈σc

|〈 f , gn〉|2 ≤ β‖ f ‖2.

3 Main Results

In this section we discuss various properties and characterizations of weaving frames
and weaving Riesz bases.

Proposition 3.1. Let F = { fn}∞n=1 and G = {gn}
∞
n=1 be frames forH with bounds α1, β1

and α2, β2, and the associated synthesis operatorsTF andTG respectively. Suppose 0 < γ < 1
so that γ(‖TF ‖ + ‖TG ‖) ≤

α1
2 . Further, if for every {cn}

∞
n=1 ∈ `

2 we have,

‖

∞∑
n=1

cn( fn − gn)‖ ≤ γ‖{cn}‖. (3.1)
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On weaving Hilbert space frames and Riesz bases 3

Then F and G are weaving frames.

Proof 1. For everyσ ⊂ N, letTFσ ({cn}∞n=1) =
∑
n∈σ

cn fn andTGσ ({cn}∞n=1) =
∑
n∈σ

cngn.

Then applying [Theorem 6.1, [11]] we have ‖TFσ ‖ ≤ ‖TF ‖ and ‖TGσ ‖ ≤ ‖TG ‖. Using
equation (3.1) we have,

‖TFσ − TGσ ‖ ≤ ‖TF − TG ‖ < γ.

Therefore, for every f ∈ H we have,

‖(TFσT∗
Fσ
− TGσT∗

Gσ
) f ‖ ≤ ‖TFσ ‖‖T

∗
Fσ
− T∗
Gσ
‖‖ f ‖ + ‖T∗

Gσ
‖‖TFσ − TGσ ‖‖ f ‖

≤ (‖TF ‖‖TF − TG ‖ + ‖TG ‖‖TF − TG ‖)‖ f ‖

≤ γ(‖TF ‖ + ‖TG ‖)‖ f ‖

≤
α1

2
‖ f ‖.

Thus for every σ ⊂ N and f ∈ H we obtain,



∑
n∈σ

|〈 f , gn〉|2 +
∑
n∈σc

|〈 f , fn〉|2


=



∞∑
n=1
|〈 f , fn〉|2 + *

,

∑
n∈σ

|〈 f , gn〉|2 −
∑
n∈σ

|〈 f , fn〉|2+
-



≥



∞∑
n=1
|〈 f , fn〉|2


−



∑
n∈σ

|〈 f , gn〉|2 −
∑
n∈σ

|〈 f , fn〉|2


≥ α1‖ f ‖2 − 〈(TGσT∗
Gσ
− TFσT∗

Fσ
) f , f 〉

≥ α1‖ f ‖2 −
α1

2
‖ f ‖2

=
α1

2
‖ f ‖2.

On the other hand, the right-hand inequality will hold automatically. Consequently, F and G
are weaving frames.

The following result provides necessary and sufficient conditions for the wovenness
of the images of given weaving frames under a bounded linear operator.

Theorem 3.1 { fn}∞n=1 and {gn}
∞
n=1 be two weaving frames forH with the universal bounds

α, β. If T is a bounded linear operator inH . Then the following are equivalent:

(1) For every f ∈ H , there exists λ > 0 so that ‖T ∗ f ‖2 ≥ λ‖ f ‖2.
(2) {T fn}∞n=1 and {T gn}

∞
n=1 are weaving frames forH .

Proof 2. (1 =⇒ 2) Since { fn}∞n=1 and {gn}
∞
n=1 are weaving frames forH with the universal

bounds α, β, then for every f ∈ H and σ ⊂ N we have,

α‖ f ‖2 ≤
∑
n∈σ

|〈 f , fn〉|2 +
∑
n∈σc

|〈 f , gn〉|2 ≤ β‖ f ‖2. (3.2)

2025/07/14 19:15
https://doi.org/10.4153/S0008439525100891 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439525100891


4 A. Bhandari

Again for every f ∈ H , there exists λ = inf
‖ f ‖=1

‖T ∗ f ‖2 > 0 for which we have ‖T ∗ f ‖2 ≥

λ‖ f ‖2. Therefore, applying equation (3.2), for every f ∈ H and σ ⊂ N we have,∑
n∈σ

|〈 f ,T fn〉|2 +
∑
n∈σc

|〈 f ,T gn〉|
2 =

∑
n∈σ

|〈T ∗ f , fn〉|2 +
∑
n∈σc

|〈T ∗ f , gn〉|2

≥ α‖T ∗ f ‖2

≥ λ α‖ f ‖2.

