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THE SIS GREAT CIRCLE EPIDEMIC MODEL

PETER NEAL,∗ University of Manchester

Abstract

We consider a stochastic SIS model for the spread of an epidemic amongst a population
of n individuals that are equally spaced upon the circumference of a circle. Whilst
infectious, an individual, i say, makes both local and global infectious contacts at the
points of homogeneous Poisson point processes. Global contacts are made uniformly at
random with members of the entire population, whilst local contacts are made according to
a contact distribution centred upon the infective. Individuals at the end of their infectious
period return to the susceptible state and can be reinfected. The emphasis of the paper
is on asymptotic results as the population size n → ∞. Therefore, a contact process
with global infection is introduced representing the limiting behaviour as n → ∞ of the
circle epidemics. A branching process approximation for the early stages of the epidemic
is derived and the endemic equilibrium of a major outbreak is obtained. Furthermore,
assuming exponential infectious periods, the probability of a major epidemic outbreak
and the proportion of the population infectious in the endemic equilibrium are shown to
satisfy the same equation which characterises the epidemic process.
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1. Introduction

Stochastic epidemic modelling has focused in recent years on the analysis of infectious
diseases in heterogeneously mixing populations. The prime example is the household model
(see [5]), where the population is partitioned into small groups (households) and, whilst
infectious, individuals make infectious contacts both with the population at large and at an
increased rate with members of their own household. This is a two-level mixing model with
global infectious contacts uniformly at random with the whole population and local infectious
contacts, uniformly at random, with members of ones household. However, there are other
examples of two-level mixing models such as the overlapping groups model [1, Section 6] and
the spatially motivated great circle model [4], [5]. The great circle model is the focus of this
paper and in contrast to [4] we will study SIS epidemics. That is, we assume that there is a closed
population of n individuals equally spaced upon the circumference of a circle with individuals
numbered sequentially such that individuals 1 and n are neighbours. The individuals are in
one of two states: either susceptible or infectious. A susceptible individual when contacted by
an infectious individual becomes infectious for a random period of time (an infectious period)
during which it can make infectious contacts. Infectious individuals make global infectious
contacts, uniformly at random, with members of the whole population and local infectious
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514 P. NEAL

contacts according to a contact probability distribution V n. That is, the individual contacted by
a local infection by individual i is given by (i + V n)mod n. At the end of its infectious period,
the individual returns to the susceptible state and can be reinfected. A full description is given
in Section 2.

Contact processes (see, for example, [6], [8], [9], [10], and [12]) are closely related to the
SIS great circle model. The contact process model assumes that there is an infinite population
equally spaced in a one-dimensional space, usually taken to be at the points of Z. At any point
in time, an individual is either susceptible or infectious. On becoming infected an individual
has an exponentially distributed infectious period before returning to the susceptible state.
Individual i, whilst infectious, makes infectious contacts at the points of a homogeneous Poisson
point process with rateλL and the individual contacted is given by i+V , whereV is a probability
distribution with support in Z. With the notable exception of [12], virtually all attention has
been focused upon the nearest neighbour model, where P(V = 1) = P(V = −1) = 1

2 . The
contact process only has local (spatial) infectious spread in contrast to the great circle model.
Therefore, in Section 2 a contact process with global infection is introduced for general V . This
is interesting in its own right, but will prove particularly useful when analysing the limiting
behaviour as n → ∞ of the great circle model.

A key tool in analysing both the contact process with global infection and the great circle
model is the susceptibility process which is defined in Section 3. The susceptibility process is the
SIS analogue of the susceptibility set which has been utilised to great affect in analysing SIR two-
level mixing epidemics; see [3] and [4]. Also, in Section 3 the simpler notion of a susceptibility
time is introduced. In particular, the susceptibility time is crucial in determining both the
probability of a major epidemic and, should an endemic equilibrium exist, the proportion of
the population infected in equilibrium.

The paper is structured as follows. In Section 2 a description of both the contact and
epidemic processes is given. Then in Section 3 susceptibility processes and susceptibility
times are defined. In Section 4 contact processes and, in particular, their endemic equilibrium
measure is derived. Moreover, provided that there are infinitely many infectives in the initial
population configuration, the population converges to the endemic equilibrium measure as time
t → ∞. In Section 5 the emphasis switches to the SIS great circle epidemic model. A law
of large numbers is proved showing that the proportion of the population infectious in the
SIS great circle model converges to the proportion infectious in the contact process as the
population size n → ∞. The results of Sections 4 and 5 are applicable if, in the limit as the
population size n → ∞, there are infinitely many initial infectives. Therefore, in Section 6 we
derive a branching process approximation for the case where there is only one initial infective.
In particular, we find that the susceptibility time plays an important role in determining the
probability that a major epidemic outbreak occurs. In Section 7 we specialise the results to
the nearest neighbour case and provide a useful self-consistent mean-field approximation for
the proportion of the population infectious in the endemic equilibrium. Finally, in Section 8
extensions of the current paper are discussed. In particular, how the concepts of susceptibility
processes and times can be used in the analysis of other SIS models.

2. Outline of the contact and epidemic processes

A graphical representation of the contact process, C, upon Z following [10] is given. For
i ∈ Z, assign to individual i at site i a time line in R. The time line will be comprised of
three Poisson point processes corresponding to global infections ηG

i , local infections ηL
i , and

removals ηR
i having rates λGx(t), λL, and γ , respectively. Without loss of generality, we will
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take the removal rate to be γ = 1. Clearly, λG can be amalgamated into x(t), but it will be
convenient for discussions in the epidemic context to have λG specified separately. Associated
with each of the points in ηL

i are independent and identically distributed random variables
distributed according to V . For A = G,L,R, label the points of ηAi by T Aij (j ∈ Z) with

· · · ≤ T Ai,−2 ≤ T Ai,−1 ≤ 0 ≤ T Ai,1 ≤ T Ai,2 ≤ · · · .