Furthermore, applying equation (3.2), for every f ∈ H and σ ⊂ N we have,∑
n∈σ

|〈 f ,T fn〉|2 +
∑
n∈σc

|〈 f ,T gn〉|
2 =

∑
n∈σ

|〈T ∗ f , fn〉|2 +
∑
n∈σc

|〈T ∗ f , gn〉|2

≤ β‖T ∗ f ‖2

≤ β‖T ‖2‖ f ‖2.

Thus {T fn}∞n=1 and {T gn}
∞
n=1 are weaving frames forH .

(2 =⇒ 1) This implication is very straightforward and follows directly from the given condi-
tions.

The following result establishes a characterization of weaving frames using the
associated hyperplane.

Theorem 3.2 Let { fn}∞n=1 and {gn}
∞
n=1 be frames forH . Then the following are equivalent:

(1) { fn}∞n=1 and {gn}
∞
n=1 are weaving frames forH with the universal bounds α, β.

(2) For every σ ⊂ N and every hyperplane B ⊂ H we have,

α ≤
∑
n∈σ

‖PB⊥ fn‖2 +
∑
n∈σc

‖PB⊥gn‖2 ≤ β.

(3) For every σ ⊂ N and every subspace Bm with codimension m inH we have,

mα ≤
∑
n∈σ

‖PB⊥m fn‖2 +
∑
n∈σc

‖PB⊥mgn‖
2 ≤ mβ.

Proof 3. (1 =⇒ 2) Let { fn}∞n=1 and {gn}
∞
n=1 be weaving frames forH with the universal

bounds α, β. Then for every f ∈ H and σ ⊂ N we have,

α‖ f ‖2 ≤
∑
n∈σ

|〈 f , fn〉|2 +
∑
n∈σc

|〈 f , gn〉|2 ≤ β‖ f ‖2. (3.3)

For every f ∈ H with ‖ f ‖ = 1, let us assume that B = (span{ f })⊥. Therefore, for every n
we obtain, |〈 f , fn〉|2 = ‖PB⊥ fn‖2 and |〈 f , gn〉|2 = ‖PB⊥gn‖2. Thus we have,

α ≥ inf
{ ∑
n∈σ
‖PB⊥ fn‖2 +

∑
n∈σc

‖PB⊥gn‖2 : B is a hyperplane in H
}
and β ≤

sup
{ ∑
n∈σ
‖PB⊥ fn‖2 +

∑
n∈σc

‖PB⊥gn‖2 : B is a hyperplane in H
}
.
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On weaving Hilbert space frames and Riesz bases 5

Applying equation (3.3) we obtain,

α ≤
∑
n∈σ

‖PB⊥ fn‖2 +
∑
n∈σc

‖PB⊥gn‖2 ≤ β.

(2 =⇒ 1) SupposeB is a hyperplane inH . Then for every f ∈ B⊥ with ‖ f ‖ = 1 and every
n we have, |〈 f , fn〉|2 = ‖PB⊥ fn‖2 and |〈 f , gn〉|2 = ‖PB⊥gn‖2. Thus it is straightforward
to verify that the assumed condition directly ensures that { fn}∞n=1 and {gn}

∞
n=1 are weaving

frames forH with the universal bounds α, β.