Let Vij denote the random variable associated with time point T L
ij . The contact process is then

constructed as follows. Let ηG
i represent the points in time at which potential infectious contacts

are made with individual i. If individual i is susceptible at time T G
ij then individual i becomes

infectious at time T G
ij , otherwise the contact is ignored. Let ηR

i represent the points in time at
which individual i recovers from the disease and becomes susceptible again, if infectious. Note
that, if individual i is susceptible at time point T R

ij , the removal time is ignored. Finally, ηL
i

represents the points in time at which individual i makes potential local infectious contacts. If
individual i is infectious at time point T L

ij then they make an infectious contact with individual
i + Vij whom, if susceptible, becomes infected. On the other hand, if individual i is susceptible
at time point T L

ij , the local infectious contact is ignored. For simplicity of exposition, we assume
that V is symmetric. Also, we assume that E[V 2] < ∞, which ensures that the rate of growth
of the local spread of the disease is linear in time; see [12, Equation (3.21)]. Finally, for i ∈ Z

and t ∈ R, let ξi(t) = 1 if individual i is infectious at time t and ξi(t) = 0 otherwise. Let
ξ(t) = (. . . , ξ−1(t), ξ0(t), ξ1(t), . . . ).

Throughout, we term the infectious state of the population at time 0 as the initial configura-
tion. In the above construction the initial configuration is determined by studying the time lines
into the (infinite) past. This can be done using susceptibility processes, which are described
in Section 3. However, we will also be interested in the behaviour of the epidemic for any
specified initial configuration χ = (. . . , χ−1, χ0, χ1, . . . ), where χi = 1 (i ∈ Z) if individual
i is initially infectious and χi = 0 otherwise. Where χ is specified, ξ(0) = χ , and, for t ≥ 0,
ξ(t) can be constructed as above using χ and the time lines in R

+ with the time lines prior
to time 0 being redundant. We allow χ to be a random variable and, therefore, the former
case (scenario 1) where the initial configuration is constructed from the past time lines is an
important special case of the latter, general case (scenario 2).

For n ≥ 1, the contact process Cn is defined upon {1, 2, . . . , n} with individuals 1 and n as
neighbours to form a circle. Global infections and removals take place as for the contact process
C. Local infections are the same except that the individual contacted at the j th local infectious
contact by individual i is (i + Vij )mod n. For the epidemic process, En, simply take Cn and
replace x(·) by Yn(·), where Yn(t) denotes the proportion of the population infectious in the
epidemic En at time t . Therefore, the epidemic process corresponds to infectious individuals
having an independent, exponentially distributed infectious period with parameter γ . Whilst
infectious, an individual, i say, makes global contacts at the points of a homogeneous Poisson
point process with rate λG, the individual contacted being chosen uniformly at random from the
whole population, and makes local infectious contacts at the points of a homogeneous Poisson
point process with rate λL, the individual contacted being chosen according to (i + V )mod n.

3. Susceptibility process

In the analysis of two-level mixing SIR epidemic models infectious clumps and susceptibility
sets have proved useful; see [3] and [4]. We define the natural SIS epidemic analogue to the
susceptibility set, which we will term the susceptibility process. The susceptibility process in
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itself is not particularly illuminating and we will therefore define a simpler quantity called the
susceptibility time which will often prove sufficient for our needs.

For the contact process C, the susceptibility process is defined as follows. For i, j ∈ Z and
s ≤ t , we say that is � jt if there exists a path of local infection from individual i at time s
to individual j at time t . That is, if individual i is infectious at time s then individual j will
be infectious at time t regardless of global infections. Therefore, the local infectious paths
are determined by {(ηR

i , η
L
i ,Vi )}i∈Z, where Vi = (Vij )j∈Z. Then the susceptibility process of

individual i at time t is given by
Sti = {St,si ; s ≤ t},

where
S
t,s
i = |{j ∈ Z; js � it }|.

Thus, for i ∈ Z and s ≤ t , St,si is the total number of individuals who need to avoid global
infection at time s for individual i to be susceptible at time t . The susceptibility time of
individual i at time t is defined to be

T ti =
∫ t

−∞
S
t,s
i ds,

the total amount of time during which members of the population need to avoid global infectious
contacts for individual i to be susceptible at time t . The local infectious paths are spatially and
temporally homogeneous. Therefore, for all i ∈ Z and t ∈ R, T ti

d= T 0
0 ≡ T , say, where

‘
d=’ denotes equality in distribution. Given Sti and x(·), the probability that individual i is

susceptible at time t is

exp

(
−λG

∫ t

−∞
x(s)S

t,s
i ds

)
. (3.1)

Thus, if x(s) = u (s ∈ R) for some u > 0 then (3.1) simplifies to

exp(−λGuT
t
i ).

The above is directly applicable in scenario 1, where the initial configuration is constructed
from the time lines. For scenario 2, we discuss any complications at time 0 in the susceptibility
process and susceptibility time caused by specifying χ as they arise. Finally, note that the
susceptibility process and susceptibility time are independent of the global infectious process.

For n ≥ 1 and 1 ≤ i ≤ n, the susceptibility process Sti,n and susceptibility time T ti,n can be
defined in the obvious fashion for Cn and En. Note that Cn and En only differ in the global
infectious process, and so, can therefore be coupled to have identical susceptibility processes.

4. Contact processes

The aim of this section is to study contact processes with λG > 0 (global infection). The
emphasis is upon the asymptotic behaviour of ξ(t) as t → ∞. Suppose that x(t) → u as
t → ∞ for some u > 0. Then Lemma 4.1, below, shows that

ξ(t)
d−→ πu as t → ∞,

where ‘
d−→’ denotes convergence in distribution and πu is an invariant measure on {0, 1}Z. A

realization from πu can be obtained from the time lines in Section 2 by fixing x(s) = u (s ∈ R)

and observing the status of the population at any fixed time t . Thus, πu is not a product measure
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and is generally hard to express. However, for u > 0, P(πu0 = 1) = 1 − E[exp(−λGuT )],
where T is the susceptibility time of a typical individual. Thus, exposing the population to u
units of global infectious pressure leads to a proportion m(u) = 1 − E[exp(−λGuT )] of the
population being infectious. From an epidemic perspective we are interested in the solutions
of the key equation

u = m(u)(= 1 − E[exp(−λGuT )]), (4.1)

that is, when are the infectious pressure and the proportion infectious equal? Clearly, u = 0 is
a solution of (4.1). Since m(u) is a concave function, a solution u∗ ∈ (0, 1] exists if and only
if R∗(= m′(0)) = λG E[T ] > 1. Note that T depends upon λL and V , and so, R∗ and u∗ are
functions of λG, λL, and V .