(2 =⇒ 3) Suppose for every σ ⊂ N and every hyperplane B ⊂ H we have,

α ≤
∑
n∈σ

‖PB⊥ fn‖2 +
∑
n∈σc

‖PB⊥gn‖2 ≤ β. (3.4)

Let Bm be a subspace of H with codimension m. Then dimBm
⊥ = m. Suppose

{e1, e2, · · · , em} is an orthonormal basis inBm
⊥ and let us defineBi

⊥ = span{ei }, for every
i = 1, 2, · · · ,m. Then using equation (3.4) with the hyperplane Bi for every i = 1, 2, · · · ,m
we have,

α ≤
∑
n∈σ

‖PB⊥i fn‖2 +
∑
n∈σc

‖PB⊥i gn‖
2 ≤ β. (3.5)

Furthermore, we have PB⊥m =
m∑
i=1

PB⊥i . Thus we obtain,

m∑
i=1

*
,

∑
n∈σ

‖PB⊥i fn‖2 +
∑
n∈σc

‖PB⊥i gn‖
2+

-

=
∑
n∈σ

m∑
i=1
‖PB⊥i fn‖2 +

∑
n∈σc

m∑
i=1
‖PB⊥i gn‖

2

=
∑
n∈σ

‖PB⊥m fn‖2 +
∑
n∈σc

‖PB⊥mgn‖
2.

Hence applying equation (3.5) we have,

mα ≤
∑
n∈σ

‖PB⊥m fn‖2 +
∑
n∈σc

‖PB⊥mgn‖
2 ≤ mβ.

(3 =⇒ 2) This implication is straightforward.

The following result provides a characterization of weaving frames through the
associatedweaving synthesis operator. In this theorem,we establish a necessary and suf-
ficient condition for two frames to formweaving frames. This characterization is based
on the structure of the image of the standard orthonormal basis in `2 under the corre-
sponding weaving synthesis operator. This characterization is achieved by examining
how the frame vectors contribute to the structure of this image.

Theorem 3.3 Let { fn}∞n=1 and {gn}∞n=1 be two frames for H . Then the following are
equivalent:

(1) { fn}∞n=1 and {gn}
∞
n=1 are weaving frames forH .
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6 A. Bhandari

(2) For every σ ⊂ N, if Tσ is the associated weaving synthesis operator then we have,

Tσen =



fn : n ∈ σ
gn : n ∈ σc

,

where {en}∞n=1 is the canonical orthonormal basis in `
2.

Proof 4. (1 =⇒ 2) Let { fn}∞n=1 and {gn}
∞
n=1 be weaving frames forH with the universal

bounds 0 < α ≤ β < ∞. Then for every σ ⊂ N and for every f ∈ H we have,

α‖ f ‖2 ≤
∑
n∈σ

|〈 f , fn〉|2 +
∑
n∈σc

|〈 f , gn〉|2 ≤ β‖ f ‖2. (3.6)

Therefore, the operator T∗σ : H → `2 defined as

T∗σ f = {〈 f , fn〉}n∈σ ∪ {〈 f , gn〉}n∈σc

is bounded. Thus for every f ∈ H we have ‖T∗σ f ‖2 ≥ α‖ f ‖2. Since for every f ∈ H we
have,

〈 f ,Tσen〉 = 〈T∗σ f , en〉 =



〈 f , fn〉 : n ∈ σ
〈 f , gn〉 : n ∈ σc

Therefore, we obtain Tσen =



fn : n ∈ σ
gn : n ∈ σc .

(2 =⇒ 1) Let Tσ be the associated weaving synthesis operator so that we have Tσen =



fn : n ∈ σ
gn : n ∈ σc .

Therefore, for every f ∈ H we have,

T∗σ f =
∞∑
n=1
〈T∗σ f , en〉en =

∑
n∈σ

〈 f , fn〉en +
∑
n∈σc

〈 f , gn〉en.

Thus for every f ∈ H we have,∑
n∈σ

|〈 f , fn〉|2 +
∑
n∈σc

|〈 f , gn〉|2 = ‖T∗σ f ‖2 ≤ ‖T∗σ ‖
2‖ f ‖2 ≤ β‖ f ‖2,

where β = sup
σ
‖T∗σ ‖

2. Again since for every σ ⊂ N, the associated synthesis operator Tσ

is onto then T∗σ is one-one with closed range (see [21], p. 487). Therefore, it is bounded below
on the unit sphere inH and hence there exists α > 0 so that for every σ ⊂ N and for every
f ∈ H we obtain,∑

n∈σ

|〈 f , fn〉|2 +
∑
n∈σc

|〈 f , gn〉|2 = ‖T∗σ f ‖2 ≥ α‖ f ‖2.