In the epidemic context the global infectious pressure depends upon the proportion of
infectives. We therefore introduce self-referential infectious processes which seek to replicate
this behaviour. However, since we have an infinite population, we define a sequence of self-
referential infectious processes, yn = {yn(s); s ≥ 0}, as follows. For x = {x(s); s ≥ 0},
let θi(t; x,χ) = 1 and θni (t; x,χn) = 1 if individual i is infectious at time t given that each
individual is exposed to global infectious pressure at rate λGx(s) in C and, respectively, in Cn
with θi(t; x,χ) = 0 and, respectively, θni (t; x,χn) = 0 otherwise. The {θni (t; x,χn)} are not
required until Section 5. Let yn(0) = (1/n)

∑n
i=1 E[χi] and, for t ≥ 0, let

yn(t) = 1

n

n∑
i=1

E[θi(t; yn,χ)]. (4.2)

Thus, yn(t) is the mean proportion of infectious individuals in {1, 2, . . . , n} at time t when the
global infectious pressure at time s is given by yn(s). Let y(t) = limn→∞ yn(t) should the
limit exist. For y(t) (t ≥ 0) to exist and be nonzero, we require that χ is sufficiently regular in
its behaviour and any of the following suffice:

(i) scenario 1, where χ is given by the (past) time lines;

(ii) there exists 0 < φ ≤ 1 such that the components of χ are independent and identically
distributed with P(χ0 = 1) = φ;

(iii) there exists k ∈ N such that, for all m ∈ Z,

(χmk+1, χmk+2, . . . , χ(m+1)k) = (χ1, χ2, . . . , χk)

with
∑k
i=1 χi 	= 0.

Throughout, we will use y(·) to denote the self-referential process and x(·) to denote a generic
global infectious process.

Theorem 4.1, below, states the main results of this section for self-referential processes. For
simplicity in exposition, we assume that y(t) exists with y(0) = φ > 0 and give the proofs
in terms of the limit. However, all results hold for any n ≥ 1 with yn(0) > 0. The key
statement from Theorem 4.1 is that if R∗ > 1 and there is initially infinitely many infectives
then, as t → ∞, the proportion of the population infectious converges to u∗ and is distributed
according to πu

∗
. If R∗ ≤ 1, the proofs can be adapted to show that ξ(t)

p−→ 0 as t → ∞, a
disease free equilibrium (where ‘

p−→’ denotes convergence in probability).
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Theorem 4.1. Suppose that R∗ > 1 and that u∗ is the nonzero solution of (4.1). Then, for any
χ such that (1/n)

∑n
i=1 E[χi] → y(0) ≡ φ > 0 as n → ∞,

y(t) → u∗ as t → ∞. (4.3)

Moreover (by Lemma 4.1, below),

ξ(t)
d−→ πu

∗
as t → ∞. (4.4)

Before proving Theorem 4.1, we give the necessary preliminary results. In the proceeding
arguments, until otherwise stated, we assume a general global infectious process x(·).

A number of the key arguments throughout this paper rely upon establishing a coupling
between two contact (epidemic) processes. Throughout, when comparing two contact (epi-
demic) processes, labelled process 1 and process 2, respectively, we will index any quantities
which differ between the two processes by the index of the appropriate process. Any quantities
which are not indexed will be assumed to be the same for both processes.

Lemma 4.1. Suppose that there exists u > 0 such that x(t) → u as t → ∞. Then, for any
χ ∈ {0, 1}Z with ξ(0) = χ ,

ξ(t)
d−→ πu as t → ∞. (4.5)

Proof. By [7, p. 19], (4.5) holds if, for any A ⊂ Z, |A| < ∞,

ξA(t)
d−→ πuA as t → ∞, (4.6)

where ξA(t) = (ξi(t))i∈A and πuA = (πui )i∈A.
Consider two contact processes with ξ (1)(0) = χ and ξ (2)

d= πu and, for s ≥ 0, x1(s) = x(s)

and x2(s) = u. The contact processes can be coupled using the same time lines and, hence, the
same susceptibility processes. Thus, for an individual i, say, at time t ,

P(ξ (1)i (t) 	= ξ
(2)
i (t)) ≤ | P(ξ (1)i (t) = 0)− P(ξ (2)i (t) = 0)|. (4.7)

For s ≥ 0, let
εs = sup

w≥s
|x(w)− u|.

Then εs → 0 as s → ∞. To study (4.7), it is easiest to consider T ti ≤ t/2 and T ti > t/2
separately. Since, for s ≥ t/2, x(s) ≥ u− εt/2, we have

P(ξ (1)i (t) 	= ξ
(2)
i (t))

≤ exp

(
−λG(u− εt/2)

t

2

)

+
∣∣∣∣ E

[(
exp

(
−λG

∫ t

t/2
x(s)S

t,s
i ds

)
− exp

(
−λG

∫ t

t/2
uS

t,s
i ds

)) ∣∣∣∣ T ti ≤ t

2

]∣∣∣∣.
(4.8)

The latter term on the right-hand side of (4.8) is less than

E

[
(exp(−λG(u− εt/2)T

t
i )− exp(−λG(u+ εt/2)T

t
i ))

∣∣∣∣ T ti ≤ t

2

]

≤ E

[
2λGεt/2T

t
i exp(−λG(u− εt/2)T

t
i )

∣∣∣∣ T ti ≤ t

2

]
→ 0 as n → ∞. (4.9)
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Therefore, from (4.7), (4.8), and (4.9),

P(ξ (1)i (t) 	= ξ
(2)
i (t)) → 0 as n → ∞. (4.10)

Since (4.10) holds for all i and ξ (2)(t)
d= πu for all t ∈ R, (4.6) follows immediately from

(4.10).

The following lemma gives a useful coupling relationship which is used extensively in the
proceeding arguments. Corollary 4.1, below, is an immediate consequence of Lemma 4.2.

Lemma 4.2. Suppose that, for contact processes 1 and 2, λ1
L ≤ λ2

L, λ1
G ≤ λ2

G, χ(1) ≤ χ(2), and
x1(s) ≤ x2(s) (s ≥ 0). Then, for any finite subsetA, provided that any of the above inequalities
are strict,

1

|A|
∑
i∈A

E[ξ (1)i (t)] < 1

|A|
∑
i∈A

E[ξ (2)i (t)]. (4.11)

For (4.11), it is sufficient that there exists a > 0 such that x1(b) < x2(b) (0 ≤ b < a) and
x1(b) ≤ x2(b) (b ≥ a).

Proof. The proof is similar to [14, Proposition 4.1] and, hence, the details are omitted.

Corollary 4.1. Let x(·) be nonincreasing or nondecreasing in t ≥ 0. Suppose that there exists
a ≥ 0 such that, for all h > 0, x(a + h) < x(a) (x(a + h) > x(a)). Then given scenario 1,
where χ is constructed from the (past) time lines, for i ∈ Z,

P(ξi(t) = 1 | {x(s); s ≥ 0})
is strictly decreasing or, respectively, increasing in t .

We now devote ourselves to the self-referential process. We begin by considering the special
case where χ

d= πu (u > 0). This is scenario 1 with x(s) = u (s < 0). For u > 0, let

ŷu(t) = 1 − E

[
exp

(
−λG

∫ t

−∞
ŷu(s)S

t,s
0 ds

)]
,

where ŷu(s) = u (s < 0). Since the epidemic generated by scenario 1 is spatially homogeneous,
ŷu(t) = E[ξ0(t)] and, for all n ≥ 1, yn(t) = ŷu(t).

Lemma 4.3. Suppose that ξ(0)
d= πu for some 0 < u ≤ ∞. Then

ŷu(t) → u∗ as t → ∞,

where u∗ is the nonzero solution of (4.1).

Proof. The lemma is immediate if u = u∗. We prove the result for u > u∗ with similar
arguments applying for u < u∗.

Fix u0 = u > u∗, and let ũ0 = mu0 . Since u0 > u∗, u∗ < ũ0 < u0. Let ũ0 < u1 < u0 with
ũ1 = mu1 . Then, for k = 2, 3, . . . , let uk satisfy ũk−1 < uk < ũk−2, where ũk = muk . Since
mu is concave in u, uk, ũk → u∗ as k → ∞.

Let 0 = t̃0 < t̃1 < · · · be a sequence of times to be defined shortly. For k = 1, 2, . . . and
t > 0, letψk(t) = (. . . , ψk−1(t), ψ

k
0 (t), ψ

k
1 (t), . . . )denote the state of the population at time t in

the contact process C̃k with piecewise-constant global infectious pressure,ψk(0) = ξ(0)(
d= πu)
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and ψki (t) = 1 if individual i is infectious at time t and ψki (t) = 0 otherwise. Specifically, let
xk(·) denote the global infectious pressure in C̃k with

xk(t) =

⎧⎪⎨
⎪⎩
u0, t < 0,

ul, t̃l−1 ≤ t < t̃l, l = 1, 2, . . . , k − 1,

uk, t > t̃k−1.

(4.12)

For k = 1, 2, . . . and t ≥ 0, let zk(t) = E[ψk0 (t)]. Then zk(t) → ũk and ψk(t)
d−→ πuk

as t → ∞.
Note that πu

∗
<st π

u d= ξ(0), where ‘<st’ denotes ‘stochastically smaller than’. Therefore,
by Lemma 4.2, for all t ≥ 0,

lim inf
t→∞ ŷu(t) ≥ lim inf

t→∞ ŷu∗(t) = u∗. (4.13)

The main part of the proof involves showing that, for all t ≥ 0 and k = 1, 2, . . . ,

ŷu(t) ≤ zk(t),

and, hence, lim supt→∞ ŷu(t) ≤ u∗, from which the lemma follows immediately.
Firstly, we define t̃ = (t̃0, t̃1, . . . ). For k = 1, 2, . . . , let t̃k be such that zk(t̃k) = uk+1. Then,

for all t ≥ t̃k , zk(t) < uk+1. Note that ŷu(0) = ũ0 < u1. Therefore, since ŷu(·) is continuous,
there exists t∗1 such that, for all 0 ≤ t ≤ t∗1 , ŷu(t) < u1 = x1(t). Hence, for all 0 ≤ t ≤ t∗1 ,

ŷu(t) < z1(t). (4.14)

However, by Corollary 4.1, z1(t) is decreasing with z1(t) ≤ ũ0 < u (t ≥ 0), and so, it is
straightforward to show that (4.14) holds for all t ≥ 0.

Fix k > 1. Suppose that, for all t > 0,

ŷu(t) < zk−1(t).

Then, for all 0 ≤ t < t̃k−1,
ŷu(t) < zk−1(t) ≡ zk(t).

Therefore, ŷu(t̃k−1) < uk , and so, there exists t∗k > t̃k−1 such that, for all t̃k−1 ≤ t < t∗k , x(t) <
uk . Hence, for all 0 ≤ t ≤ t∗k ,

ŷu(t) < zk(t). (4.15)

Since, by Corollary 4.1, zk(t) is decreasing in t with zk(t) ≤ ũk−1 (t ≥ t̃k−1), it follows that
(4.15) holds for all t > 0.

Therefore, since zk(t) → ũk as t → ∞, for any ε > 0, there exists K ∈ N such that
ũK < u∗ + ε, and so,

lim sup
t→∞

ŷu(t) ≤ lim sup
t→∞

zK(t) = ũK < u∗ + ε. (4.16)

The lemma follows from (4.13) and (4.16).

For ξ(0)
d= πu (0 < u ≤ ∞), ξ(t) and ŷu(t) are either (stochastically) increasing or

decreasing in t . This is not the case for general ξ(0)
d= χ and needs to be addressed in order to

conclude the proof of Theorem 4.1.
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Proof of Theorem 4.1. Clearly, χ ≤st π
∞, where π∞ corresponds to everybody being ini-

tially infectious. Thus, it is immediate from Lemmas 4.1 and 4.2 that lim supt→∞ y(t) = u∗.
Similarly, if there exists u > 0 such that πu ≤st χ then lim inf t→∞ y(t) = u∗.

More generally, a lower bound for y(t) can be obtained by noting that, for all t ≥ 0,
y(t) ≥ φe−t , since e−t is the probability an initially infectious individual has not recovered by
time t . Thus, a sequence of lower bound processes in the spirit of Lemma 4.1 can be constructed
as follows.

For ν ≥ 0, let T̂ν = ∫ 0
−ν S

0,s
0 ds. Then T̂v

d−→ T as v → ∞ and, therefore, there exists
κ∗ > 0 such that, for all ν > κ∗, λG E[T̂ν] > 1. Fix κ > κ∗. Then 1 − E[exp(−λGt T̂κ )] is
concave in t , and so, there exists δ∗ > 0 such that, for all 0 < δ̃ < δ∗,

1 − E[exp(−λGδ̃T̂κ )] > δ̃.