Consequently, { fn}∞n=1 and {gn}
∞
n=1 are weaving frames forH .

Let H1,H2 be two separable Hilbert spaces. It is well-known that, if { fn}∞n=1 is a
frame forH1, {gn}∞n=1 is a frame forH2, and Q : H1 → H2 is an isomorphism so that
Q fn = gn for every n, then the frames { fn}∞n=1 and {gn}

∞
n=1 are equivalent (see [22]).
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On weaving Hilbert space frames and Riesz bases 7

Thus equivalent frames preserve the same topological properties in the sense that their
synthesis and analysis operators are related through the isomorphism Q, as their struc-
tural behavior remains invariant under equivalence relation. This concept is illustrated
through the following example:

The frames {(1, 0), (0, 1)} and {(2, 0), (0, 3)} in R2 are equivalent through Q =(
2 0
0 3

)
.

Let us consider an orthogonal projection P : `2 → X , where X is a closed subspace
of `2. Then {Pen} is a frame. If for every σ ⊂ N,Tσ is the associated synthesis operator
of two weaving frames { fn}∞n=1 and {gn}

∞
n=1, and P : `2 → (KerTσ )⊥ is the orthogonal

projection onto (KerTσ )⊥ then applying Theorem 3.3 we have,

Tσ (Pen) =



fn : n ∈ σ
gn : n ∈ σc .

Thus for every σ ⊂ N, Tσ : (KerTσ )⊥ → H is an isometric onto map and hence
we conclude the following remark.

Remark 3.1 Suppose { fn}∞n=1 and {gn}
∞
n=1 are weaving frames and for every σ ⊂ N, if

Tσ is the associated weaving synthesis operator then the frames { fn}n∈σ ∪ {gn}n∈σc in
H and {Pen}∞n=1 in (KerTσ )⊥ are equivalent with respect to the induced map Tσ .

Proof 5. Since { fn}∞n=1 and {gn}
∞
n=1 are weaving frames, then applying Theorem 3.3, for

every σ ⊂ N we have,

Tσ (Pen) =



fn : n ∈ σ
gn : n ∈ σc,

where P is the orthogonal projection from `2 onto (KerTσ )⊥. Thus Tσ maps (KerTσ )⊥

isometrically ontoH .
Consequently, the frame { fn}n∈σ ∪ {gn}n∈σc inH is equivalent to the frame {Pen}∞n=1

in (KerTσ )⊥ (see [[22], p. 68]).

Definition 3.1 [23] A sequence { fn}∞n=1 is said to be a Besselian frame if it is a frame
forH , and after the removal of a finite number of vectors, the resulting sequence forms
a Riesz basis forH .

In this context it is to be noted that for a Besselian frame { fn}∞n=1 in H ,
∞∑
n=1

an fn

converges inH if and only if {an}
∞
n=1 ∈ `

2.

Example 3.1. If {en}∞n=1 is an orthonormal basis in `
2, then

{e1, e1, e2, e3, e4, · · · } is a Besselian frame.

Definition 3.2 Two Besselian frames inH are said to be weaving Besselian frames, if
every weaving of them is a Besselian frame forH .

Example 3.2. If {en}∞n=1 is an orthonormal basis in `2, then it is easy to verify that
{e1, e1, e2, e3, e4, · · · } and {e1, e1, e2, e2, e3, e4, · · · } are weaving Besselian frames.
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8 A. Bhandari

Proposition 3.2. Let { fn}∞n=1 and {gn}∞n=1 be weaving Besselian frames for H with the
associated weaving synthesis operator Tσ : `2 → H , for every σ ⊂ N. Then the dimension
of Ker (Tσ ) is finite.