Fix 0 < δ < min{δ∗, φe−κ}. Consider a lower bound process ψ1(t). Let

x1(s) =
{

0, s < 0,

δ, s ≥ 0,

denote the global infectious pressure that individuals in ψ1(t) are subjected to at time s with
ψ1(0) = 0. Let z1(t) = E[ψ1

0 (t)]. For all 0 ≤ t ≤ κ , by Lemma 4.2,

z1(t) < y(t),

since x(t) ≥ δ. Moreover, by Corollary 4.1, z(·) is increasing with

δ < z(κ) < y(κ).

Thus, a new lower bound process ψ2(t) can be constructed with global infectious pressure
x2(t), where

x2(t) =
{
x1(t), t ≤ κ,

z1(κ), t > κ;
cf. (4.12). This process can be repeated to form a sequence of lower bounds as in Lemma 4.3.
Thus, it can be shown that

lim inf
t→∞ y(t) = u∗.

Therefore, (4.3) is proved and (4.4) follows by Lemma 4.1.

5. Convergence of epidemic processes

The reason for introducing the contact process was to represent the limiting behaviour of
the sequence of epidemic processes (En) as n → ∞. From the descriptions of the epidemic
and contact processes upon {1, 2, . . . , n} given in Section 2, the epidemic process is the special
case of the contact process, where the global infectious pressure depends upon the (stochastic)
proportion of the population infectious.

The statement of the main result follows the proceeding observation. For n ≥ 1 and
t ≥ 0, let χn = (χ1, χ2, . . . , χn) and Yn(t;χn) denote the initial configuration of infectives
and the proportion of the population infectious at time t , respectively, in the epidemic En.
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Let θni (t;Yn,χn) be defined as in Section 4. Then θni (t;Yn,χn) = 1 if individual i is infectious
at time t in En and

Yn(t;χn) = 1

n

n∑
i=1

θni (t;Yn,χn);

cf. [14, Section 2].

Theorem 5.1. For t ≥ 0, let yn(t) be defined by (4.2). Then

sup
0≤s≤t

|Yn(s;χn)− yn(s)| p−→ 0 as n → ∞. (5.1)

Note that if, for all t ≥ 0, y(t) = limn→∞ yn(t) exists then yn(s) can be replaced in (5.1)
by y(s). As mentioned in Section 4, this will be the case if χ is sufficiently well behaved and
sufficient conditions are presented in Section 4. Theorem 5.1 is a functional law of large numbers
which states that the solution of (4.2) (the deterministic (mean) proportion infectious) provides a
good approximation for the (stochastic) proportion infectious inEn over any finite time interval.
The main results proved in Section 4 are asymptotic as t → ∞ and it can easily be shown that, for
any n ≥ 1, Yn(t;χn) p−→ 0 as t → ∞. However, for large t , {Yn(t;χn) | Yn(t;χn) > 0} ≈ u∗.

Theorem 5.1 will be proved using the triangle inequality via a series of lemmas. We begin
by introducing a new process {Y 1

n (·; ·)} which is easier to analyse. For n ≥ 1, let

Y 1
n (t;χ) = 1

n

n∑
i=1

θi(t;Yn,χ).

Sinceχn = (χ1, χ2, . . . , χn), Yn(t;χn) andY 1
n (t;χn) can be coupled on a common probability

space such that Yn(0;χn) ≡ Y 1
n (0;χn) and θi(t;Yn,χ) 	= θni (t;Yn,χn) only if individual i’s

susceptibility processes differs between En and C on the interval [0, t]. Therefore, we can
construct bounds for

P(θi(t;Yn,χ) 	= θni (t;Yn,χn)).
Let R̃t denote the right-most infective at time t in the following simple S → I epidemic

model amongst a population located at the points of Z. At time 0, individuals . . . ,−2,−1, 0 are
infectious whilst individuals 1, 2, . . . are susceptible. Similarly, let −L̃t denote the left-most
infective at time t in an S → I epidemic where at time 0, individuals 0, 1, 2, . . . are infectious
and individuals . . . ,−2,−1 are susceptible. Individuals, if infectious, make (local) infectious
contacts at the points of a homogeneous Poisson point process with rate λL with the individual
contacted distributed according to i + V . Then

R̃t ≤st

Ãt∑
j=1

B̃j ,

where Ãt ∼ Po(λL E[|V |]t/2) and B̃1, B̃2, . . . are independent and identically distributed ac-
cording to B̃ with P(B̃ = k) = 2 P(V ≥ k)/E[|V |].
Lemma 5.1. For any t > 0,

P(R̃t ≥ k) ≤ 1

k
E[B̃] E[Ãt ], (5.2)

where E[B̃] < ∞ and E[Ãt ] = λL E[|V |]t/2.
Since V is symmetric, (5.2) holds with L̃t in place of R̃t .
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Proof. The proof is straightforward using Markov’s inequality.

The following corollary is an immediate consequence of Lemma 5.1.

Corollary 5.1. For all t ≥ 0,

sup
0≤s≤t

|Yn(s;χn)− Y 1
n (s;χ)| p−→ 0 as n → ∞.

Proof. Fix ε > 0. Since, for t ≥ 0, R̃t = sup0≤s≤t R̃s , we have, by Markov’s inequality
and Lemma 5.1,

P

(
sup

0≤s≤t
|Yn(s;χn)− Y 1

n (s;χ)| > ε

)

≤ 1

εn

n∑
i=1

E

[
sup

0≤s≤t
|θni (s;Yn,χn)− θi(s;Yn,χ)|

]

≤ 1

εn

n∑
i=1

(P(R̃t ≥ i)+ P(L̃t ≥ n+ 1 − i))

→ 0 as n → ∞.

Therefore, analysis can be focused upon Y 1
n (·; ·) rather than Yn(·; ·).

Lemma 5.2. For all t ≥ 0,

sup
0≤s≤t

|Y 1
n (s;χ)− E[Y 1

n (s;χ) | Yn]| p−→ 0 as n → ∞. (5.3)

Proof. Fix t ≥ 0 and note that, for 0 ≤ s ≤ t ,

Y 1
n (s;χ)− E[Y 1

n (s;χ) | Yn] = 1

n

n∑
i=1

(θi(s;Yn,χ)− E[θi(s;Yn,χ) | Yn]).