Proof 6. For every σ ⊂ N, let us consider the orthogonal projection P : `2 → (KerTσ )⊥.
Then applying Remark 3.1, {Pen}∞n=1 is a frame for (KerTσ )⊥ and hence it is equivalent to
the Besselian frame { fn}n∈σ ∪ {gn}n∈σc . Thus applying [Theorem 2.3, [23]], the dimension
of Ker (Tσ ) is finite.

Motivated by the notion of Riesz basis, we discuss the concept of near Riesz basis
in a similar framework. For detailed discussion on the same, we refer to the relevant
literature cited herein [17, 22].

Definition 3.3 Let { fn}∞n=1 be a frame forH . If there is a finite set γ so that { fn}n<γ is
a Riesz basis inH , then { fn}∞n=1 is said to be a near Riesz basis.

We define near weaving Riesz bases in analogy with the notion of weaving Besselian
frames.

Definition 3.4 Let { fn}∞n=1 and {gn}
∞
n=1 be a two near Riesz bases inH . If there exists

a finite subset γ in N so that for every σ ⊂ N \ γ, { fn}n∈σ ∪ {gn}n∈σc is a near Riesz
basis inH , then { fn}∞n=1 and {gn}

∞
n=1 are said to be near weaving Riesz bases.

Remark 3.2 It is to be noted that the concepts of Besselian frames and near Riesz bases
are equivalent.

The following result provides a characterization of nearweaving Riesz bases through
the kernel of the associated weaving synthesis operator. This characterization offers
insights into the interplay between the synthesis operator and the weaving property of
near Riesz bases.

Theorem 3.4 Let { fn}∞n=1 and {gn}
∞
n=1 be weaving frames forH with the associated weaving

synthesis operator Tσ : `2 → H , for every σ ⊂ N. Then the following are equivalent:

(1) KerTσ is finite dimensional.
(2) { fn}∞n=1 and {gn}

∞
n=1 are near weaving Riesz bases inH .

Proof 7. (1 =⇒ 2) If for every σ ⊂ N, P is the orthogonal projection from `2 onto
(KerTσ )⊥, then applying Remark 3.1 the frames {Pen}∞n=1 and { fn}n∈σ ∪ {gn}n∈σc

are equivalent. Therefore, { fn}n∈σ ∪ {gn}n∈σc is a near Riesz basis and hence { fn}∞n=1
and {gn}∞n=1 are near weaving Riesz bases if and only if {Pen}∞n=1 is a near Riesz basis in
(KerTσ )⊥ = R(P).

Let KerTσ is finite dimensional. Then (I − P) represents the orthogonal projection onto

KerTσ and hence we have
∞∑
n=1
‖(I−P)en‖2 < ∞ (see [24]). Therefore, there exists a positive

integer k so that
∞∑

n=k+1
‖en − Pen‖2 < 1.
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On weaving Hilbert space frames and Riesz bases 9

Let us consider a sequence {xn}∞n=1 where xn =



en : n = 1, 2, · · · , k
Pen : otherwise.

Then we have

∞∑
n=1
‖en − xn‖2 < 1 and hence {xn}∞n=1 forms a basis in `

2, which is equivalent to {en}∞n=1
(see [25]). Therefore, {xn}∞n=1 is a Riesz basis in `

2 and hence {Pen}∞n=k+1 is a Riesz basis in
span{Pen}∞n=k+1 inside `

2.
Furthermore, since span{Pen}∞n=1 = (KerTσ )⊥, then for every σ ⊂ N, {Pen}∞n=k+1 can

be extended to a Riesz basis in (KerTσ )⊥. Hence there exists γ ⊂ {1, 2, · · · , k} for which
{Pen}n<γ is a Riesz basis in (KerTσ )⊥. Thus { fn}∞n=1 and {gn}

∞
n=1 are near weaving Riesz

bases inH .

(2 =⇒ 1) If { fn}∞n=1 and {gn}
∞
n=1 are near weaving Riesz bases, then the removal of finite

number of elements from every weaving ensures that the remaining sequence forms a Riesz
basis. Thus it is easy to verify that { fn}∞n=1 and {gn}

∞
n=1 are Besselian weaving frames.

Therefore, applying Proposition 3.2 for every σ ⊂ N, KerTσ is finite dimensional.
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