Using the theorem of total probability and Chebyshev’s inequality (cf. [13, Lemma 5.4]),

P

(∣∣∣∣1

n

n∑
i=1

{θi(s;Yn,χ)− E[θi(s;Yn,χ) | Yn]}
∣∣∣∣ > ε

)

≤ 1

ε2n2

n∑
i=1

n∑
j=1

E[cov(θi(s;Yn,χ), θj (t;Yn,χ) | Yn)]. (5.4)

For t ≥ 0 and k ≥ 0, let R̂i,k(t) and L̂j,k(t) denote the furthest individual to the right and
left, respectively, that is infected up to time t by the local epidemic having as initial infectives
all individuals less than or equal to i + [k/2] and greater than or equal to j − [k/2] + 1,
respectively, where [x] denotes the largest integer less than or equal to x. For i < j , let
Bi,j (s) = {R̂i,j−i (s) ≥ j} ∪ {L̂j,j−i (t) ≤ i}. Then following [4, Lemma 3.1], for any y,

| cov(θi(t; x,χ), θj (t; x,χ))|
≤ | P(θi(t; x,χ) = 1, θj (t; x,χ) = 1)− P(θi(t; x,χ) = 1)P(θj (t; x,χ) = 1)|
≤ 5 P(Bi,j (t))

≤ 5

(
P

(
R̃t >

[
j − i

2

])
+ P

(
L̃t >

[
j − i

2

]))
.
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From Lemma 5.1, for j − i ≥ 2,

cov(θi(s; x,χ), θj (s; x,χ)) ≤ (5)(2)
3

j − i

λL E[|V |]s
2

E[B̃], (5.5)

and so, from (5.4) and (5.5),

P

(∣∣∣∣1

n

n∑
i=1

(θi(s;Yn,χ)− E[θi(s;Yn,χ) | Yn])
∣∣∣∣ > ε

)

≤ 1

εn2 2n

(
2 + 15

n∑
k=2

1

k
λL E[|V |]s E[B̃]

)

→ 0 as n → ∞. (5.6)

Finally, (5.3) follows from (5.6) along similar lines to the proof of [14, Lemma 3.2] and,
hence, the details are omitted.

Before proving the final step of Theorem 5.1, we require the following result. Couple
two epidemic (contact) processes with the same initial configuration χ , local transitions, and
removal times. That is, any given individual i has the same susceptibility process in both
epidemic (contact) processes. Let processes 1 and 2 be subjected to global infectious processes
x1(·) and x2(·), respectively. For j = 1, 2, let θ̃ ji (t; xj ,χ) = 1 if individual i is infectious in
process j at time t and θ̃ ji (t; xj ,χ) = 0 otherwise. We then have the following lemma which
is similar to [14, Proposition 3.1].

Lemma 5.3. There exists a coupling of the two epidemic (contact) processes described above
such that, for all i ∈ {1, 2, . . . , n} (i ∈ Z),

P(θ̃1
i (t; x1,χ) 	= θ̃2

i (t; x2,χ)) ≤ λG

∫ t

0
|x1(s)− x2(s)| E[St,si ] ds

≤ λG

∫ t

0
|x1(s)− x2(s)| exp(λL(t − s)) ds.

Proof of Theorem 5.1. Note that

sup
0≤s≤t

| E[Y 1
n (s;χ) | Yn] − yn(s)|

≤ sup
0≤s≤t

∣∣∣∣1

n

n∑
i=1

E[θi(s;Yn,χ) | Yn] − E[θi(t; yn,χ)]
∣∣∣∣

≤ sup
0≤s≤t

1

n

n∑
i=1

| E[θi(s;Yn,χ) | Yn] − E[θi(t; yn,χ)]|

≤ sup
0≤s≤t

λG

∫ t

0
|Yn(s)− yn(s)| exp(λL(t − s)) ds

≤
∫ t

0
λG exp(λL(t − s)) sup

0≤u≤s
|Yn(u)− yn(u)| ds, (5.7)

where the penultimate inequality in (5.7) follows from Lemma 5.3.
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For t ≥ 0, let
A1
n(t) = sup

0≤s≤t
|Yn(s;χn)− Y 1

n (s;χ)|

and
A2
n(t) = sup

0≤s≤t
|Y 1
n (s;χ)− E[Y 1

n (s;χ) | Yn]|.

Then, by the triangle inequality followed by Gronwall’s inequality,

sup
0≤s≤t

|Yn(s;χn)− yn(s)|

≤ A1
n(t)+ A2

n(t)+
∫ t

0
λG exp(λL(t − s)) sup

0≤u≤s
|Yn(u;χn)− yn(u)| ds

≤ (A1
n(t)+ A2

n(t)) exp

(∫ t

0
λG exp(λL(t − s)) ds

)

≤ (A1
n(t)+ A2

n(t)) exp

(
λG

λL
(exp(λLt)− 1)

)
. (5.8)

From Corollary 5.1 and Lemma 5.2, respectively, A1
n(t)

p−→ 0 and A2
n(t)

p−→ 0 as n → ∞.
Therefore, the right-hand side of (5.8) converges in probability to 0 as n → ∞ and the theorem
is proved.

6. Branching process approximation and invasion

The results presented in Sections 4 and 5 are relevant if the initial number of infectives is
large, namely, (1/n)

∑n
i=1 χi

p−→ φ as n → ∞ for some 0 < φ ≤ 1. However, of general
interest is the progression of the disease started from one initial infective, or more generally a
initial infectives (1 ≤ a < ∞). In this case the main scientific questions of interest are, can a
major epidemic outbreak occur and what is the probability of a major epidemic? Answers are
provided in Corollary 6.1, below, with a link established between the probability of a major
outbreak and the proportion of the population infectious in endemic equilibrium.

The initial stages of both SIR and SIS epidemics can be modelled in a similar manner
with branching process approximations being appropriate in both cases. A branching process
approximation for the SIR great circle epidemic model is developed in detail in [4, Section 2],
and can, with a little care, be adapted to the SIS great circle epidemic model presented above.
Therefore, we give an outline of the approximating branching process and an alternative
construction of the epidemic which is amenable for coupling to the branching process. Note that
individuals in the branching process correspond to local epidemic clumps (see the description
below) in the epidemic process.

Consider a sequence of independent and identically distributed contact processes Ck (k =
1, 2, . . . ) constructed as follows. For fixed k, Ck is constructed using the time lines described
in Section 2 with the only difference being global infections. Let ηG be a homogeneous Poisson
point process with rate λG and, for individual i in Ck , let ηG

ki be the points of time, if infectious,
at which individual i makes global infectious contacts. Thus, ηG denotes the (potential) global
infectious contacts made by an individual as opposed to those received by an individual earlier
in the paper. Initially at time 0, individual 0 is assumed to be infectious in an otherwise
susceptible population. The local epidemic clump is constructed from the time lines ignoring
global infectious contacts. LetDk denote the duration of the epidemic Ck . For t ≥ 0, let Jk(t)
denote the individuals whom have been infected in Ck up to time t with Jk = {Jk(t); t ≥ 0}.
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Let Ik(t) denote the total number of infectives in Ci at time t . Then global infectious contacts
are made by the infectives in Ck at the points of an inhomogeneous Poisson point process η̃k
with rate λGIk(t).

Similarly, for n = 1, 2, . . . , local epidemic clumps Cn1 , C
n
2 , . . . can be constructed on a

circle. For fixed n and k, label the individuals on the circle −[(n − 1)/2],−[(n − 1)/2] +
1, . . . , [n/2]. Assume that initially individual 0 is infectious in an otherwise susceptible
population. Then Cnk can be coupled to Ck with the only difference being that local infectious
contacts by individual i (−[(n− 1)/2] ≤ i ≤ [n/2]) are chosen according to (i +V )modn. Let
Dnk , η̃nk , Ink (t), J

n
k (t) (t ≥ 0), and J nk be defined in the obvious fashion.

A branching process can be constructed from the contact processes as follows. Let 0 <
s2 ≤ s3 ≤ · · · denote the times of births in the branching process, and let (D2,J2, η̃2),
(D3,J3, η̃3), . . . denote the successive histories of individuals born into the branching process.
(Set sk+1 = ∞ if fewer than k individuals are born into the branching process.) Denote by
(D1,J1, η̃1) the history of the individual initially present in the branching process. Thus,
individuals in the branching process are labelled in the order in which they are born, with label 1
being attached to the initial ancestor. The kth individual in the branching process has lifetime
Dk and reproduces at the points of η̃k . The Jks play no role in the branching process, but are
instrumental in coupling the epidemic process to the branching process. The above construction
is similar to that given in [4, p. 237]. The only difference is in the explicit construction of Ck .
Finally, letX(t) denote the total number of individuals alive in the branching process at time t .

For n = 1, 2, . . . , a realisation of the epidemic En can be constructed as follows. Let χnk
(k = 1, 2, . . . ) be independent random variables, each uniformly distributed on {1, 2, . . . , n}.
The initial infective is the individual χn1 and the individual contacted at the kth global contact
made in En is χnk+1. If this individual is susceptible when contacted then a local epidemic
emanates from individual χnk+1. In particular, the local epidemic is constructed in an analogous
fashion to Cnk , translated so that the individual labelled 0 in Cnk corresponds to χnk . Note that
the local spread away from χni may not be the same as that described by Cnk , since in En an
individual that is susceptible in Cnk may have been infected via another infectious clump. Let
Xn(t) denote the total number of infectious clumps in En at time t .

Let Tn(∞) denote the total number of infectious clumps ever present in the epidemic En,
and let T (∞) denote the total progeny of the branching process.

Theorem 6.1. There is a probability space (�,F ,P ) on which are defined a sequence of
epidemic models indexed by n (the population size) and the approximating branching process,
with the following properties.

Denote by A the set on which the branching process X(·) becomes extinct:

A =
{
ω ∈ � : lim

t→∞X(t, ω) = 0
}
.

Then, as n → ∞,
sup

0≤t<∞
|Xn(t)−X(t)| → 0

for P -almost all ω ∈ A. Furthermore, for any 0 < K < ∞, as n → ∞,

sup
0≤t≤K

|Xn(t)−X(t)| → 0 (6.1)

for P -almost all ω ∈ Ac.
Finally,

Tn(∞) → T (∞) almost surely as n → ∞.
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Proof. The proof follows along similar lines to [4, Theorem 2.5 and Corollary 2.6] and,
hence, the details are omitted.

We briefly comment upon the differences with [4, Theorem 2.5]. The only technicality is
that, in contrast to the SIR epidemic model, the local epidemics {Ck} are not necessarily almost
surely finite. However, arguments along the lines of Lemma 5.1 can be used to show that the
rate of growth of the local epidemic Ck is linear in t . Therefore, over any finite time interval,
the arguments follow [4]. A weaker condition has been imposed upon the moments of V than
in [4, Theorem 2.5]. This is because (6.1) is stated for fixed K , with a stronger result in the
vein of [4, Theorem 2.5] possible subject to higher finite moment constraints on V .

Theorem 6.1 gives us an invasion threshold theorem for the SIS great circle epidemic model.
A global epidemic is said to occur if in the limit as n → ∞ the epidemic generates infinitely
many local infectious clumps. Let R denote the total number of global infectious contacts
emanating from a typical local epidemic, C1. Note that R ∼ Po(λG

∫ ∞
0 I (t) dt). By a time

reversal argument (see [8] and [10]), T
d= ∫ ∞

0 I (t) dt , where T denotes the susceptibility time;
see Section 3. Thus, R ∼ Po(λGT ) and E[R] = R∗.

Corollary 6.1. Let f (s)(= E[sR]) = E[exp((s − 1)λGT )] be the probability generating
function of R. Then, as n → ∞,

(a) a global epidemic occurs with nonzero probability if and only if R∗ > 1;

(b) the probability of a global epidemic is p, where q = 1 − p is the smallest root of
E[exp((s − 1)λGT )] = s in [0, 1]. Thus, p = u∗, where u∗ is the nonzero solution
of (4.1).

An immediate consequence of Corollary 6.1(b) is that the probability of a global epidemic is
identical to the proportion of the population infected in the endemic equilibrium. This holds
generally for SIS models and is discussed further in Section 8.

Finally, unlike Sections 4 and 5, the above arguments can easily be adapted to the case where
the infectious period is nonexponentially distributed; see, for example, [2, Section 2].

7. Nearest neighbour

The classical nearest neighbour contact process (with λG = 0) has received by far the most
attention; see, for example, [6], [8], [9], and [10]. Assuming, without loss of generality, that
γ = 1, it is known that there exists 0 < λCL < ∞ such that, for all λL ≤ λCL , the contact process
dies out almost surely, whilst, for λL > λCL , an endemic equilibrium exists. The exact value
of λCL is unknown, although analytical arguments have shown that 1.539 < λCL /2 < 1.942 and
heuristic arguments give λCL /2 ≈ 1.649 [15]. (Note that the contact rate λ which is usually
quoted for contact processes (see, for example, [8], [10], and [15]) corresponds to λL/2.)

ConsiderλG > 0, and letT denote the susceptibility time of a typical individual; cf. Section 3.
Then, for λL < λCL , T is almost surely finite, whilst, for λL > λCL , P(T = ∞) > 0. However,
the distribution ofT is not known, and so, exact calculation of the proportion infected in endemic
equilibrium u∗ is not possible. There are two fruitful approaches for evaluating u∗. The first
approach is to derive analytical upper and lower bounds for T , and hence u∗. The second
approach is heuristic and uses a self-consistent mean-field approximation. This approximation
works very well when λG is not too small (λG ≥ 0.25).

A lower bound for T , TL, is given by the SIR model, where individuals can be infected at
most once. An upper bound, TU, assumes that all local infectious contacts result in infection.
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Thus,

TL
d= L+X(S1

L + S2
L), (7.1)

TU
d= L+X(T 1

U + T 2
U), (7.2)

where all random variables in (7.1) and (7.2) are independent. Specifically, L ∼ Exp(λL + 1),
X ∼ Bernoulli(λL/(λL + 1)), T 1

U and T 2
U are independent copies of TU, and S1

L and S2
L are

independent copies of a random variable SL, where

SL
d= L̃ + X̃(L̂ + S1

L)

with L̃ ∼ Exp(1 + λL/2), L̂ ∼ Exp(1), and X̃ ∼ Bernoulli(λL/(λL + 2)). Then, for α ≥ 0,
straightforward calculations give

E[exp(−αTL)] = 1

α + λL + 1

(
1 + λL(α + 1)

(α + 1)(α + λL/2 + 1)− λL/2

)

and

E[exp(−αTU)] = 1

2λL
(α + λL + 1 − ((α + λL + 1)2 − 8λL)

1/2).

Since TL ≤st T ≤st TU, we have, for all α ≥ 0,

1 − E[exp(−λGαTL)] ≤ 1 − E[exp(−λGαT )] ≤ 1 − E[exp(−λGαTU)].
Thus, uL ≤ u∗ ≤ uU, where, for Z = L,U, uZ is the nonzero solution of

u = 1 − E[exp(−λGuTZ)] (7.3)

if λG E[TZ] > 1 and uZ = 0 otherwise.
The self-consistent mean-field approach takes the following argument. Consider a random

individual, i say. In equilibrium a proportion s of the population is infected and, thus, each
individual is exposed to global infection at the points of a Poisson point process with rate λGs.
Therefore, if an individual has a constant number of infectious neighbours, k say, the probability
that individual i is infectious at any given point in time is (λGs + kλL/2)/(1 + λGs + kλL/2)
(the probability that the last event involving individual i is an infectious contact). Moreover, for
any individual, the probability that a given neighbour is infectious is s. Thus, the probability
that individual i is infectious is

2∑
k=0

λGs + kλL/2

1 + λGs + kλL/2

(
2

k

)
sk(1 − s)2−k. (7.4)

However, the probability that individual i is infectious is simply s. Therefore, the estimated
proportion infectious in stationarity is uH , where uH is the nonzero solution (should it exist)
of

s =
2∑
k=0

λGs + kλL/2

1 + λGs + kλL/2

(
2

k

)
sk(1 − s)2−k. (7.5)

There are two assumptions implicit in the above arguments which are obviously incorrect.
Firstly, the number of infectious neighbours is constant and, secondly, the infectious status of
a neighbour of individual i is independent of individual i’s infectious state. However, if λGs
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Figure 1: (a) λG = 0.2 and (b) λG = 0.5. The solid lines represent the simulation estimate of u∗ (with
dots) and the self-consistent mean-field approximation (without dots). The dashed lines represent the
upper and lower analytical bounds given by (7.3), and the dot–dash lines represent the tighter upper and

lower analytical bounds.

is not small, an individual is only likely to escape infection if it has a short susceptibility time.
Over short time intervals, it is reasonable to assume that the number of infectious neighbours is
constant, and, thus, uH is potentially a good approximation for u∗, although the independence
assumption is unjustified. Finally, forλG = 0, (7.5) has a nonzero solution ifλL/2 > λCL /2 = 1,
whereas the contact process is known to have λCL /2 > 1.539.

We conclude with Figure 1, in which we compare the above estimates for u∗ with estimates
of u∗ obtained from a simulation study on a population of size 10 000 with the proportion
infected averaged over 500 regularly observed time points. Also provided are tighter upper and
lower analytical bounds forC(

d= T ) based upon explicitly modelling the early stages ofC until
either there are three infectious individuals or the clump has died out. The analytical upper
and lower bounds are of limited use for λG small, although they do become far tighter as λG
increases, where only individuals with short susceptibility times avoid infection. However, the
self-consistent mean-field approach gives very good estimates for u∗ except in the case where
λG and u∗ are small when it overestimates the proportion infected in stationarity.

8. Summary

The main results of the paper are given in Theorem 4.1 and Corollary 6.1 and can be
summarised as follows. The probability, p, of a major epidemic outbreak (initiated from one
initial infective) and the proportion, u∗, of the population infected in endemic equilibrium are
the same. Moreover, u∗ = p is the nonzero solution (should one exist) of

u = 1 − E[exp(−λGuT )],
where T is the susceptibility time of a typical individual and a nonzero solution exists if and
only if R∗ = λG E[T ] > 1.

This result is by no means restricted to the great circle SIS epidemic model. For example,
if λL = 0, we recover the standard SIS epidemic model with T ∼ Exp(1). Therefore, a
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global epidemic is only possible if λG > 1 and the proportion of the population infectious in
equilibrium is the nonzero solution of

s = 1 − 1

λGs + 1
.

That is, u∗ = (λG − 1)/λG, agreeing with [11].
More generally, the susceptibility time, T , of a typical individual can be defined for other

two-level mixing SIS epidemic models. Of particular interest is the household model; see [2]
and [14]. The proportion, u∗, of the population infectious in endemic equilibrium has been
derived by different methods from those employed here; see [14, Section 4]. However, by using
susceptibility times and arguing along the lines of Section 6, it can be shown that the probability
of a major epidemic outbreak emanating from a single infective is also given by u∗.

Finally, the main drawback of the methodology is that the distribution of T is difficult to
derive. By restricting attention to the nearest neighbour model (v1 = v−1 = 1

2 ), stochastic
upper and lower bounds for T can be obtained. However, a self-consistent mean-field approach
provided more useful approximations for u∗.
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